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Using diagrammatic valence-bond calculations, we have investigated the interplay between

neutral-ionic (5-I) and regular-dimerized stack interfaces in mixed-stack organic charge-transfer
(CT) crystals. The interactions relevant to the above two interfaces, that is, the intersite Coulomb
and the electron-lattice phonon couplings, are introduced via a mean-field approach and a perturba-
tive Herzberg-Teller expansion, respectively. The k=O results for finite chains (up to ~ =12 sites)
and rings (up to. ~=14 sites) are extrapolated to ~~~ ao, obtaining an appropriate description of
the electronic structure of a mixed, regular chain. The calculations distinguish the N and I phases
as characterized, respectively, by nondegenerate and degenerate singlet ground states, the crossing
point being found at a degree of ionicity (p) of about 0.63. Also the singlet-triplet gap vanishes in

the I phase. The explicit consideration of the intersite Coulomb interactions changes the S-I inter-

face from a continuous to a discontinuous one (first-order phase transition), whereas the electron-
lattice phonon coupling makes the singlet degenerate (or quasidegenerate) ground state subject to the
Peierls instability. The results are summarized in terms of a three-dimensional phase diagram relat-

ing p, the lattice-distortion energy, and the stabilization energy of the ionic stack due to intersite
Coulomb interactions. This phase diagram is shown to nicely account for several experimental ob-

servations relevant to mixed-stack CT crystals and to their phase transitions.

I. INTRODUCTION

Most organic charge-transfer (CT) crystals are charac-
terized by a mixed-stack structure, with electron-donor
(D) and -acceptor (A) molecules arranged alternately
along the direction of the predominating CT interaction.
These quasi-one-dimensional systems are conveniently
classified in terms of the degree of ionicity (p, the average
charge on the molecular sites) and of the stack structure.
In fact, mixed-stack CT crystals can have either a neutral
(or "quasineutral, " IiI, conventionally defined as p &0.5)
or an ionic ("quasiionic, " I, p~0. 5) ground state. More-
over, the stack can be either regular (RS), when each mol-
ecule has the same CT integral with its two neighbors
along the chain, or dimerized (DS), when the integrals are
different. The N-I interface has been generally discussed
in terms of the intersite Coulomb interactions, i whereas
one-electron pictures have been always used to investigate
the role of electron-phonon coupling in determining the
stack structure. "

From the experimental side, it is interesting to note that
X crystals generally have a RS structure, whereas the I
ones easily undergo stack dimerization. Moreover, in the
N Iphase transitio-ns studied so far, ' " the abrupt
change in p is accompanied by the dimerization of the
chain. It then appears that there is a rather strict inter-
play between N Iand RS-DS inte-rfaces, and that both in-
tersite Coulomb and electron-phonon interactions have to
be taken into account to obtain a realistic phase diagram
of mixed stack CT crystals. ,The aim of the present paper
is to take a first step in this direction, by calculating the
electronic structure of an isolated, regular

DADOED

chain.
Several models have been devised for the solution of the

electronic problem of one-dimensional systems. The one-
electron approximation adopted in the description of the
electronic structure of conducting polymers' is not suited
to the molecular crystals we are interested in, where
electron-electron interactions are usually comparable with
or larger than the bandwidths. Models neglecting the spin
degrees of freedom can be solved analytically, but, as we
shall see in the following, miss important aspects of the
problem. In the present paper we have therefore chosen a
numerical approach, the valence-bond (VB) technique pro-
posed earlier by Soos and Mazumdar, which can take
into account intrasite and intersite electron-electron in-
teractions and the spin degrees of freedom.

The paper is organized as follows. The electronic Ham-
iltonian and its mean-field solution are described in Secs.
II and III. Section IV introduces perturbatively the
electron —lattice-phonon coupling and investigates the sta-
bility of the regular chain towards dimerization. Finally,
in Sec. V we examine the effect of intersite Coulomb in-
teractions on the E Iinterface, and its in-terplay with the
RS-DS one.

II. VALENCE-BOND ANALYSIS: HAMILTONIAN
AND EXTRAPOLATION METHODS

The general Hamiltonian for an isolated DA regular
chain can be easily written if one considers only one Wan-
nier orbita1 per site and assumes that only the nearest-
neighbor CT integral t is different from zero
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4 = g [—en+Un(n;+I}/2](n; —2)+ g [—e&+U&(n; —1)/2]n;+tg(a; ~;+i +a;+& ~; )+ g Vjp pj, (1)
i odd i even

where i counts the M molecular sites (odd for the D and
even for the A sites), and o the two spin states (a, P). The
Fermi creation (annihilation) operator of an electron with
spin a at the ith site is indicated by a; (a; ), whereas

n; = +~a; ~; is the occupation-number operator. The
energies of the Wannier orbitals at D and A sites are eo
and ez, respectively, UD and Uq being the corresponding
on-site (Hubbard) Coulomb interactions: The first ioniza-
tion potential of D is ID ——eD —Un, whereas the electron
affinity of A is A„=e,z. Finally, VI &

is the Coulomb in-
teraction between fully ionic i and j sites, and p; is the
charge operator, defined, as P;=2 n;—at D sites and
p;=n; at A sites.

For finite chains, the Hamiltonian (1) can be directly
solved by the diagrammatic VB technique. ' On the other
hand, a mean-field approximation for the intersite
Coulomb interactions considerably simplifies the problem
yielding at the same time a first, physically significant
description of the system. In the chosen mean-field ap-
proximation and by excluding the high-energy states with
doubly ionized sites (D + and A ), the Hamiltonian (1)
reads

eigenstates of k=0 wave vector (Ai and Az symmetry).
As will be shown below, in this way additional and new

insights are reached on the nature of the eigenstates and
on the N-I and RS-DS interfaces.

Although the calculations for open chains are affected
by the end effo:ts, for M~oo they should tend to the
same limit as the rings. Therefore, even if the advantages
offered by the symmetry classification are lost, the con-
sideration of the open chains in addition to the rings con-
siderably helps the extrapolation process, giving more
confidence to the final results. In the case of the energies
and of the degree of ionicity, independent extrapolations
for rings and open chains indeed yield practically identical
values.

Recognizing that odd (n =M/2 odd) and even rings
converge differently, sometimes from opposite directions,
to the limit value, the extrapolations have been carried out
as follows. '» The data relevant to odd rings, even rings,
and open chains have been separately least-squares-fitted
to one of the following polynomials,

y(~) =y„+a/~+b/~',

where the on-site energy s is renormalized to give half the
energy required to destroy an ionic pair:

e=(Ag ID+ V)/2+—Vp(a —1) . (3)

(4)

Since the VB basis rapidly increases with ~V; the required
solution of (4) for the infinite stack can be found only by
extrapolating to ~~ &x& the results relevant to finite sys-
tems of increasing size. Results for DA rings with
~& 10 sites have been already reported. The rings were
chosen instead of the open chains in order to minimize the
end effects; however, the translational symmetry relevant
to a segregated stack (C „)was adopted. Besides extend-
ing the calculations up to ~= 14 and to a larger range of
z values, in the present paper we make use of the full
translational and reflection symmetry of the DA rings
(C„„point group, with n = Y'/2), and calculate all the

V is the Coulomb interaction in an isolated 8+A pair,
a the Madelung constant, and p the degree of ionicity
(p=(p, )). The second term of Eq. (3} represents the
Madelung energy per DA pair embedded in a lattice with
charge p.

Besides providing s direct comparison with previous re-
sults, » the main advantage of the mean-field approach is
that the results can be expressed in terms of a single mi-

croscopic parameter, z =e/v 2
~
t

~
. By measuring the en-

ergies in ~2
~
t

~
units one obtains the following dimen-

sionless Hamiltonian:

Ii= —zg( —1)'n; —2 '~ g(a;~;+i +a;+i~; ) .

y(~) =y„+a/~+b/M',
constraining y„ to be the same for the three groups of
data. The Marquardt algorithm'6 has been used in the fit-
ting process. Only few interactions (four or five) were
necessary to obtain the convergence (convergence criterion
10 '

) and the results are little affected by the choice of
the fitting function (5).

The calculations have been carried out on a
VAX 11/780 computer with 4 megabytes of core memory.
The original VB programs' were kindly given to us by
Soos; they have been slightly modified to exclude doubly
ionized sites and to introduce the full symmetry of the
rings.

III. GROUND-STATE PROPERTIES
AND THE MAGNETIC GAP

By exploiting the full symmetry of the rings, C„„,the
singlet VB diagrams in the above described reduced basis
set (three valence states per site} are combined to
transform like the A, and Az representations. The corre-
sponding matrices of the Hamiltoman (4) are then com-
puted, for various z values (from —2.8 to 2.8 in 0.1 steps),
and diagonslized either exactly to obtain all the eigen-
values and eigenvectors (M& 10) or by means of the coor-
dinate relaxation technique' to provide at least the lowest
eigenstates (~=12,14). For the open chains, no symme-

try reduction of the matrices is possible, so that the calcu-
lations have been limited to M=8 for the full set of
eigenstates, whereas only the lowest ones have been ob-
tained for M= 10 and 12.

Figure 1 exemplifies the results obtained for even rings,
odd rings (~/2 even or odd), and open chains. The fig-
ure reports the lowest A

&
and A2 eigenvalues divided by
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FIG. 1. Energy per site (8'} of rings (R) and open chains (C)
with ..%=4—10 and M=6, 8 sites, respectively, as a function of
z =s/V 2

~

r
~

[cf. Eq. (3)]. For rings, the solid and dotted lines
distinguish the lowest-energy A

&
and A2 singlets, respectively,

whereas for open chains they indicate the two lowest-energy
singlet eigenstates.

FIG. 2. Singlet-singlet energy gap (A~~} vs z. Upper part: re-
sults for 4-, 8-, and 12-site rings (solid lines„convergence to the
infinite-chain result from above); for 6-, 10-, and 14-site rings
(dotted lines, convergence from below); and for 8-, 10-, and 12-
site open chains (dashed lines, convergence from below}. Lower
part: infinite-chain extrapolated result.

..V' (8', energy per site) as functions of z. We notice im-
mediately that there is a marked difference in the 8'(z)
behavior of even and odd rings. In fact, in even rings a
crossing between A~ and Aq lowest energies per site
occurs at z =z ( Y), so that the symmetry of the ground
state changes from Ai to Aq. No such crossing is ob-
served in odd rings' (or, as shown by Fig. 1, in open
chains with any 4 ). On the other hand, physical intui-
tion says that by letting 4 ~ oo the differences between
even and odd rings must disappear The properties
evaluated for the two types of rings have to converge to
the same value. Therefore either the even-ring crossing
point z ( f'") shifts towards infinity for .1"~oo, or,
beyond a certain critical z value (z, ), the ground state of
the infinite chain becomes degenerate, the energies of A i

and A2 states tending to the same hmit value for both
cvcn and odd nngs.

A clear indication in favor of the second possibility
comes from the behavior of the energy gap between the
two lowest-energy singlet eigenstates. Figure 2 (upper
part) shows the gap b,ss( V,z ) e~alu~ted as

g g i(z) —8 g 2(z)] for eveii and odd rings and as the
difference between the two lowest eigenvalues for open
chains. By extrapolating the three groups of curves as
described ln thc pI'eccdlng section, the + ~ (x) gap report-
ed in the lower part of Fig. 2 is obtained. The abrupt
change of slope of the Fig. 2 curves suggests a nonasymp-
totic approach of the gap to zero. As a matter of fact, a

z, value can be estimated by fitting the —0.2(z(0.4
points of the b,ss( oo,z) curve with a straight line: The re-
sult is z, =0.42+0.03. Practically the same value
(z, =0.43) is obtained by using all the points from
z = —2. 8 to z =0.4 and a parabola as a fitting function. '

The VB real-space approach adopted in this paper al-
lows us to understand the physical meaning of the critical
point. One can, in fact, observe that in the infinite-chain
limit all the diagrams except the fully neutral one com-
bine to give functions of both A, and A2 symmetry.
Therefore the A i and A z matrices become identical, apart
from the presence in the A i matrix of the elements corre-
sponding to the fully neutral VB diagram. On the other
hand, as .4 —+co the fully neutral and fully ionic states
are asymptotically decoupled. Thus z, is the point where
the contribution of the fully neutral diagram to the
ground state vanishes and at the same time the fully ionic
diagrams start to contribute. As a consequence, above z,
the lowest eigenstates of Ai and A2 symmetry are exactly
degenerate. This degeneracy can be found only in models
including the spin degrees of freedom: Only in this case,
in fact, can the fully ionic structure be described by at
least two equivalent "Kekule-type" VB diagrams, differ-
ing only in the spin pairing between adjacent sites. %e fi-
nally remark that the meaning, not only the value, of z, is
different from that of Ref. 5, where z, =0.52 was associ-
ated with a symmetry change of the ground-state eigen-
function at the N-I interface. In the present work, in-
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stead, z, marks the point in which the singlet ground state
becomes degenerate.

We defer to the next section the discussion on the
consequences of the singlet degeneracy on the stability of
the regular chain, and come back to the M~ ao extrapo-
lations of the ground-state energy per site, w'G. Such ex-
trapolations, performed separately on rings and open
chains, converge to practically the same value: in Table I
we have reported part of the obtained N" G( oo,z), giving as
significant digits those common to the two extrapolations.
The corresponding b,zs{ao,z) are given in column 3. We
notice that the reported values of 8'G do not differ appre-
ciably from the previous ones, despite the fact that the
ground states of the odd rings were incorrectly given. '

A microscopic parameter fundamental to the descrip-
tion of mixed-stack CT crystals is the degree of ionicity p,
as it refiects the mixing between D and A orbitals {i.e., the
strength of the CT interaction). Moreover, being directly
measurable, ' it provides a convenient link between
theory and experiment. In the present calculations p
could be evaluated from the ground-state eigenvector as
the expectation value of the charge operator. We follow
instead a simpler route, based on the relationship between

p and the first derivative of 5'G with respect to z:~'6

BS'G
@=1—(~2~i ()-'

Figure 3 (upper part) reports p as a function of z for
rings and open chains with various M values. Whereas
for even rings a discontinuity in the z dependence occurs

at the crossing point z (M) (in correspondence with the
change in the ground-state symmetry) in odd rings and in
open chains the p(z) function is well behaved. The
~~00 extrapolated p(z) is shown in the lower part of
Fig. 3; part of the numerical values are reported in
column 4 of Table I. ' Since the intersite Coulomb in-
teractions are not explicitly accounted for, collective ef-
fects cannot show up and no discontinuity is observed in
the p(z) curve of the infinite chain. Only a maximum in
Bp/Bz is found at z„ indicating a continuous passage
from the N to I regime (i.e., from a ground state without
a contribution from the fully ionic diagrams to one
without a contribution from the fully neutral diagram).
The value marking the passage is p, =0.63: The asym-
metry of the N-I interface is again attributable to the spin
degrees of freedom. '

We conclude this section by briefiy looking at the
singlet-triplet gap, which determines the magnetic proper-
ties of the system. The symmetry of the rings has not
been exploited in the triplet-state calculations, which have
been carried out up to M=12 for both rings and open
chains. The singlet-triplet gap bzr has then been deter-
mined by

bsT(m z) =W I'G(z) —w'T(z)]

where 8'G and 8'T are the lowest singlet and triplet ener-
gies per site, respectively. The results are similar to those
of the singlet-singlet gap {Fig. 2); that is, after an almost
straight line of slope -2, hsT tends to become zero. In
this case, however, with increasing M, b,sT tends to zero

TABLE I. Infinite-chain extrapolated values (V 2
~
t

~
units)

of ground-state energy per site (N'G), singlet-singlet gap (Ear),
degree of ionicity (p), and singlet-triplet gap (h,qr). This table
reports only a significant sample of the calculated values; except
for h,q~, all the other parameters have been evaluated in 0.1 z
steps from —2.8 to 2.8.

O. 6--

—2.8
—2.4
—2.0
—1.6
—1.2
—0.8
—0.4

0.0
0.1

0.2
0.3
0.4
0.5
0.6
0.7
0.8
1.2
1.6
2.0
2.4
2.8

—2.964 29
—2,586 81
—2.215 71
—1.853 63
—1.5046
—1.1747
—0.8731
—0.6109
—0.5526
—0.498
—0.448
—0.406
—0.3702
—0.3417
—0.3171
—0.2956
—0.23047
—1.18705
—0.15646
—0.13403
—0.11695

—5.86
—5.09
—4.33
—3.59
—2.86
—2.15
—1.45
—0.73
—0.54
—0.36
—0.19
—0.06

0.01
0.04
0.03
0.01

—0.04
—0.03
—0.02
—0.02
—0.01

0.0634
0.0820
0.1085
0.1483
0.2061
0.291
0.40
0.43
0.47
0.532
0.613
0.6930
0.7371
0.7706
0.7979
0.8689
0.9102
0.9349
0.9518

—5.87
—5.11
—4.36
—3.62
—2.90
—2.21
—1.55

—0.67
—0.43
—0.28
—0.14
—0.05
—0.02
—0.01

0.00
0.00
0.00
0.00
0.00
0.00
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FIG. 3. Degree of iouicity (p} vs z. Upper part: results for 4-
and 8-site rings (solid lines); for 6- and 10-site rings (dotted
lines); and for 6- and 8-site open chains (dashed lines). Lower
part: infinite-chain extrapolated result.
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O

0

half-filled segregated stack system. For the sake of sim-
plicity, and without loss of generality, we consider just
one translational phonon,

1 /2

u= gu;=2 2 g (x;—x;+l), (7)
I (}dd l Odd

where x; is the mass-weighted longitudinal displacement
of the ith molecule. The coupling of the phonon to the
electron system takes place through a modulation of the
CT integrals. For small displacements the u; dependence
of the CT integral between the i and i +1 sites (t;) can be
linearized as

FIG. 4. Singlet-triplet energy gap (hqT) vs z, in the infinite-
chain limit. The inset shows the results for finite-size even rings
(solid lines), odd rings (dotted lines}, and open chains (dashed
lines), all converging from below to the infinite-chain limit.

always from below (Fig. 4, inset) rather than from two op-
posite directions, depending on the ring type, as was ob-
served for hss (Fig. 2, upper part). As a consequence, the
..&~ oo extrapolation of b,sT is less bound than in the dss
case, and the determination of a finite z, for the vanishing
of DENT is less safe. In any case, the extrapolated hsT
values (reported in Fig. 4 and in the last column of Table
I) go to zero at z, =0.47+0.05 (p, =0.67), which we be-
lieve is not significantly different from that relevant to
b,ss. Moreover, the close similarity of b,ss(~,z) and

hsz( 00,z) (Table I and Figs. 2 and 4) indicates that the
first-excited singlet and triplet states are degenerate or
quasidegenerate in the full z range. Exact degeneracy can
indeed be expected in the z~+00 limits: for t~0 the
electron on a site cannot know if those on the nearest-
neighbor sites have parallel or antiparallel spin.

We therefore agree with the previous conclusion that
the magnetic gap of a mixed regular chain vanishes in the
ionic regime. However, the observation of activated mag-
netic susceptibility in a mixed-stack crystal does not
necessarily imply that the system is on the neutral side.
In fact, in the ionic side the singlet ground state is degen-
erate; thus, as shown in the next section, the regular chain
tellds to dlmerize, opening a flnEte maglletlc gap.

IV. REGULAR-DIMERIZED STACK INTERFACE

We now focus attention on the consequences that the
singlet gmund-state degeneracy (or quasidegeneracy) can
have on the stabHity of a regular mixed chain. It is, in
fact, quite obvious that the degenerate system is unstable
against any perturbation which, lowering the symmetry,
allows the mixing of the A& and Az states. The most
likely perturbation is the coupling of the electrons to the
lattice phonons, which leads to the well-known Peierls-
type instability of one-dlIHenslonal systems. The
relevant phonons are in this case the k=O optical ones
(A l symmetry), corresponding to the zone-boundary pho-
nons causing the Peierls instability in the isoelectronic

A = —sg ( —1)'n;+ g t((a; ~;+, ~+a;+l ~; ~) . (10)

Equations (8)—(10) yield

A = —s g ( —1)'n;+~ g(a; Oa;+ l,~+a;+l,&l,o)

—( +Mph) gphu =~e+~e —ph i
1/2

where 8g is the bond-order alternation operator:

' g ( —1)'(a; ~;+l +a;+l ~;, ) .
i,a

(12)

A, and A, zh are the rigid-lattice electronic Hamiltoni-
an of Eq. (4) and the electron-phonon coupling term.

The usual Peierls-type treatment2 ~ would require
knowledge of the dependence of the ground-state electron-
ic energy from u. One could tackle the problem by calcu-
lating, via the VB technique, this energy for various u
values, i.e., various distorted chains. This route is clearly
very laborious, requiring a high number of calculations.
On the other hand, if one is only interested in what hap-
pens before the chain distortion occurs, one can adopt the
much simpler "Kohn-anomaly" approach. The problem
is then reduced to the evaluation (via a perturbative ap-
proach in terms of A, ph) of the effect of the electron
system on the phonon dynamics. The relevant expression
for the renormalized phonon frequency can be obtained by
various methods; here we shall adopt the one which al-
lows us to understand better the different behavior of fi-
nite open chains and rings.

In the proximity of u =0, the dependence of the
ground-state energy Ea(u) from u can be expressed by a
Herzberg- Teller expansion around such a point:

u;,
Bu; 0

where r is the CT integral of the regular chain. It is then
convenient to define the linear electron-phonon coupling
constant gph as (A'=1)

2
8'ph

(2alph) ~up 0

where soph is the Phonon frequency.
If one allows for the t variation, the mean-field elec-

tronic Hamiltonian of the mixed chain is
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I &6 I~.-phl+) I'
EG(u)=EG+ (G

I
A, ph I

6)—g

=EG —(Mcoph) gphu (6
I
3P

I
6 )—Mclphu gph g1 /2 I (6 I

95'
I
F ) I

'
6

where
I 6) and II') represent, respectively, the lowest

and the excited eigenstates of P „with energy EG and

EF, respectively. The first and second derivatives of the
total energy, Ezo(it)=EG(u) + olphu /2, with resPect to
u, give the equilibrium position of the chain and its vibra-
tional frequency. At tt =0 the first derivative is zero only
if the term (6 I

9t
I
6) is zero. For rings, which have

the full symmetry of the infinite chain, this condition is
satisfied by symmetry, 9F being an antisymmetric opera-
tor. On the other hand, this argument does not apply to
finite open chains; in such a case the position lt =0 (regu-
lar chain) is tlot an equilibrium position for the system. zb

The condition (6 I
AF

I 6)=0 must, of course, be re-
gained also for open chains in the limit M~ Oo.

The renormalized phonon frequency Qph of finite rings
and open chains, given by the second derivative of ETO
with respect to it, is in any case obtained as

parently anomalous behavior can be understood if we de-
fine the following "asymmetry parameter" P:

2

i odd &+ I+&
(17)

In the case of rings, /=0 and 1 in the opposite limits of a
regular and of a fully alternating (i.e., isolated dimers) ar-
rangement of D and A sites. If the isolated dimers form
an open chain, again /=1. However, a regular open
chain has ttp=(M 1) ', —since t;=0 On. ce more, the
full symmetry result (/=0), is regained only in the limit
M~ ac. For finite ~, therefore, the open chains are ex-
pected to exhibit a behavior intermediate between that of
an isolated dimer and that of a regular ring, tending to the
latter with increasing ~. For an isolated dimer, Eq. (15)
easily gives the analytical result

2=2 2
flph olph tophg ph~b

where Xb, defined by

I (6 l35' IF) I

b (15)

(v2lt l~b) '=I2(2s —1)'(to(1 —a))'"i '.
Such a function tends to infinity for p =0.5 (as well as for

expresses the electronic response to the phonon perturba-
tlon.

The coupling with the electron system softens the lat-
tice phonon frequency; when it reaches zero the displace-
ment along it costs no energy, and the regular mixed-stack
chain dimerizes. The borderline between regular and
dimerized stack stability regions is then given by

C4

C6
I

/i C8/ t.' R4

In Eq. (16), 8'll ——gph/toph (= g hg phlraph, if more than
one phonon is involved) is the lattice distortion energy per
unit cell. It represents the electronic energy gain due to
the lattice relaxation when the bond orders change from
uniform ((A ) =0) to perfectly alternating (( 8N ) = 1). In
this respect, O'D plays the same role as the small polaron
binding energy does in the case of electron-intra-
molecular phonon coupling.

The electronic response Xb [Eq. (15)] can be easily ob-
tained as a function of z (or p) by applying the operator
3P of Eq. (12) to the eigenvcetors obtained by the calcula-
tions of the receding section. The resulting ( tabb )

' are
reported ( 2

I
t

I
units) in the upper part of Fig. 5 and are

limited to rings up to ~=10 and to open chains up to
M=8, since only in these cases has the full set of eigen-
vectors to be used in Eq. (15) been obtained. From the
figurc lt ls cvglcnt tliat cvcll- alld odd-ring curves coll-
verge to the ~~ao result from opposite directions (at
least for p(0.8). The shapes of the curves relevant to the
open chains are instead qualitatively different. This ap-

0

0 a
0 Q

,a o

FIG. 5. Regular-stack (RS) and dimerized-stack (DS) stabili-
ty regions [cf. Eq. (16) in the text]. 8'~ is the lattice-distortion
energy per site and p the degree of ioniiit. Upper part: results
for (4—10)-site rings (8) and (4—8)-site open chains (C). Lower
part: infinite-chain limit; the dashed area represents an experi-
mentally plausible range of values for 8'~/V 2

I
t

I
in organic

CT crystals.
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p=0 and 1) and is syminetric around such a value, with
two minima at p=0. 15 and 0.85. In Fig. 5 one can see
how the open chains progressively depart from such
behavior with increasing ~, the ~4 =4 curve being al-
ready rather different from the dimer case (asymmetric
and not going to infinity for p =0.5). As stated above, the.l ~ co limit must be the same for chains and rings; we
can therefore extrapolate the curves of the upper part of
Fig. 5 as has been described in Sec. II. Since, however,
only two data points are available for each of the two
groups of even and odd rings, in such cases the extrapolat-
ing functions (5) have been limited to only two terms.
The resulting curve for the infinite chain is reported in the
lower part of Fig. 5.

Although it offers only a zero-temperature description,
Fig. 5 can be used as a sort of phase diagram for the sta-
bility of regular stacks against dimerization. On the basis
of the condition (16), regular chains are stable only below
the curve of Fig. 5, and unstable above. The value of
O'D/~2

~

r
~

is generally estimated around 0.15—0.20
(dashed area); it is then nice to see that Fig. 5 immediately
explains the experimental observations referred to in the
Introduction. In fact, neutral chains (p & 0.3) have a regu-
lar structure also at low temperatures; as far as we know,
mixed-regular-stack crystals with p between about 0.4 and
0.8 have not been observed; finally, ionic compounds
with p & 0.9 are found to undergo a RS-DS phase transi-
tion by lowering the temperature. ' ' %e predict that
for the latter systems a k=0 soft-phonon mode should be
observable in the infrared spectra.

The dimerization instability described in this section
cannot be directly associated with the widely investigated
spin-Peierls instability of segregated-stack CT crystals.
In fact, in a mixed stack the difference of the on-site ener-
gies makes possible the double occupancy of the D sites
even in the large-U limit. Additional insight into the
physics of the phenomenon can be gained in terms of the
real-space VB description of Peierls instabilities previous-
ly proposed for finite- U segregated stacks. i' lt is easy to
realize that the ground state of neutral or quasineutral
mixed chains is mostly described by nonbonded VB dia-
grams, where doubly occupied D sites alternate along the
stack with empty A sites. Such diagrams do not favor the
chain distortion, ' so that a large stability range is expect-
ed for mixed stacks in the neutral regime, as confirmed by
Fig. 5. When the ionicity increases, bonded diagrams be-

gin to contribute to the ground state and, correspondingly,
the system becomes less and less stable. In the largely
ionic side, on the other hand, the stability is progressively
regained due to the decrease of t Only in th. e limit of
large positive z (p=1), a mixed regular chain becomes
equivalent to a large- U segregated stack.

chains with intermediate degrees of ionicity are strongly
unstable against dimerization. This finding has been used
to justify the fact that such CT crystals have not been ex-
perimentally found. On the other hand, it is known '

that the intersite Coulomb interaction (so far not explicit-
ly considered) is also a source of instability for
intermediate-charge chains, giving rise to an abrupt jump
in p in going from neutral to ionic systems. It is then
clear that these two interactions compete in pointing to-
wards two different uneven charge distributions along the
chain; the electron-phonon coupling tends to distort the
chain, modulating the intersite electronic density (bond
charge-density wave, B-CDW); on the other hand, the in-

tersite Coulomb interaction favors the already present
uneven electron distribution on the D and A sites (site
charge-density wave, S-CDW). Any realistic model of
mixed-stack CT crystals must therefore take into account
both the above interactions.

The mean-field approach allows one to analyze the ef-
fects of the intersite Coulomb interactions on the p(z)
function by separating the contributions of the two terms
in Eq. (3). One defmes 8'c ——V(a —1) as the contribution
given by intersite Coulomb interactions to the stabiliza-
tion of a D+A pair self-consistently embedded in the
ionic lattice. Then, setting f= 8'c/V 2

~

t
~

and
zo ——(A„ID+V)/2—t 2

~

t ~, Eq. (3) in dimensionless
form is rewritten as

zo(z,f)=z fp(z) . — (18)

For a given value of f, z, and p, the curve p(z) of the
lower part of Fig. 3 can be used to compute zo, thus ob-
taining the p-versus-zo curves reported in Fig. 6 [actually,
the abscissa axis reports zo+f/2 in order to keep the
p(zo,P curves in the same place for different f values. ]
By increasing f (that is, the importance of the intersite
Coulomb interactions), the f=0, S-shaped curve of Fig. 3
becomes steeper. Beyond a critical f, =(Bz/Bp),
(roughly estimated by our calculation as 1.3+0.3) the
p(zo) function is no longer single valued (Fig. 3, f=3.5).
It is not difficult to realize that in such a case the curve

V. NEUTRAL-IONIC VERSUS REGULAR-DIMERIZED
STACK INSTABILITY

In the preceding section it has been shown that, due to
electron —lattice-phonon couphng, regular-mixed-stack

FIG. 6. Degree of iotueity (p) vs zo+f/2 for f=0.0, 1.2, and
3.5. f [Eq. (18}]is a measure of the iutersite Coulomb interac-
tion; the f=0.0 curve is the infinite-chain extrapolation of Fig.
3, lower part. The geometrical construction on the f=3.5 curve
is expIained in the text.
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interval with negative slope corresponds to unstable
states. ' In fact, the energy as a function of p can be writ-
ten as g'G(p)=zc(1 —p) + q(f p), where q(f p) is some
function of f and p. For the stability, the energy must be
at a minimum„ that is

c) g'G

Bp,&O.f2

t)2

Bp zo f2

The stable equilibrium states can be derived, as usual,
PI

by tracmg a tie hne p~ —pr such as p(zo)dzc ——0; that
PN

is, by using the well-known Maxwell equal-area (equal-
energy) construction. Therefore the N Iinter-face be-
comes discontinuous (first-order phase change) for f~f„
the p values between p~ and pq not representing stable
states (the curve intervals within this p range and with
positive slope correspond to metastable states, and those
with negative slope to unstable states, as discussed above).

We are now in the position of modifying Fig. 5 to in-
clude the effect of intersite Coulomb interactions. Since f
cannot be modulated by u, the p dependence of Xb is not
modified. Therefore the curve representing the RS-DS in-
terface remains the same for f&f, : For weak 8'c all the
p values are allowed and the chain may undergo a
second-order B-CDW instability. By increasing f beyondf„larger and larger p intervals become progressively for-
bidden, so that the Fig. 5 curve is progressively cut from
below by the tie lines of Fig. 6, connecting p~ and pq, the
results for some experimentally relevant f values are re-
ported in Fig. 7. Then for appreciably large I'c also
first-order N-I (S-CDW) phase transitions bcco111c poss1-
ble. Since, however, the p~-pi tie lines are not parallel to

FIG. 7. Phase diagram for mixed-stack CT crystals. The a,
b, c, and d curves correspond to f=3.5, 2.4, 1.2, and 0.0 (de-
creasing importance of the intersite Coulomb interactions); the
dashed line (analogous to the tie line of Fig. 6} indicates the for-
bidden p region for the given f value. g'D is the lattice distor-
tion energy per site. The points S, Q, and R are explained in
the text.

After some elementary algebra, one can rewrite the stabili-
ty condition as

82

c)p 'o

the abscissa axis, and a rather small 8'D is sufficient to in-
duce the 8-CD% instability, it is very likely that a 5-I
phase transition is accompanied by a stack dirnerization.

The above considerations are conveniently illustrated by
comparing the predictions of Fig. 7 with the experimental
behavior of a CT crystal undergoing a N-I transition.
The obvious choice is the tetrathiafulvalene-chloranil
(TTF-CA) compound, whose temperature-induced N-I
phase transition has been deeply investigated. 'c 34

From these investigations we can extract the microscopic
parameters needed to use Fig. 7. The Madelung-energy
calculations 5 lead to an estimate 8'&-0.8 eV just above
the phase transition; since t is evaluated to be -0.24 eV,
we have f=2.4, corresponding to curve b in Fig. 7.
Moreover, always just above the transition,
p=0.30—0.35:9 If we assume the plausible valuez of
0.15—0.20 for I'alt 2

~
1 ~, the system lies about at point

S in the phase diagram. This point is below curve b; the
stack should be regular, as indeed it is. On the other
hand, point 5 is on the edge of the N-I instability; a small
increase of p brings it on the ionic side, and the phase
transition is first-order, as recently found by Tokura
et al. 'o The first allowed p value is around 0.85; if
O'D/W2

~

t
~

remains the same as in the neutral phase, the
system would lie at point R in the phase diagram. How-
ever, R is now above the RS-DS instability curve, with the
crossing occurring at Q; the ionic phase of I I F-CA is ex-
pected to be dimerized, as experimentally found (of
course, the actual p value of the ionic phase, -0.64, '
cannot be deduced from Fig. 7, which is relevant to the
regular stacks only). Just one example is obviously not
enough to assess the general validity of Fig. 7. However,
the success in the explanation of the experimental data on
the temperature-induced phase transition of TTF-CA in-
dicates that the obtained phase diagram offers a physical-
ly significant picture of N-I and RS-DS interfaces in
mixed-stack CT crystals.

VI. CONCLUSIONS

In this paper we have investigated the N-I and RS-DS
interfaces of mixed-stack CT crystals. The adopted real-
space VB approach yields a complete description of the
electronic system, taking into account the spin degrees of
freedom, the effects of the CT interaction, and the elec-
tron correlations. We have discovered that the singlet
ground state of a regular chain becomes degenerate above
a certain critical value of the degree of ionicity. This
point marks the borderline between N and I ground
states; most important, however, is the fact that in the re-
gion of the degeneracy (or quasidegeneracy) the chain is
strongly unstable towards a Peierls distortion.

%'e have analyzed the Peierls instability by introducing
the electron —lattice-phonon coupling through a
Herzberg-Teller expansion of the VB ground-state energy.
In this way the stabihty regions of the regular and dimer-
ized stack phases have been delimited. Moreover, the in-
terplay of the RS-DS with the S-I instability has been in-
vestigated. As a result, we have been able; to construct a
three-dimensional phase diagram, relating the lattice dis-
tortion energy, the Coulomb interaction energy, and the
degree of ionicity. These quantities can be experimentally
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determined or reasonably estimated: The phase diagram
is then shown to nicely account for the experimental
behavior of the mixed-stack CT crystals investigated so
far.

The achievements of the model give us confidence in
the route undertaken. Extension of the present work will
be in examining whether the RS-DS instability curve is
appreciably modified when the Hainiltonian including the
intersite Coulomb interactions is solved directly, rather
than through a mean-field approach. Prehminary results
suggest that this is not the case. It will also be interesting
to investigate the effects of the electron-molecular vibra-
tion interaction, which has not been considered in the

present paper and which is known ' to influence the N I-
instability.
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