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The weak-localization regime is usually cited as an example of the breakdown of the Boltzmann
equation. Using the techniques of quantum transport theory, we generalize the Boltzmann equation
to include the coherent backscattering associated with weak localization. The new transport equa-
tion includes, in addition to the usual impurity scattering, a backscattering which occurs on the time
scale of the phase-coherence lifetime. All the standard weak-localization magnetoresistance results
can be reproduced by properly modifying this term. One effect which is nonlinear in the electric

field is also calculated.

I. INTRODUCTION

The Kubo formula is the usual starting point for calcu-
lations of the conductivity of weakly localized systems,!—*
which are often cited as situations to which the standard
Boltzmann transport theory does not apply. In this paper
we show that the Boltzmann equation can be generalized
to include the coherent backscattering that is known to be
at the root of weak localization. This is important for
two reasons. First, it is interesting that a transport equa-
tion still holds for coherent effects which involve the in-
terference between two possible paths for an electron
scattering. Second, a transport equation can more easily
deal with nonlinear and nonequilibrium phenomena,
which are beyond the scope of the Kubo formula.

If one thinks in too simple semiclassical terms, it is
paradoxical that weak localization can be treated within
the framework of a transport equation. In the usual
Boltzmann equation, scattering events are independent.
All that matters is the electron’s position and velocity
after its previous collision. It is not surprising then that
transport properties are governed by a distribution func-
tion which keeps track of how many electrons are coming
in and out of a given volume. With weak localization,
though, it is not just the number of electrons coming in or
out of a given volume which matters, but also the phase
of these electrons. Since a classical distribution function
does not contain information about phase interference, it
might appear impossible to treat weak localization in a
transport equation.

The apparent paradox is resolved by considering the
transport equations that occur in the quasiclassical theory
of superconductivity or superfluid *He.>® There the ana-
log of the distribution function is a well-defined
quantum-mechanical object, not to be thought of classi-
cally, but merely as the best one can do to store informa-
tion about local-position and momentum densities in
quantum mechanics. Once we start from quantum
mechanics and no longer interpret the distribution func-
tion literally, it is possible, as we shall show, to include
the coherent backscattering in the transport equation. As
in all quasiclassical equations, the reason the left-hand
side of the resulting equation resembles the classical
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Boltzmann equation is that the distribution function is
taken to be slowly varying in space and time, and the part
of the Hamiltonian not contained in the scattering term
consists of the kinetic energy and the potential energy due
to an external field. The physics of what scattering mech-
anisms are included, which distinguishes the classical
from the quantum-mechanical equation, is contained on
the right-hand side of the transport equation.

The inclusion of coherent backscattering leads to a nov-
el collision integral that is nonlocal in time. [See Eq.
(22).] In the resulting transport equation the only restric-
tion is that the external fields be slowly varying in space
and time. One result of our approach which cannot be
obtained via the Kubo formalism concerns electron heat-
ing, a nonequilibrium effect. Generalizing a recent treat-
ment of electron heating using the Boltzmann equation,’
we solve for the effective temperature of an electron gas.
We find that, as in the case of computing the conductivi-
ty, the effect of weak localization is to increase the elastic
impurity scattering rate by a frequency-dependent factor
a(v) given in Eq. (21).

II. DISTRIBUTION FUNCTION

Implicit in deriving a transport equation is the choice
of a distribution function, f(p,R,7). In quantum
mechanics, unlike classical mechanics, there is no a priori
well-defined distribution function because of the uncer-
tainty principle. Nonetheless, as first pointed out by
Wigner,® one can still define a distribution function in
quantum mechanics from which the density and current
can be obtained in the usual way,

d3
(R,D)= [ L f(p,R,T), (1)
" f (217)3f P
. d?
R,T= [2L_P rpR,T). )
IRD=[ aof ! P

The quantities which can be computed easily from non-
equilibrium quantum statistical mechanics are the Green’s
functions. In particular, the Green’s function g < in a
mixed representation analogous to Wigner’s is simply re-
lated to the electron density and current,
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g<(p,o,R,T)= [ d’r [ dte e (Y (R—1/2,T —t/20(R+1/2,T +1/2)) (3)

Here, W and ¢ are creation and destruction operators for
single electrons, and the brackets denote the thermal aver-
age.

A natural definition for the distribution function is g <
integrated with respect to w/2m. The resulting distribu-
tion function is the Wigner distribution function and sat-
isfies Egs. (1) and (2). Even for the weakly-disordered
metals considered here, the elastic-impurity scattering rate
I’ is much larger than kg7T. Since specifying the momen-
tum of an electron only specifies its energy to within T,
this means that the Wigner distribution function changes
from zero to one over a region of width in energy
I' >>kpT, bearing little resemblance to the conventional
distribution function.

An alternative to the Wigner function, which also satis-
fies Eqgs. (1) and (2), was introduced by Prange and
Kadanoff,’ following ideas due to Migdal."® They in-
tegrated g < with respect to €, /27 instead of w/2m, where
€ =p?/2m for the free-electron model considered here.
A new momentum vector k is then introduced which is in
the same direction as the original momentum vector, but
whose magnitude is {2m[w—U(R,T)]}!/2. U(R,T) is
the potential energy due to an external field. Since g < as
a function of w decays within kgT of the Fermi surface,
the resulting distribution function,
de,

fRTD)=[—Lg<(pho=e+URDRT) @)

us

looks more like the Fermi distribution function.

We can see this more explicitly by calculating g < for
some simple cases using the standard weak-localization
model. This model consists of a noninteracting free-
electron gas scattering from a dilute but random distribu-
tion of impurities, so that kz/>>1. (The Fermi momen-
tum is kr and [/ is the mean-free path.) We set #i=1
throughout. Using only the self-energy diagram depicted
in Fig. 1(a), the elastic impurity scattering rate I" equals
2mn; | V | 2N (0), where n; is the number of impurities per
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FIG. 1. (a) Feynman graph leading to the ordinary collision
integral, (b) graph corresponding to a typical term in the series
that leads to the coherent backscattering collision integral.

—
unit volume, V is the matrix element for scattering from

one momentum state to another, which is taken to be con-
stant, and N (0) is the density of states per spin at the Fer-
mi surface. For zero field the Green’s functions are given
by

g (p,o,R, ) =i[g,(p,0) =g, (p,0)1f q(@) , (5)
gr(p’w) . -1

=[w—g,+il/2]7".
ga(p’w) [ ? ©)

For this g <, the Prange-Kadanoff distribution function is
exactly the Fermi distribution function f.(gx). As we
turn on the electric field the structure of these Green’s
functions does not change very much. For example, as-
suming that the external electric field is slowly varying in
space and time, the retarded and advanced Green’s func-
tions are the following:

g (p,w,R,T)

=[w—e,—UR,T)+i/2]"". 7
g(p,o,R,T) [0—e,—U(R,T)+il'/2] )

Also, the change in g < to linear order in a uniform elec-
tric field within the same self-energy approximation is

feql@—v/2)—feqlw+v/2)

v

6g <(p,w,R,v)=

—eE(v)-p/m
(w—¢, P4+(C—iv)2/4

(8)

We have Fourier transformed in T to get the v variable.
The Prange-Kadanoff distribution function is still strong-
ly peaked at the Fermi surface, whereas the Wigner distri-
bution function is not. Also, the denominator of g=<
remains unchanged from equilibrium provided that
v <<I'. This will be important latter in deriving the trans-
port equation, because there will be integrals involving &,
which may be done if we can neglect the corrections of or-
der v/T.

III. BOLTZMANN EQUATION

In this section we outline a derivation of the Boltzmann
equation for elastic impurity scattering following closely
the derivation of Prange and Kadanoff for phonon
scattering. The only change will be the addition of anoth-
er self-energy term, describing coherent backscattering
from the impurities. At the temperatures of weak-
localization experiments, phonon scattering is not impor-
tant for the conductivity and can be ignored. Phonons do
play an important role in maintaining thermal equilibrium
between the lattice and the electrons. Within the trans-
port equation this equilibrium is maintained by taking the
spherical average of the distribution function to be the
Fermi distribution function corresponding to the tempera-
ture of the lattice. This is valid so long as there is no
heating of the electron gas.



The Green’s functions used here are defined following
the conventions of Langreth:!!

g> (1,1 =(ww'1)), 9)
1= (' (1Hw)), (10)
2 (1L,1=i[g>(1,1)+g <(1,1)]0(t, —1,) , (11

& (L1)=—i[g>(1,1)+g<(1,1)]0(t, —ty) .  (12)

The discontinuous behavior of the self-energy operator o
is treated analogously. Following Langreth’s formalism
the equations of motion for the Green’s functions are the
following:
3 Vi

i— + - + ul)|g

<(1.1
o, (1,1)

= [ d2[0<(1,2)g,(2,1 +0,(1,2)g <(2,1")]

(13)
2

F) \%T
- ~—+—+U(1 )
2m

<(1,1)
ar g

= [ d2[g<(1,2)0,(2,1")+g,(1,2)0<(2,1")] .
(14)

Although our conventions are those of Langreth, the for-
malism due to Kadanoff and Baym'? and to Keldysh!’
yield exactly the same result. By taking the potential U
due to the external field to be slowly varying in space and

time, we can now perform a gradient expansion'?!! on the
difference between Egs. (13) and (14):
2 g vpy, U3 |,
aT+ R— VR V 3T 3w g (p,w,R,T)
—ilo,—0,)g<+ilg,—gz)a< . (15)

The terms on the right-hand side now have the same argu-
ments and are being multiplied.

In order to make this into an equation for the distribu-
tion function we must integrate both sides with respect to
€,/2m and use Eq. (4). This yields the usual left-hand
side of the Boltzmann equation. To get the right-hand
side we must also make assumptions about the self-
energy. The standard Boltzmann equation follows from
the choice of a self-energy term which corresponds to in-
dependent Born-approximation scattering from impuri-
ties,

o<(p,&,R,T)=n; | V|2 f g<(p,w,R 7). (16)

Analogous expressions hold for the other Green’s func-
tions and self-energies. Diagrammatically, this term can
be represented in the impurity-averaged scheme as shown
in Fig. 1(a). In order to get the final result we must also
use Eq. (8) for the retarded and advanced Green’s func-
tions when integrating with respect to & /2. As our fi-
nal result for the usual Boltzmann equation we now get
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2 VP VR—VRUY,

AT f(p,R,T)

=-Tlf(p,R, TN —f(p,R,TN], (17

where f denotes the spherical average of f.

IV. GENERALIZED BOLTZMANN EQUATION

In this section we generalize the Boltzmann equation to
include the coherent backscattering. As mentioned previ-
ously this involves adding a new self-energy term to the
right-hand side of Eq. (15). The self-energy terms corre-
sponding to the coherent backscattering are the familiar
maximally crossed graphs from linear-response theory. A
typical term is shown in Fig. 1(b).

The contribution to o< from this graph contains in-
tegrals involving all five combinations of the Green’s
functions from g <g,g,8.8, to g,8,8,8.82 <. These Green’s
functions are listed from left to right as they occur!! from
top to bottom in Fig. 1(b). One can estimate them by sub-
stituting in the Green’s functions of Eqgs. (5) and (6). As
in linear response'* the momentum integrals reduce to in-
tegrals over pairs of Green’s functions of the form

d3k
n ’ vV ’ 2 f (217_)3 gr(a)(k’#)gr(a)(k+Q7ﬂ) ’ (18)

where q=p+p’ and p is the Fermi energy. For small q
integrals of the form (18) with one retarded and one ad-
vanced Green’s function are of order one, whereas those
with two Green’s functions of the same kind are of order
(kpl)~!<<1. Thus the terms for which g < occupies the
three center-most momentum positions are larger than the
other terms by a factor of order kzl. We will always be
keeping only these three terms, since this is a general
property which holds true for all maximally crossed
graphs.

To sum all the self-energy terms exactly we first consid-
er the momentum integrals involving only g, and g,, not
g <. The retarded and advanced Green’s functions of Eq.
(7) change very little upon including the maximally
crossed graphs. The reason for this is that the self-
energies for g, and g, involve only retarded and only ad-
vanced Green’s functions, respectively, not combinations
of both as with g<.'' Thus for essentially the same
reason that Eq. (18) can be neglected when both Green’s
functions are the same, we now neglect the correction to
I" which is of order I /kgl. This is also the reason we are
only looking at the change in o< and not in o, and o,.
The integrals involving g, and g, are now the same as in
linear response except for the inclusion of the electric
field. Altshuler, Aronov, and Khmel'nitskii!®> have
evaluated these using the Keldysh formalism for non-
equilibrium quantum statistical mechanics. Essentially,
what is done is to look at integrals of the form (18) in real
space and see how they change upon including a finite
electric field. They find that a static electric field has no
effect on the evaluation of these integrals, whereas a
time-dependent electric field does change the integrals and
can result in the destruction of the weak-localization
coherent backscattering. This destruction only occurs for
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sufficiently large and high-frequency fields. For simplici-
ty we shall take the electric field to be weak and slowly
varying, so this effect can be neglected. We are also not
including magnetic field and spin-flip scattering effects
for simplicity. As with the electric field, these may be in-
cluded by appropriately modifying these integrals.

Within the above approximations the momentum in-
tegrals not involving g< are the same as in linear
response. Upon summing their contribution for all the
maximally crossed graphs to o < we again find that the in-
tegral is strongly peaked for q=p+p’~0. The remaining
momentum integrals become particularly simple if we set
q=0 elsewhere. For the two terms in which g < is on
either side of the central momentum, marked p’ in Fig.
1(b), the integral over g < samples the Fermi surface, tak-
ing the spherical average of g <, which we denote as g <.
This still leaves an integral over energy. In order to do
this integral we make an ansatz for the structure of g <:

< _ _Tfp,0,R,v) 19
ge(poRY) (0—¢,)*+T2/4 19
and set v=0 everywhere except in the denominator of
a(v) defined in Eq. (21) and in g <. Both of these approx-
imations will be justified later. For the term in which g <
occupies the central momentum we merely replace p’ by
—p. The additional contribution to o < is the following:

80<(p,a),R,v)=a(v)€—[g <(—p,o,R,v)

—g- <(P,CD,R,V)] ) (20)
' d3q 2",‘ | V | 2
aw)= [ @1
(2m)” Dg*—iv+T14

In Eq. (21) we have included the upper and lower cut-
offs to the q integral from linear-response theory. The
upper cutoff, denoted by the prime over the integral, re-
quires |q| to be less than the reciprocal of the mean free
path ' /vg. Our model breaks down for distances smaller
than the mean free path. The lower cutoff is put in by the
phase-coherence lifetime 74 in the denominator of a(v).
Within the transport equation the phase-coherence life-
time will turn out to be the time during which the electron
distribution retains memory of its previous value. This is
in agreement with the standard interpretation in which
two alternative paths for electrons scattering become out
of phase after 74."

In order to find the contribution to the right-hand side
of our transport equation from the new self-energy term
we must multiply by i(g, —g,) and integrate with respect
to €, /27 [see Eqs. (4) and (15)]. The integral may be done
by again using the ansatz about the structure of the distri-
bution function given in Eq. (19). Using Eq. (4) for the
definition of the distribution function and neglecting
UR, T)-U(R,T’) in comparison to the Fermi energy,
we get as our final result for the generalized transport
equation
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56? +Vpﬁ'VR —Vz UVP f(P,R,T)

=-Tfp,R,T—f(p,R,T]
+ f_: dT'a(T —T")
X[f(—p,RT)—f(p,R,T)], (22)
a(T—T")=2n; | V|?

, a3
?g—ﬂq)g-exp[ —-(Dq2+1';1)(T-— 7)1

(23)

This is the central result of the paper. The new back-
scattering term is nonlocal in time since the electron un-
dergoes many elastic collisions in one phase-coherence
lifetime. There is no width to this backscattering because
we have taken q=0 in one of the integrals involving g <.
Neglecting the width of the backscattering cone is reason-
able because it is narrow compared to the angular varia-
tion of the distribution function in the weak-localization
regime.

At this point we can justify the .ansatz of Eq. (19).

From Eq. (22) we can see that a(v) is essentially the
weak-localization correction to I'. Thus in the denomina-
tor of Eq. (8) when weak localization is taken into account
there should be a I' +« instead of . In making the an-
satz we have made errors of order a/I" in computing a.
Since a is already much less than I', we can neglect this
correction. Similarly, we can neglect the corrections of
order v/T to a made by setting v=0 outside of a(v) and
g=.
We can solve the generalized transport equation of Eq.
(22) for the conductivity in a uniform electric field by
multiplying by p on both sides and integrating with
respect to p. The result is

(24)

The main effect of the weak-localization correction is to
increase the elastic-impurity scattering rate. The correc-
tion comes in the denominator because we have solved
self-consistently for the distribution function. Indeed if
we use the Einstein relation, o(0)=2N (0)e2D, and identi-
fy this diffusion constant with D in Eq. (23), we repro-
duce the self-consistent calculation of Vollhardt and
Walfle.'s

We can also solve for the effective temperature in the
case of electron heating. To treat electron heating in a
Boltzmann equation we no longer take the spherical aver-
age of the distribution function in Eq. (22) to be the
equilibrium distribution function.” Instead we include an
additional scattering term on the right-hand side,

—’Fi[f(p’RaT)_feq(pyR,T)] ’

which relaxes the distribution function to thermal equili-
brium. The inelastic scattering lifetime I';"! is not neces-
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sarily the same as the phase-coherence lifetime 7,. The
effective temperature of the electron gas T* satisfies

(kpT* P=(ky TP+ (eEL, (25)
m

except that the inelastic mean-free path /; has changed
from vp/(3TT;)'/2 to v /[3(T +a)T;]'/% Thus as with
the conductivity, the effect of weak localization is to in-
crease the elastic scattering rate by a.
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