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The sound attenuation coefficient « is calculated in perturbation theory around the Boltzmann re-
sult, a®, for two- and three-dimensional (3D) disordered electronic systems. For 3D systems we cal-
culate impurity density corrections to a® up to second order. The second-order correction is found
to be nonanalytic in the impurity density. We also calculate the leading nonanalytic low-frequency
corrections to a® due to electron localization effects up to terms of second order in the impurity den-

sity. The theory suggests that for 2D systems there will be singular low-frequency corrections to a

0

even in the presence of a magnetic field. The perturbation theory also shows that the behavior of a
near an electronic mobility edge cannot be obtained by exponentiating an € expansion around d =2.

I. INTRODUCTION

In recent years there has been a considerable amount of
work on nonanalytic low-frequency corrections to the
Boltzmann result for the electrical conductivity in disor-
dered two- and three-dimensional electronic systems.'
For models of noninteracting electrons, these corrections
are due to Anderson localization effects: because of disor-
der, electronic motion is diffusive, which leads to an
enhanced low-frequency current relaxation, and to a
strong frequency dependence of the current spectrum.
The leading nonanalytic corrections to the Boltzmann
conductivity are of order (#fi/Eg7)In(w7), and
(##/Ep7)*V 0, for 2D and 3D systems, respectively. The
small expansion parameter is #/Ep7, with Ep the Fermi
energy and 7 the Boltzmann collision time, and #A/Eg7 is
proportioned to the impurity density n;. Much less atten-
tion has been given to nonanalytic terms encountered in
the static conductivity as a function of n;. It has been
known since the work of Langer and Neal® that in 3D sys-
tems the leading nonanalytic terms are of order
(##/Epm)in(Ep7/#). In 2D, the corresponding result is of
order (#i/Ep7)In(Ep7/#). This observation is of funda-
mental importance since it shows that for transport coef-
ficients there is no analog to the virial expansion for
equilibrium quantities.

Since the principal reason for ultrasonic attenuation in
electronic systems is the decay of phonons into electron-
hole pairs, the sound attenuation coefficient « is sensitive
to electronic correlations similar to the one which governs
the electrical conductivity o. It is therefore natural to ex-
pect for @ anomalies of the same kind as the one found
for o, and it is the purpose of the present paper to study
this problem.

This paper is organized as follows. In Sec. II we briefly
outline the model, show how a can be related to the elec-
tronic stress-tensor correlation function, and establish the
rules for the perturbation theory. In Sec. III A we calcu-
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late for 3D systems the first two impurity-density correc-
tions to the low-frequency Boltzmann attenuation coeffi-
cients af and a3 for both longitudinal (L) and transverse
(T) phonons. They turn out to be of order
(#/Ep7)+(#/Ep)In(Ep7/#). For completeness we also
give the corresponding result for the electrical conductivi-
ty o. The impurity-density corrections to ¢ have been
considered before in Ref. 3, where all processes that lead
to logarithmic contributions have been identified. Howev-
er, there were some minor algebraic errors in the original
calculations. Impurity-density corrections for 2D systems
will not be considered since in 2D transport is anomalous
at low frequencies. In fact, the sound attenuation in the
low-frequency limit is not yet understood in 2D.

In Sec. III B we calculate the leading nonanalytic low-
frequency corrections to aP and @Y. This problem has
been addressed recently by Kotliar and Ramakrishnan*
and by Houghton and Won.*® We disagree with some of
the results of Ref. 4(a), as we will discuss below. In agree-
ment with Ref. 4(b), we find leading corrections of order
(#/Epm)In(w7) and (#/Ep7)*V o1 for d =2 and d =3 for
both a; and at. For d =2 we also consider the next or-
der of perturbation theory, in which we find leading
singular terms of order (#/Ep7)’In*(w7). In the case of
the conductivity these terms are known to cancel,” and
this cancellation is a necessary condition for the scaling
theory of localization® to be valid. For a we find the pre-
factor of these terms to be nonzero. In contrast to the
contribution of order (A/Ep7)In(w7), the existence of the
terms of order (#/Er7)!In*(w7) is not restricted to sys-
tems invariant under time reversal. That is, even if time-
reversal invariance is broken, e.g., in the presence of a
magnetic field, there will be important singular low-
frequency contributions to the sound-attenuation coeffi-
cient.

We conclude this paper by a discussion of our results.
In particular we point out that the existence of the term
proportioned to In%(w7) together with the numerical value
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of its prefactor sets rather narrow limits on attempts to
extend the perturbation results to describe the sound at-
tenuation near an electronic mobility edge. We find that
an € expansion around d =2 and exponentiating, a pro-
cedure which yields for the conductivity a critical
behavior consistent with results obtained otherwise, yields
for the sound attenuation a result which is in contradic-
tion to our perturbation theory results. We also comment
on the relationship between the longitudinal and trans-
verse sound-attenuation coefficients that was established
in Sec. II, and discuss the experimental relevance of our
results

II. BASIC FORMALISM

A. The model

To calculate ultrasonic attenuation in the presence of
impurities, we use a model derived by Blount and by
Tsuneto’ (see also Kadanoff and Falko®) and Schmid.’
The model starts with bare electrons and ions interacting
via long-range Coulomb forces. If the ionic lattice under-
goes thermal motion, the electrons will almost coherently
follow the ions because of the tendency of the system to
maintain local charge neutrality. This observation sug-
gests transformation to a frame of reference which moves
locally with the ions. This can be accomplished by means
of a unitary transformation,” which indeed makes most of
the electron-ion interaction vanish.” The remaining effec-
tive electron-phonon interaction arises from a coupling
between the lattice strain and the electronic stress tensor.
This feature is in contrast to the more common coupling
to the electronic density in the Fréhlich model. An un-
critical application of this model to impure systems would
yield a spurious extra coupling to long wavelength pho-
nons. Proper elimination of this problem within the
Frohlich model is possible only by taking into account in-
elastic scattering of electrons off the moving impurities,
and it is the main advantage of the Blount-Tsuneto-
Schmid model to avoid this complication.

The model Hamiltonian is given by’ (in this section we
choose units such that #i=1)

H:H0+He_e +He-ph+th (2.1)
with the electronic Hamiltonian
Ho==—s5(4=0)+ 3 V(gn'q), (2.22)
2m p
H,.,=+3 (e*/g}n"(qn(q) . (2.2b)
q

H,_p;, is the electron-phonon interaction,

( ) 172
&n(q)[l}b(q)+3g(—q)], 2.3)

and H, is the phonon Hamiltonian in the Debye approx-
imation,

Hy= 3 05(q)B4(q)By(q) .
q,b

(2.4)

In these equations, #n,s, and 7 denote electronic density, ki-
netic energy, and stress operators, respectively,
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.
n(qQ)= 3 Cx_q/2,6Ck+q/2,0 1 (2.5a)
k,o
s(@)= 3 k%liq/2,0Ck—q/20 > (2.5b)
k,o
Q)= 2(k'q/q)[k'eb(q)]CLq/z,aCHq/z,a . (2.5¢)

k,o

Here cI,,,,ck,, denote creation and annihilation operators
for electrons with momentum k and spin index o. V(q)
is the Fourier transform of the electron impurity scatter-
ing potential, m is the effective electron mass, and p is the
ion mass density. Bg(q) and B,(q) are creation and an-
nihilation operators for phonon with wave vector q and
polarization index b (b =L and b =T for longitudinal
and transverse phonons), and e, is the phonon polariza-
tion vector. Finally, w,;(q)=cyq is the bare phonon
dispersion relation with sound velocity ¢;,. In our calcula-
tion, we will assume only s-wave electron-impurity
scattering. For simplicity, we also restrict ourselves to
zero temperature.

B. Correlation function representation
for the sound attenuation

It is important that the electronic Hamiltonian, Eq.
(2.2), still contains the long-range Coulomb interaction.
Its main effect is to screen the electron-phonon interac-
tion, Eq. (2.3). Kadanoff and Falko® have treated this ef-
fect within a generalized random-phase approximation
(RPA), and have shown that within the perfect screening
approximation, the ultrasonic attenuation coefficient can
be written as

o)
a( , ):————————-Im X‘r ( ’w)
b0 mzpcg { 274
‘[Xrbn(q,a))]z/)(,,,,(q,w)} . (2.6)
The X are commutator-correlation functions
X 45(q,0)=1 fowdte"(w+i0)t
X {[4%(q,0),B(q,0)] Ve, 2.7

formed with the stress operator 7,, Eq. (2.5¢), and the
number density operator n, Eq. (2.5a), respectively. The
brackets in Eq. (2.7) stand for the quantum-mechanical
expectation value, while the symbol ( ),, denotes the im-
purity average. These correlation functions are to be cal-
culated for a system given by H, alone, without electron-
phonon and electron-electron interactions.!® Because of
symmetry, one has X rn(q,@)=0 (there is no screening of
transverse modes), and art is just given by the transverse
stress-correlation function X=X .,

ar(g,0)=——ImX1(g,0) . (2.6))
m-pct

A similar simplification for a; can be obtained for
small frequencies. To see this, we use that for small ¢ and
, X nn has a diffusive pole,
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2
Xm(q,a,)_f_ii_l&__

= , (2.8)
du —iw+Dg?

where dn/dp is the compressibility, and D is the dif-
fusion coefficient. Consequently, there will be a region of
low frequencies w =c,q, for which the condition Dg? <<
holds. In this region the wave number is small compared
with the frequency in the natural units of the system, and
we need to consider only the long-wavelength limit. Ka-
danoff and Falko® have shown that for low frequencies
Eq. (2.6) for a; simplifies to

gLn(q)
(q0)=—2—Im | X((q,0)—2 Xi,(g,0)
B mZPC%. Lo gnn(q) L@
g |
Ln
——— | Xanl s ’
gm(g) | T @®)

where g1,(q)= f_w (do/m)ImX,(q,0)/0, etc. If we
introduce the new  operators 7(g)=7.(q)—s(q)/d, and
8(q)=s(q)/d —[g1.(q)/8nn(q)In(q), we can write this as

a(g,0)= ——Tm[X,,(4,0) +2X5(¢,0) + X5, ®)] -
m-pcy,

(2.6")

In the clean limit, n;—0, one has gp,(¢)/g(q)=k3/d,
and X,5(g,@)~q?, Xss(g,w)~q*, hence these terms are
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From this we see that the last two terms in the square
brackets in Eq. (2.6”) are of relative order n?, and can
again be neglected for our purposes. We conclude that the
effect of screening in the longitudinal case is simply to re-
place the longitudinal stress vertex (k-q/q)* by
(k-q/q)*—k?/d, which eliminates the diffusive pole in-
herent in X (q,w). This is how the elimination of a spuri-
ous extra coupling to long wavelength phonons, which are
mentioned earlier, works technically. As a result, it is suf-
ficient to calculate the long wavelength transverse sound
attenuation,

ar(®)=——ImX1(g =0, ») . (2.9)
T

m“pc
By symmetry a; is given by

ap(w)=ar(w)[(cp/cL)*12(d —=1)/d, d=2,3. (2.10)

C. Diagrammatic representation

The remaining task is to calculate the transverse stress
correlation function X1(q,0)=X rrr(@@). We do this by
means of standard diagrammatic techniques.!! Accord-
ingly, we define retarded and advanced one-particle func-
tions as

G ()
negligible in the low-frequency region. On the other _ kp - <k 1 p> , (2.11a)
hand, for ¢=0 we find X,(g=0, co—>0)~ni-, G fp(w) o—H=*i0
Xss(g =0, 0—0)~n;, while X,{(¢q=0,0—0)~n;".
J
and their impurity-averaged counterparts,
R ~R
G () | _ G@ | (G p@)ay . N
Gf,p(w) =8y p ¥ Gl |~ (6{‘,9((0))” =8 plo—k“/2m+ 3 (0)]™", (2.11b)
where 2¢ (@) is the self-energy. To lowest order in the impurity density, we have
Si)=+i/2r=++iEp /(Ep7) , (2.11¢0)
due to our restriction to s-wave scattering. In terms of these functions, X 7 has the representation
1 ®© ®©
ImXr(g,w)=— [~ dE [ dE'8(0+E—E)f(E)—f(E)] 3 vr(klvr(p)
@ - k,p
X{AGy_q/2,p-a2ENAG g2 k492 E) ey, (2.122)
where f( E) is the Fermi function,
AGyp(@)=[G§ j0)—G { (@)]/(20) (2.12b)

and vr(k)=kk, (with q in x direction) is the transverse stress vector. For our purposes the products GXG® and GG
occurring in Eq. (2.12a) do not contribute. For small » we finally obtain

ImX1(g =0, )= ~>Re
27

S vr(k){(G § (Er+0)G £ (Ep))v1(p)
kp

. (2.13)

We note that the conductivity is given by a very similar formula, viz.,

1

7Tm2

Reo(w)= Re

S v (k)G Ry Er+0)G f(EF)) a0 (p)
k,p

) (2.14)
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FIG. 1. Diagrammatic representation of 3 v{(G*G*)v, and
the first few diagrams of the perturbation series.

with the current vertex v.(k)=k,.

Diagrammatically, we denote G® and G4, Eq. (2.11b),
by straight lines, and the electron-impurity interaction by
dashed lines. The impurity density factor u =1/27Ng7 is
denoted by a cross, where Ny is the density of states per
spin at the Fermi energy and Np=kym/27* and
Np=m/2mr for d=3 and d=2, respectively.
kp=1"2mEp=V'¢ is the Fermi wave number. In Fig. 1,
we show the general graphic representation of
34, (k)(G §,G {,)v(p), where the triangle stands for
either vt or v,.

III. PERTURBATION THEORY FOR SOUND
ATTENUATION COEFFICIENT
AND CONDUCTIVITY

A. Density expansion of ar and o for d =3

In this section the two leading terms of the expansion
of ar in powers of the impurity density, or of 1/Eg7, in
three dimensions is calculated. For completeness, and be-
cause there were minor algebraic errors in the original cal-
culations,’ we also quote the first two density corrections
to the Boltzmann electrical conductivity o in three di-
mensions.

To proceed, we first list all of the relevant diagrams in
Fig. 2. Diagram 2(a) determines the lowest order or
Boltzmann contribution to ay, which we denote by a>.
From Fig. 2(a) and Egs. (2.13) and (2.9) we obtain

o 2 |vr | m® |Ept |,
ar= — | — | |0 d=3. (3.1
T 1502 |ox | p#? | #
|
aP=ad—"%_Re fwdqqu“f*(q)
T Tansed/2r 0

d
+H( ) Tt () — ++
JTHg)=Jt(q)—y dy'] (q)

,’* sy ‘\:‘ - Bty
O O + CC. + ccC,
(a) (b) (c)
X~

(d) (e) (f)

r‘x~\‘
+ CC. + CC,

(q) (h)
FIG. 2. These diagrams and the complex conjugates (c.c.) of
(b), (c), (), (g), and (h) contribute to the first three terms of the
density expansion of  in 3D.

This is the low-frequency limit of the result first obtained
by Pippard.'? Corrections arising from this diagram are
of relative order (#/Ep7)?, and hence beyond our scope.
The remaining diagrams in Fig. 2 determine the correc-
tions to a3 which are of relative order #/Epr, and
(#/Epr)In(Ep7/#). Diagrams 2(b) and 2(d) contribute to
both the leading correction and to the logarithmic terms.
In diagram 2(c) the contributions to the leading correction
cancel, and it contributes together with the remaining dia-
grams to the logarithmic term. All other possible dia-
grams are at least of relative order (h /Ep7)%.

The diagrams in Fig. 2 can be expressed in terms of two
integrals which appear in the analytic expressions corre-
sponding to Fig. 2. These two integrals are

1

JtHg)= [ dk ., (3.2a)
7 f (k*—e—iy)[(k—q)—e—iy]

and

J*t(g)= fdk(kz : (3.20)

—e—iyp)[(k—q)P—e+iy] ’

where e=2mEp, and y =#m /7. Note that J*~ is real.
In terms of these integrals, the contribution of diagram
2(b) to a (denoted by af’) can be written as

. (3.3)

Equation (3.3) is valid to lowest order in the frequency. Within the same accuracy, we obtain the contribution of dia-

gram 2(c) as

m# @ _
a¥>=a‘%mke[fo dgq*JtH (@I " <q>—ReJ++<q>](852—1zeq2+q4>], (3.4)
that of diagram 2(d) as
@_ o ___mh ® 24— -
o =at 5 fo dg g+ (q)[J*~(g)—ReJ++(g)](8e2—12eq% +¢*) , 3.5)

and that of diagram 2(e) as

222 ©
a¥’=a°—~—mvf4}2 [, da @ty (@ I~ (@)—ReJ * H(g)](8e*— 12eq+4*) . (3.6)

T 64
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For the combination of diagrams 2(f), 2(g), and 2(h) we obtain

e _ g0 mH [ 7 dgq? T+~ (@[ReJ +H(q) =T+ ()2 (3.7
T =—a 547'2 0 949 q q q H 7

T 3277

where we have neglected terms that lead to contribu-
tions of relative order n? or higher.

To extract the two leading density corrections from
these expressions, the integrals J** and J*~ have to be
evaluated. J*%, Eq. (3.2a), is familiar from quantum
electrodynamics and can be evaluated by using Feynman’s
method of folding denominators together. A representa-
tion for small y, which is sufficient for calculating the
first two density corrections to a3, is

,n,Z

JtH(g)= "l arctan[(g —2Ve)Ve/v]

+arctan[(q +2Ve)Ve/y]

(y/V'eP+(qg —2Ve)?
(y/Ve)l+(qg +2Ve)

(3.8)

J*~ can be evaluated by using an auxiliary parameter as
discussed before.> A small y representation is

- 212
Jt(q)= Tarctan(q\/s/y) . (3.9)

In Ref. 3, the last two terms on the right-hand side of Eq.
(4.10) should not be present.

With the help of Egs. (3.3)—(3.9), calculation of the two
leading density corrections to a3 is straightforward. We
obtain

21T fi _ﬁ #i In #i
Gr=aT |\ TS VB | T 128 | Epr Epr
+O((#/Ep1)) | . (3.10)

For the static conductivity, an essentially identical calcu-
lation yields
2

oo l1-T # m—4 | # #
o 3 | Epr 32 | Epr Ept
+O((#/Ep7)?) (3.11)

In Ref. 3, the corresponding results are incorrect. We will
further discuss these results in Sec. IV.

B. Low-frequency behavior of ar in 2D and 3D

In this section we calculate the leading low-frequency
corrections to @ in both two and three dimensions. For
simplicity we ignore the density corrections discussed in
Sec. IIT A. For two-dimensional systems we also calculate
the most singular terms of second order in #/Ep7. The

—

result will be used in Sec. IV B to rule out the behavior for
a at an Anderson transition proposed earlier.*®

To leading order in the impurity density the most im-
portant low-frequency corrections are due to the maximal-
ly crossed diagrams shown in Fig. 3. Due to quantum-
interference effects these diagrams contribute nonanalytic
low-frequency corrections to a’> which are of order #/Epr
in d =2, and of order (#/Er7)? in d =3. The calculation
is exactly analogous to that for the conductivity,’ and the
result is

# 1
1 In|— =2
* 2mEpT "o I d (3.12a)
0
ar=dar 2
3v6 # Var _
=6 | | V" 97 Gaa

Here a3(d =3) is given by Eq. (3.1), and in 2D we have
from diagram 2(a)

3
m3

pt

EFT
#

VF

cr

ad= w? d=2. (3.13)

1
472

Equations (3.12) have been obtained before in Ref. 4(b).
In Eq. (3.12a) [Eq. (3.12b)] we have neglected a positive
(negative) low-frequency contribution [cf. Eq. (3.10)].
Comparison with the corresponding result for the conduc-
tivity (Ref. 5) shows that the corrections are identical
apart from a different sign: Interference effects decrease
o, but increase a. This is physically obvious. As electron
diffusion slows down with increasing disorder, the nonin-
teracting electron system becomes stiffer with respect to
shear deformations. Technically the sign difference
comes from different symmetry of the current and stress
vertices under parity operations. The fact that the prefac-
tors of the leading nonanalytical terms are of the same ab-
solute value for both o and « is rather obvious from the
structure of the theory. We disagree with the result of
Kotliar and Ramakrishnan,*®’ who obtain an additional
factor of 5in 2D, and a correction of order (#/Ep7)V or
in 3D.

As in the case of the conductivity, the leading correc-
tion in ay in 2D diverges for low frequencies. To investi-
gate this point further, we have calculated the contribu-
tions of order (#/Eg7)’In’0r. For o, these contributions
are known to cancel.’ We find this not to be the case for

-~ -
X F

= 1 + o+
AY AN

FIG. 3. Maximally crossed diagrams responsible for the lead-
ing low-frequency anomaly.
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a. In Fig. 4, we show all diagrams contributing to this
term. Note that due to the form of the stress vertex the
number of diagrams is much smaller than in the conduc-

tivity case. The extra diagrams occurring for o cancel
J

2

In L In

wT

#i
27Ept

2| 1

ar=a} |1+ = # +2

2wEpT

+O((ﬁ/EF7')21n( 1/wT),

2173

internally, though. Calculation shows that the diagrams
4(b) as well as those in 4(e) cancel each other. The sum of
contributions 4(a) and 4(c) is equal to 4(d). Combining the
result with Eq. (3.12a) we obtain

(#/Epm)In*(1/07)) (3.14)

In the case of the conductivity, contributions (4a) and (4c) are equal and opposite to 4(d), hence the coefficient of the
In*(w7) term is zero instead of two. We will discuss the implications of Eq. (3.14) in Sec. IV.

In the presence of a magnetic field B, the singularities stemming from the maximally crossed diagrams are cut off,
while those arising from the ordinary ladder diagrams persist, since these singularities are a consequence of particle-
number conservation. Consequently, of all the diagrams considered only those shown in Fig. 4(c) are still divergent and

we have

1
1
+2

#i

ar= aT A
2wErT

where in the omitted terms the cyclotron frequency
w,=eB /mc acts as an infrared cutoff. We conclude that
singular low-frequency behavior in at persists even in the
presence of a magnetic field.

IV. DISCUSSION
We conclude this paper with a discussion of our results.

A. Connection between a; and ar

In Sec. IIB we have shown that for small frequencies
w <<c?/D the longitudinal and traverse sound-attenuation
coefficients are connected in the same way as their
lowest-order (Boltzmann) approximations. This followed
from the fact that the screening correction to the longitu-
dinal stress-correlation function X; in Eq. (2.6), apart
from neghglble terms, just replaces the longitudinal stress
vertex k2 by k2—k?/d, thus subtracting the diffusion-
pole contnbutnon from X;. The physical interpretation of
this subtraction is that since the impurities move with the
lattice, and the electrons follows almost adiabatically,
there is no extra coupling to phonons due to the broken
translational invariance. For the perturbation theory this
replacement of the vertex results in a reduction in the
number of nonzero diagrams, contributing to a;. As a
consequence, the diagrams that determine at also deter-
mine a;. Technically, the subtraction is equivalent to
rearranging the perturbation series in such a way that con-
vergence is greatly improved. These facts seem not to
have been taken into account by Kotliar and Ramakrish-
nan,* who tried to calculate a; by using the original ver-
tex. Their results disagree with ours, including a different
power of 1/7 and a different sign of the low-frequency
correction in 3D. We believe that these discrepancies
arise partly from the fact that their list of diagrams for oy
is far from being complete if the original vertex is used.
For the same reason, they find a; to be affected by in-
teraction effects, while we find it is not.!°

B. € expansion, exponentiation, and critical behavior

In the case of the conductivity it is possible to draw
some conclusions from perturbation theory about the crit-

2
In2—— + O((#/Eprin(1 /e, 7),
wT

(#/Ep7)In(1/w.7)In(1/07)) (3.15)

f
ical behavior of o at an Anderson transition for d =2+¢
(e>0) dimensions.! The argument starts from the fact
that the renormalization group beta function for d =2+¢
has a zero which to lowest order in ¢ is given by
#fi/mEpr=¢. This zero corresponds to an unstable fixed
point of the renormalization procedure and implies an
Anderson transition. Restricting ourselves to leading log-
arithmic terms in an ¢ log(wT) expansion, we can write the
perturbation results for o and at for d =2+ ¢ dimensions
as

o=o0p{1+(e/2)[In(w7)];} , 4.1)

ar=at{1—(e/2)[In(07) ]+ 2(e/2)[In(@P) 2+ - - - } .
4.2)

P N
/I \‘ ’/ \
\ ’
\\*/I
G &1
g P
/ \ / N\
\\\ /l
~7
X

/&\
(e) 2% + 2 <[X]>

FIG. 4. Diagrams and their multiplication factors contribut-
ing to terms of O((#i/Er7)*In*(w7)) for at in 2D.

+
oo ox- -~

-
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Here we have assumed that for ¢ there are no terms of or-
der (A#/Ep7)"In(w7) with n >3 (existence of these terms
would invalidate the scaling theory of localization).
[In(w7)], is an abbreviation for the d-dimensional integral

1

1 d
In(w7)};=——Re dx —
[in(wn)]e T f —ioT+x?

which reduces to In(w7)+ (nonsingular terms) for £=0.
Performing an € expansion on these integrals and, again,
retaining only the leading logarithmic terms, yields

(4.3)
(4.4)

o=0o[1+(e/2)n(w7)+ 5 (e/2)InX07)+ - - - ],
ar=a}[1—(e/2)In(wr)+ 3 (e/2)InXwr)+ - - ] .

Equation (4.3) is just the first few terms of a exponen-
tial series. Furthermore, if only leading terms are kept,
one indeed obtains an exponential series to all orders, and
the final result for the conductivity at the mobility edge in
2 + € dimensions is

og=0n1)"?.

To leading order in &, this result agrees with the one ob-
tained by more sophisticated methods by Wegner."> On
the other hand, Eq. (4.4) shows that the expansion for ay
is by no means just an exponential series due to the ex-
istence and prefactor of the (#/Er7)"In"wr term with
n =2 in 2D. Furthermore, there is no reason to assume
that the terms with n =3 will be absent either, so one can-
not guess how the series (4.4) will continue. Kotliar and
Ramakrishnan* have calculated only the first-order terms
in Eq. (4.4) and assumed exponentiation to be valid and
obtained ar=a%(wr)~¢/2. This result is in contraction to
second-order perturbation theory. Unfortunately, the
behavior of a at a mobility edge seems to require much
more sophisticated work. One particular effect to be ex-
pected is that because of the breakdown of screening
occurring at the mobility edge, the simple relation be-
tween a; and at, Eq. (2.10), will probably no longer be
valid. In this region one should expect oy to be sensitive
to the slowing down of density fluctuations and to rise
sharply.

Finally, we remark that we have also tried to apply the
self-consistent technique,'* used successfully for the con-
ductivity problem, to calculate a near the mobility edge.
Although this method correctly reproduces our perturba-
tion results for a in 2D, Eq. (3.14), it does not lead to
physically meaningful results for a near the mobility
edge.

C. Lowest order density correction

The leading-order density correction to the Boltzmann
conductivity is linear in the impurity density, Eq. (3.11),
as it is in classical dynamical systems.!> This means that
in approximate theories, when the correction to ¢° is ob-
tained as a wave number integral over a diffusive propa-
gator, the integral must not be cut off at the inverse
mean-field path since one then erroneously obtains a lead-
ing correction proportioned to n? (cf. the discussion given
in Ref. 16). Cutting off density propagators approximat-
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ed by diffusive poles seems to be a popular procedure in
the literature, though, in this context, as well as elsewhere
(usually with the argument that there is no diffusive
behavior outside the hydrodynamic region). One should
keep in mind that this is valid only for extracting singular
low-frequency contributions, which do not depend on this
upper cutoff anyway.

D. Experimental relevance of the results for a

In Sec. Il A we have already discussed that our results
are restricted to small frequencies w <<c?/D. Using
D =(tikp/m Yr/d, and introducing Mott’s resistivity
py =(#i/e*)37% /kp, we find that the low-frequency region
is given by w<<w*=3mc’o/fipy. For solids with
c~5%10° cm/sec, m =free electron mass, and p <py,
this yields o* <600 GHz. On the other hand, the scale
for the low-frequency anomalies in three dimensions, Eq.
(3.12b), is 1/7=2(Ep/#)p/py). For metals, Ep/#% is
typically of the order of 10'° Hz, and we are far out-
side the region of validity of our small @ calculation.
However, in semiconductors with Fermi energies of a few
meV, the low-frequency scales are comparable, and the ef-
fects should be observable. Note that the disorder deter-
mines only the absolute frequency scale, the crucial pa-
rameter o*7 is independent of (p/pyy).

The longitudinal sound-attenuation coefficient has been
investigated in Sb-doped Ge by Sakurai and Suzuki.'’
These authors measured a at a fixed frequency o =300
MHz as a function of temperature on either side of the
Anderson transition occurring in this system. Unfor-
tunately, for samples on the metal side of the Anderson
transition, the data do not extend on low-enough tempera-
tures to see anomalies if there are any. Let us briefly dis-
cuss what one should expect at lower temperatures. If we
adopt the view! that finite temperatures essentially cut off
the low-frequency anomalies at w=1/7;,(T) with an elas-
tic life time 7, =7(Ty/T), we obtain

a/a°=l—%‘/-6—(p/pM)2(T/T0)p/2, d=3. 4.5)

If inelastic electron-electron collisions dominate, one
would expect p =2. It would be interesting to have pre-
cise measurements of a at low temperatures in the metal-
lic region to compare with Eq. (4.6). For insulating sam-
ples, Sakurai and Suzuki found a; to rise sharply if the
temperature was lowered. This might be due to the break-
down of screening mentioned in Sec. IV B.

In the case of the conductivity, experiments on 2D ma-
terials have proven particularly successful for an investi-
gation of the low-frequency anomalies. The existence of
the In(w7) term and its sensitivity to magnetic fields and
spin-orbit coupling have been convincingly demonstrated
in many beautiful experiments."® To our knowledge, no
attempts have been made so far to measure the sound at-
tenuation in these materials with equal precision. Using
again the inelastic lifetime argument given above, one ex-
pects

a/a’=1+(p/m)p/pp)In(To/T), d=2. (4.6)

This behavior is identical to the one that has frequently



34 NONANALYTIC BEHAVIOR OF ULTRASONIC ATTENUATION . . .

been observed for the resistance. It would be interesting
to check this prediction experimentally. Since the singu-
larity in second order is much stronger than it is for the
conductivity, it may even be possible to observe the
[(p/pa)In(To/T)]* behavior following from Eq. (3.14).
This behavior should persist even in the presence of a
magnetic field, cf. Eq. (3.15).

The nonanalytic density dependence, Egs. (3.10) and
(3.11), is probably even harder to observe experimentally
than the low-frequency anomalies. Up to now it has not
been observed for either the conductivity or for the sound
attenuation. We also note that similar nonanalytic density
corrections have been predicted and discussed for many
years in the theory of transport in classical gases.!”
Indeed, the work of Langer and Neal was motivated by
results from classical kinetic theory. However, even in
classical systems these logarithmic terms have never been
convincingly observed experimentally. There are several
problems associated with their observation. The most im-
portant one is that we do not have a reliable theoretical es-
timate of the n? term in Egs. (3.10) and (3.11) which is
closely correlated with the nflogn; contribution. For
the simple model considered here, however, it may be pos-
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sible to calculate the n/ terms. An apparent experimental
difficulty in measuring these contributions in solid-state
systems is that unlike in a gas where the density can be
easily varied, the impurity density in a solid is more or
less fixed for a particular sample of material.

Finally, we mention that it may be possible to measure
the nonanalytic density corrections discussed here in
electron-mobility experiments in low-temperature helium
gas.”® On the time scale of electronic motion the helium
atoms act as stationary scatterers and the standard or Ed-
wards model of electron transport in disordered solids is
applicable.
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