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%'e investigate a general, approximate method for solving the many-electron Schrodinger equation
for a molecule or a molecular fragment representing a solid. The method chosen is the unrestricted
Hartree-Fock method augmented by a size-consistent many-body perturbation-theory correction.
For simplicity, a single-reference development is presented. The extension to rnultireference formal-
isms is straightforward if tedious. A few sample results are obtained to illustrate the potential of the
method.

I. INTRODUCTION

This paper seeks to examine the utility of Hartree-Fock
techniques coupled with perturbation-theory methods in
the study of the optical absorption energies of several sys-
tems. We have investigated the atoms helium, beryllium,
boron, neon, a molecule, methane, and the solids, sodium
chloride and potassium chloride. Since very accurate data
are available for the atomic cases, these cases can be used
to establish the predictive value of the method.

We have calculated multiplet splittings for all of the ex-
cited states studied, including several in which an electron
is excited into a shell of the same type of symmetry as the
ground state. Variational collapse and the proper multi-
plets are obtained by symmetry projection techniques.

To perform these computations, we use the finite
molecular cluster model in the formalism given by Kunz
and Klein. ' Kunz has provided a more general review of
this and alternate cluster methods. This method, as used
here, applies directly to cluster simulations of extended
systems and to free molecules and atoms. Extensions of
this method are described in Refs. 1 and 2 and else-
where. 3' In these calculations the unrestricted Hartree-
Fock (UHF) method is employed, augmented by direct
application of many-body perturbation-theory (MBPT)
corrections. We use MBPT in a single or multireference
framework as needed. We compute open-shell singlet en-
ergies using a back-projection technique. These methods
are briefiy described below. An open-shell singlet as any
singlet state in which all occupied subshells are not fully
occupied.

Optical absorption studies have been carried out on al-
kali halides in the ultraviolet and soft-x-ray regions. It
has been hypothesized that certain features in the experi-
mental spectrum can be explained as arising from excitons
formed exciting the halogens.

These are two models for excitons. In the Frenkel
model, the exciton is treated as an excited state of a single
atom perturbed by the environment. In the %annier

model, excitons of large radius are treated by solving
Schrodinger s equation for a hydrogenic electron-hole pair
in a dielectric material.

Since the halide ion has no simple bound excited states
in free space, the Frenkel model cannot apply formally,
but an orbital resembling an atomic excited state can be
found if one places the ion in a system resembling the pos-
itively charged remainder of the lattice. Since the excited
state has a moderate radius, details of neighboring atoms
must be considered. In the cluster calculation we neglect
the motion of the exciton from one site to another.

Several authors have studied excitons in the alkali
halides. Dexter ' has made calculation assuming a hole
localized at the origin and an electron surrounding it. The
electronic function resembles a halide excited state in the
region of the halide ion, and a band wave function with an
envelope from the hole potential in the rest of the solid.
He obtains 7.7 eV for the 3p 4s exciton in NaC1, where
the experimental value is 7.9 eV, but his wave function is
least accurate in the region of the halide ion, where most
of the excitonic charge is located. O' Brien and Hernan-
dez and Miyakawa and Gyama' have made calculations
using the Wannier model on alkali halides. For the Wan-
mer 1s exciton in KCl, Miyakawa and Oyama obtain an
energy of —1.1 eV and O' Brien and Hernandez obtain
—1.2 to —1.5 eV, in contrast to the experimental value of
—1.4 eV. These energies are with respect to the interband
energy threshold. These calculations do not dirt':tly ob-
tain the excitation energies. Song et al."have studied the
self-trapped exciton, where an electron is bound to an
C12 ion in a distorted lattice, in NaC1 using techniques
similar to ours and obtain an energy of 2.3—2.5 eV as op-
posed to the experimental value of 2.1 eV. Calculations
similar to the ones made in this paper have been made for
the x-ray excitons of the alkali metal ions, in the alkali
halides. '

A model involving charge transfer from the halide ion
to the surrounding alkali metal ions has been used to ex-
plain the lowest peak in the absorption spectrum, and this
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model also yields good results for this feature, ' but a sim-

ple charge-transfer model does not describe the higher-

energy excitons.
We first investigate the accuracy of the technique used

by finding the energy of several atomic excited states. We
then extend the method to calculate x-ray-absorption lev-
els in methane. We then investigate certain features in the
absorption spectrum of some alkali halides in an attempt
to determine by ab initio calculation whether certain
features in the ultraviolet absorption spectrum may be
described as local exritons.

ponent of spin S, because the electrons are taken to be ei-
ther spin up or spin down. %'e initially approximate our
many electron wave function as a single Slater deter-
minant. This is enhanced by perturbation theory to in-
clude correlation and by a projection technique to produce
eigenstates of S . We also make the Born-Oppenheimer
approximation. In the Born-Oppenheimer approximation,
the Hamiltonian is

II. THE THEORY

The basic method used to calculate the exciton energy is
to take an unrestricted Hartree-Fock (UHF) solution as
the starting point and apply Rayleigh-Schrodinger pertur-
bation theory (MBPT). The term unrestricted Hartree-
Fock means that the only restrictions on the orbitals are
that they are orthonormal and must be spin up or spin
down. The many-electron state is not restricted to be an
eigenstate of spin, S, but is an eigenstate of the z com-

The last term is a constant, since one is neglecting nuclear
motions. In this equation, we use atomic units
(e=fi=m =1, energy 1 hartree=27. 2 eV). Here also Zj
is the atomic number of the nucleus at site Rj. If one
chooses the wave function to be a single Slater deter-
minant made up of single-electron orbitals P(i), where
P(i) =P;(r)a or P(i ) =P; (r)P, then

+ g f dr1 f «i 14 «i)
I

'
I kj(r2) I

' —&.„., f «) f «2 0' (rl )4'j (r2)dj(rl)4'(r2)
i') —rp

l &J

If one requires 5{H)=0 and {P;
~ Pj ) =5,

&
one finds

Zjg;(ri) 1——,V')P(r)) —g + g f d72
~

tt, , (rz)
~

P(r))
rl I j r) —r2

(2)

yJ"(ri)y[(ri) y, (r)) =sly;(ri), (3)

which is the UHF equation. ' Adams' and Gilbert' and
Kunz' ~'7 have discussed the formalism by which a sys-
tem may be partitioned into a cluster and its environment
such that the localization of orbitals in the cluster can be
ensured. This formalism enables one to treat local excita-
tions in a solid without explicit consideration of 10 elec-
trons. We use the Hartree-Fock equation modified ac-
cording to the Adams-Gilbert formalism. The Hartree-
Fock equation can be written as

where I' is called the Fock operator and the )I) are the or-
bitals of the system. One can divide this operator into
two parts

(5)

where Fz is the interaction within a region A and Uz is a
potential due to the environment. Then

(F~+U p~p)0 =II 0—

where II; is the eigenvalue of the Adams-Gilbert-Kunz
equation. This eigenvalue has no direct physical interpre-
tation. The first-order density matrix p is defined as

p —g 4isij 4j
/, J

OCC

with Sj- the overlap matrix {P; ~
)I)j ), and W is chosen to

effect localization of orbitals within region A. For an
ionic system,

U~ = VM+ Vs

where V~ is the Madelung contribution and V, are
short-range effects outside region A. Choose W= Vs and

Now pP;=P;. If proper localization has been effective,



PATRICK %'. GOAI.%'IN AND A. BARRY KUNZ

p Vs/; = Vs/i to first order in overlap in the limit of self-
consistency, and the UHF equation becomes P—So (——Ho W—o) '(1 P—)(Eo V——Wo )go . (12)

(P~+ VM)4 =~;4 . (9)

The UHF method neglects correlation by definition.
That is, it is a form of mean-field theory. It has been
shown that for large systems, such as we may wish to con-
sider, one must use a correlation method which is size
consistent (extensive). ' ' One such method is the MBPT
method. One partitions the exact Hamiltonian H into a
simple Hamiltonian Ho whose eigenvalues and eigenfunc-
tions are known, and a perturbation V is chosen so that

8=—ao+ V

In our case we chose Ho to be the sum of the one-body
Fock operators for the n-electron system. Let us call the
particular state we are obtaining fo with the energy, Eo,
both fo and Eo being unknowns. Now, one has

HPo=Eofo=(Ho+ V)ito .

Since the eigenfunction, P;„with eigenvalue W; of Ho are
known, one may use these to obtain Eo and Po. Consider
that

At this point, even if the P's form an orthonormal set, the
normalization of 1t o is arbitrary. Define it to be such that

& ito I ko& =1 .

This is called intermediate normalization. If this is done,
then one finds (12) reducing to

Po ——fo—(Ho —Wo) '(1 —P)(Eo —V—Wo)go,

which may be formally solved for Po,

go= [1—(Ho —Wo) (1—P)(Eo —V—Wo)] Po .

This in turn results in a power series for go,

No=No+(Ho Wo) —'(1 P)«—o V W—o)k—o

+ [(Ho Wo)—
X(1—P)(E,—V—W, )]"y,+ . (13)

From this, one may develop an expression for the ener-

gy Eo as well. Consider

(Ho —Wo)ito ——(Eo —V—Wo)1(o .

Now we must have Wo nondegenerate in this single refer-
ence approach. One may take a limited inverse of
(Ho —Wo), provided that one operates only on a function
which has no projection on to po. This is easily accom-
plished by using P, the projector onto po,

P=
I Ao&&dol

That is multiplying Eq. (11)by (1—P), one finds

(1—P)(Ho —Wo) go= (Ho —Wo)(1—P)y-
= ( 1 —P)(Eo —V—Wo )go

or

&4 IHo I fo&+ &4o I
V

I
i)'o& = &4o I

Eo
I fo& .

or

E,=W, +&y,
~
V~y, &. (14)

To proceed, one replaces |to in Eq. (14) with its expansion
in Eq. (19). This yields

Using the chosen normalization and the known eigenvalue
relations, one finds immediately,

Wo+&Po~ V
~
Po&=Eo,

Eo= Wo+ &go (
V

~ yo&+&go ( V(Ho —Wo) '(1 —P)(Eo —V —Wo)
~
yo&+

+ &Po I
V[(Ho —Wo) '(1—P)(Eo —V —Wo)]"

~
Po&+

This is not yet complete. Let us construct the matrix of V in terms of the n-electron basis vectors P;, Then,

Voo = &Po I
V

I ko&

for example. Equation (15) is not extensive due to the presence of the unknown Eo occurring in the right-hand side of
this equation. The correct solution is to replace Eo by its first-order expression. ' Let Eo- Wo+ Voo. If this is done
one finds (exactly)

E,=W, +V +&go~ V(H W) '(1 —P)( ——V) ~4 &+&/ ( V[(H, —W', ) '(1 —P)(V —V)] ~P, &+

+&/, ~
V[(H, —W, ) '(1 —P)(V —V)]"~y, &+ (16)

This is the desired form and is a particular form of
Rayleigh-Schrodinger perturbation theory. If one stops at
second order, one may see that,

~01~10 (2)Eo ——Wo+ Voo+ g = Wo+ Voo+Eo
$Y(}—O'I

Bartlett and co-workers have shown this to typically ob-
tain 90% of the correlation energy in a given basis set.

The structure of the Hamiltonian is such that if state
QI differ from ir'jJ by three or more one-electron orbitals
then VII =—0. Furthermore, as a consequence of
Brillouin's thcxirem, ' if 1(J differs by only one orbital
from go then
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~oJ= VJo=o .

The matrix element Vaa or generally V11 is not zero and is
usuaBy large. Furthermore if g1 differs from $0 in that
orbitals {(); and {()1 in $0 are replaced by p, and pb in f1
one has

8'o —8'» ——e-+e —e —e~

where g =e /
I

r —r'
I
. Thus Eq. (17) becomes

2
(a1a( g—abc )

e —e —e ei j (oc(-.) a b &virt) i J a+
i&j a~b

It is possible to use the fact that in general

Vo1 = &0;0, Isla. 4~ & &0—;01 I g I 64. &

=gEJ'ab —g'lJ'ba (18)

VI» &+ ~IJ

for all I and J to improve Eq. (19). Consider the next
term in Eq. (17), the third-order term

E() = &$0 I V[(H0 —Wa) '(1 —P)( Vpa —V)] I {(ta&

=—&{()0
I

V(Ho —Wo) '(1 —~)( Vao —V)(Ho —Wo)-'(1 —l')( —V}
I {to&

Vor ~o» V01 V1J VJo= —Voo 2+
1(~0) (Wo —W1) 1{~0)J (~0) (Wo

(20)

or

Il Voo V01 Vl 0

W() —W1 W() —W1
(21)

In fact, each order has a dominant term given by

V11 Voo-
W{)—W1

N —2
~or ~ro

8'o —8'r
(22}

Therefore if one ignores all but the largest term at each
order, one has

J
~or Vr o " Vrr —~ooEo- Wo+ Vaa+—

1(~O) 0 1 J=0

If, as is usually the ease,

V»r —~oo (l,
Wo —~»

one finds

Eo—8'+ V

Vo1 V1o 1

1( 0) W() —W1 1 —(V11—Vpp/W() —W1)

This is a many-body form of the well-known denominator
insertion trick used in many-body physics. ' In practice

This has a dominant part given when I=J in the second
term and is

(3) ~a ~or ~io

(Wp —W1) (Wp —W1)

Vor ~so—Voo
1(~0) (Wo —W1)'

one evaluates both Eqs. (17) and (23) to see if the denomi-
nator insertion has a small effect on the second-order
term. If it is small then it is likely the perturbation ex-
pansion has converged.

If, on the other hand, this insertion has a large effect on
Eo ' then it is likely that one has a poorly convergent
series and either a better Ho or basis set is needed. It is
also noted the choice of which orbitals go into {t)p is arbi-
trary, therefore this method applies equally well to all
eigenstates of H, not just the ground state. Provided that
Eq. (13) converges, one may compute any state of H this
way.

The derivation of the UHF equation does not specify
that the occupied orbitals must be chosen in any particu-
lar manner. In principle, one can use the wave function
of an excited state. In practice, variational collapse, to the
ground state or some other low-energy state, frequently
occurs when one attempts to calculate an excited state in a
variational calculation. ' It has been proven difficult to
calculate the energies of these states accurately, even for
simple cases such as the He 1s 2s singlet. Excited states
are located at local energy minima in parameter space. If
these minima are shallow, the excited state may be unsta-
ble with respect to variation of the parameters, and it will
be difficult to converge the state.

The technique recently developed by A. B. Kunz has
been used to enable convergence in an excited state solu-
tion of the Hartree-Fock equations. The ground-state
solution is found by standard techniques. In addition to
the orbitals occupied by electrons, a number of unoccu-
pied orbitals, called virtual orbitals, are created. The
method of Kunz has three steps.

(1) One of the ground-state orbitals is selected to be
depopulated and a virtual orbital is populated in is place.

(2) A new Fock operator is generated from this set of
orbitals and it is solved for a new set of orbitals and eigen-
values.

(3) The state having the greatest overlap with the orbi-
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tal depopulated in step (1) is depopulated and steps (2) and

(3) are repeated until convergence.
Every system eve have studied except boron involves a

closed-shell ground state. The systems in question have
low-lying excited states which can be described as an
electron-hole pair in either the triplet or the singlet spin
state. The triplet spin state can readily be found by the
UHF method as it is the ground state for S,= l. In the
UHF formalism it is impossible to specify an excited state
that is pure singlet so a back-projection technique is used.
With back projection one can derive the energy of a pure
singlet state from the known energy of a pure triplet state
and the known energy and expectation value of S of the
triplet contaminated singlet state actually obtained. The
energy of the pure singlet state is found in this limit to be

S(S + 1)(Er—Eo)
1 —S(S+1) (24)

where Eo is the energy of the calculated state, S(S+1)is
the calculated S, and Er is the triplet energy. Although
one does not know the singlet-state wave function, one
can, in principle, calculate the expectation of any operator
T in the singlet state, given that [H, T]=0 and [H,S ]=0.

III. METHODS

The methods used to solve the UHF equation is that of
Roothaan. The atomic basis sets used are based on
those of Huzinaga2 although certain modifications have
been made. Basis functions have been added to describe
the excited states. The exponents for these functions are
found by minimizing the UHF energy of the triplet excit-
cxl state. Basis functions have also been added to increase

the magnitude of the perturbation energy found. Some
contractions have been made in the basis sets either to en-
able convergence or to make calculations proceed more
rapidly. For rnolecules and solids the LCAO technique
was used. The atomic sets used for potassium, sodium,
and hydrogen atom of methane were developed using the
ANALHF code. A polarization functions were added to
the hydrogen set following Meyer. The chloride d state
was represented with a set of d functions for the chlorine
atom from Rappe et al. while the rest of the chlorine set
is from Huzinaga.

Integrals between the Gaussian basis functions used
to expand the orbitals have been calculated using the
poLYAToM code. The UHF and MBPT codes developed
by Kunz and his co wo-rkers have been used to find the
Hartree-Fock energy and perform the perturbation calcu-
lation. Integrals of size 10 hartree were retained and
self-consistence to 10 hartree was achieved.

The alkali halide crystals were modeled as a cluster of
one chloride ion surrounded by six alkali-metal ions in a
charge-neutral array of point charges. The alkali-metal
basis sets were heavily contracted in free space. The lat-
tice parameter of NaC1 at 86 K was taken from the data
of James and Firth. ' The lattice parameter of KC1 at 77
K was found by extrapolation from the lattice parameter
at 298 K given by Donnay et al. , using coefficients of
linear expansion given by White.

In the alkali halides it proved necessary to make correc-
tions for the polarization of the ions surrounding the cen-
tral halide ion caused by the quadrupole moment of the
excited state. Polarization corrections were carried out by
the method of Mott and I.ittleton30 using polarizabilities
taken from Tessman et al. ' A distribution of point

TABLE I. Summary of results. All energies are in eV. (T, triplet; S, singlet).

He
He
Be
Be
8
8
Ne
Ne
Ne
Ne
CH4
CH4
CHg
CH4
NaCl
NcCl
NaCl
NaCl
NaCl
NaCl
KCl
KC1

1s2s {T)
1s2s {S)
2s 3s (T)
2s3s (S)
2$3$
2$3p
2p'3s (T)
2p 3s (S)
2p 3p (T)
2p 3p {S)
1s 3s (T)
1s3s (S)
Is3p (T)
1s3p (S)
3p'4s {T)
3p 4s (5)
3p 31(xy) (T)
3p 3d(xy)(S)
3p 3d(zz) (T)
3p 3d(zz)(S)
3p 4$ (T)
3p 4$ (5)

UHF
energy

19.04
19.88
5.69
6.00
4.89
5.92

15.00
15.18
16.78
17.27

286.68
287.03
287.92
288.06

8.33
8.51
9.59
9.62
9.23
9.25
7.84
7.98

Total
energy

19.8
20.58
6.35
6.56
4.90
5.84

16.44
16.75
18.33
18.56

286.88
287.27
288.11
288.24

8.02
8.30

10.22
10.26
9.62
9.64
7.62
7.76

Experimental
energy

19.82{34)
20.61(34)
6.46(34)
6.78(34)
4.96(35)
6.03(35)

16.65{34)
16.85{34)

288.3(36)
7.9{5)
8.1(5)

10.3(5)
10.3(5)
10.3(5)
10.3(5)
7.8{5)
7.9{5)
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charges was used to represent the exciton. Charges in an
s state were located at the origin, charges in a p state or a
d state were located at the known radius of the chloride
ion in NaCl and KCl.

These calculations were made on a Floating Point Sys-
tems FPS 164 scientific computer with a Digital Equip-
ment Corporation VAX11/750 host machine. Limita-
tions on the amount of computer time available prevented
an all-electron perturbation calculation on KQ, and so in-
stead only the electrons in the n =3 shell of the chloride
ion were considered in the perturbation calculation. Tests
on neon have shown that elimination of the core levels
and higher virtuals in this calculation makes little differ-
ence to the fmal result.

IV. RESULTS

The results of this investigation are tabulated in Table
I. The energy levels calculated in the UHF-MBPT-
polarization approximation appear to be within 0.2 eV of
the experimental levels for all atoinic and molecular cases.
Singlet-triplet splittings appear to be accurate to within
0.1 eV.

One point frequently brought up in connection with the
UHF method is that the states we call triplet states are
not exact eigenstates of S . Our calculated values of the
spin in the triplet state were between 1.0000 and 1.0005
for atomic cases, 1.01 for methane, and between 1.000 and
1.002 for the alkali halides. Since S, is chosen equal to 1

it seems reasonable to identify these states as triplet, since
it is unlikely that a mixture of eigenstates of S2 with sub-
stantial contributions form states with eigenvalues of S
greatly different from 2 would give a value of S so close
to the expected value for a pure triplet state.

The experimental data for the alkali halide crystals are
shown in Table I. The levels hypothesized to be the result

of a 3p 3d exciton, as theoretically predicted, lie in the re-

gion covered by the shoulder above the p ~s exciton.
No variational collapse is observed in any of these sys-

teins. Our computed value for the He ls 2s singlet energy
is 0.7562 hartree. Fraga and Brissa obtain 0.7461 har-
tree. Other workers ' have not reported the ground-
state energy they obtain but give absolute energies for the
excited state comparable to our result.

V. CONCLUSIONS

These methods are being applied to study the elec-
tromagnetic line spe:trum of several atoms, molecules and
of excitons in solids. These calculations, which in fact use
a multireference framework permitting resolution of mul-
tiplied structure, have been performed for the outer elec-
tron shell in atomic He, Be, B, Ne, for the ls shell of C in
the CH4 molecule, and for the formation of the valence
exciton in NaCl and KCl. The spectral levels are
seen to be in fine agreement with experiment both as to
position, typically errors are of 2% or less, and with
respect to multiplet splittings. It is also seen that the
MBPT results are a great improvement on the UHF ones.
This is especially true with respect to multiplet splittings.
The authors conclude this is an effective and accurate way
of studying the electromagnetic line spectra of atoms,
molecules and solids.
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