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A unified theory is presented that describes the thermodynamic and dielectric properties of the
electron liquid throughout the full range of thermal degeneracy: from the zero-temperature fully
degenerate Fermi plasma to the high-temperature classical one-component plasma. Through an ap-
proximate inclusion of local-field corrections in the polarizability, results are obtained that are accu-
rate up to intermediate values of the coupling strength. For future applications, closed-form param-
etrizations are presented for the thermodynamic and dielectric functions, as functions of density and
temperature, The consequences of an increase in temperature on the plasmon dispersion and damp-
ing, on the energy-loss function, and on the pair-correlation function are also studied. %e find that
quantum effects can be observed in the short-range behavior of the pair-correlation function even
for some plasmas that are conventionally classified as classical.

I. INTRODUCTION

An accurate description of a one-component Fermi
plasma at any degree of degeneracy is a problem of both
fundamental and practical significance. As demonstrated
in Fig. 1, plasma states of matter for which the one-
component plasma (OCP) serves as a standard model are
certainly ubiquitous in nature. Although an enormous ef-
fort over the past three decades has been expended in ob-
taining an accurate theoretical description of both the
zero-temperature fermion OCP (degenerate electron
liquid) and the high-temperature classical OCP, only re-
cently have attempts been made to quantify the intermedi-
ate degeneracy regime of the fermion plasma. The goal of
this work is to present a unified theory capable of describ-
ing the thermodynamic and dielectric properties of the
fermion plasma throughout a broad range of densities and
temperatures: from a fully degenerate quantum plasma,
to a nondegenerate classical plasma. In order that the
theory be particularly applicable to electron liquids at me-
tallic densities, which are not weakly coupled, local-field
corrections to the random-phase approximation are in-
cluded in an approximate manner. Through comparison
with Monte Carlo results both at zero temperature and in
the classical regime, we find that this procedure provides
aI1 accurate dcscrlptlon of thc fclII110I1 plasIIia lip to 1ntcf-
mediate coupling strengths. In order to enhance the utili-
ty of the results we obtain for practical applications, we
present closed-form parametrizations' of both the free en-

ergy and dielectric function, as functions of density and
temperature. For nearly degenerate plasmas, this parame-
trization leads to a convenient method for including
finite-temperature effects which goes beyond the usual
Sommerfeld expansion for the ideal fermion contributions
to the thermodynamics. In a similar way, for nearly clas-
sical plasmas it provides a scheme for conveniently in-
cluding quantum corrections that also goes beyond the

standard Wigner-Kirkwood expansion, which is, in fact,
an ill-defined expansion for the OCP.I As discussed
below, we find that plasmas of intermediate degeneracy
are inadequately described by low temperature or classical
approximations. Although our results are applicable to
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FIG. 1. Temperature-density plot for some plasmas for
which the OCP serves as a model. The constant 8 lines denote
the regions of degenerate behavior (8 g 10), intermediate degen-
eracy (0.1 &8~ 10), and classical behavior (8& 10). The con-
stant g lines denote the regions of weak coupling (g & 0.1), inter-
mediate coupling (0. 1&(&10), and strong coupling (g& 10).
The line (=119 is also plotted as a possibje freezing curve of
the OCP. The dotted line denotes the border of the relativistic
domain. Key: M1, metallic electrons below room temperature;
M2, liquid metals expanded to near their critical point; M3,
shocked aluminum; EHL, electron plasmas in the electron-hole
liquids in silicon and germanium; 8', electrons in white dwarfs;
IFE, electrons in inertial fusion plasmas {lower domain is exper-
iment, upper domain is goal); SCN and SCE, nuclei and elec-
trons in solar core; TN and TE, nuclei and electrons in
Tokamak plasmas.

34 2097 1986 The American Physical Society



R. G. DANDREA„N. %. ASHCROFT, AND A. E. CARLSSON

hydrogen or tritium nuclei in fusion plasmas, most appli-
cations of this work will be found in electron plasmas, and
thus we shall in what follows generally use the term "elec-
tron liquid" interchangeably with the more general appel-
lation "one-component Fermi plasma. "

The OCP is a system consisting of a single species of
charged point particles together with a uniform oppositely
charged background to ensure charge neutrality. Al-
though the OCP is a theoretical construct on its own, it is
nonetheless an essential part of the solution to many im-

portant physical problems. For example, by coupling the
standard adiabatic (Born-Oppenheimer) approximation
with an assumption of a weak electron-ion pseudopoten-
tial interaction, it can be shown' that the thermodynanucs
of a simple metal is the sum of that due to a one-
component electron plasma and that due to a system of
classical ions interacting via a state-dependent pair poten-
tial. Furthermore, within the local density approximation
of the density functional theory of electronic structure,
the excess chemical potential of a one-component electron
plasma plays the role of an exchange-correlation potential
in the one-electron Schrodinger equation. Finally, the
classical OCP is a standard approximation for both astro-
physical and laboratory fusion plasmas, where the elec-
trons are now treated as a polarizable background for the
ions. It is thus not surprising that there has been a large
amount of work carried out on both the zero-temperature
fermion OCP (degenerate electron liquid) and the classical
OCP. At zero temperature, diagrammatic and in-

tegral equation ' methods together with recent Monte
Carlo calculations' have combined to present an accurate
description of the paramagnetic electron liquid. Similar
methods" ' have also led to a precise description of the
classical OCP. As mentioned above, however, the prob-
lem of the OCP at intermediate degeneracy has only re-

cently received attention, and this paper is addressed in

part to the issue of filling in this gap.
The basic criterion that determines the relevance of

quantum effects in a plasma is the ratio of the thermal de
Broglie wavelength A, T (2mB /inks ——T)'~ to the interpar-
ticle spacing d =2a, where a (the Wigner-Seitz radius or
ion-sphere radius) is defined by 4ira /3 =1/n, with n be-

ing the number density. Thus A, T »d defines the regime
of complete degeneracy, while A, T &&d defines a nonde-
generate regime where quantum effects are negligible and
classical statistical mechanics may be used. Throughout
this work we will frequently use another parameter to
characterize the degree of degeneracy. This is the dimen-
sionless temperature 8=k+ T/eF, where e~ AkF/2m is-—
the Fermi energy of the noninteracting plasma and
kF ——(3n n}'~ is the Fermi wave vector. From the equa-
tion

1/2
2a 0.9235
8 v8

where a=(4/9n)', it is seen that the requirement of
small (or large) 8 for degenerate (or classical} behavior is
essentially the same as the requirement of large (or small)
A, T/d. In this work we find that 8~0.1 approximately
defines the degenerate regime (where the zero-temperature

results are quite accurate), while 8 & 10—100 defines the
nondegenerate regime (where the classical results apply).
For 0.1~0~10 however, the plasma is semidegenerate
and inadequately described by either the zero-temperature
or classical formalisms.

There are, in fact, many physical systems whose elec-
trons exist in semidegenerate states. For example, the
finite-temperature thermodynamic and dielectric proper-
ties of the electron liquid are needed for a proper treat-
ment of the equation of state of high-temperature liquid
metals found in shock-wave experiments' and experiments
on liquid metals expanded to near their critical points, '

of high-density inertially-confined fusion plasmas, and of
the finite-temperature exchange-correlation potentials
used in density functional calculations of atomic proper-
ties at high pressure and temperature. ' Semidegenerate
electron liquids are also found in semiconductors, where
the low densities involved lead to correspondingly low
Fermi temperatures. For example, Mooradian' observed
a spectral line in n-type GaAs at n =1.8&10'8 cm
evolve from a form appropriate to a Fermi distribution to
that appropriate to a Maxwellian as the temperature was
raised from 5 to 300 K. Also, the phase diagram of the
electron-hole liquid in irradiated semiconductors spans
the regime of semidegeneracy, as is seen from the fact
that the critical temperatures in Si and Ge are 23 K and 7
K, respectively, while the electron Fermi energies at the
critical densities are 45 K (Si) and 12 K (Ge). ' The
finite-temperature equation of state of the electron liquid
is also needed for a quantitative explanation of the misci-
bility gap in solutions of alkali metals in their alkali-
halide metals. ' In Fig. 1 we have plotted, on a logarith-
mic temperature-density scale„a wide spectrum of plas-
mas of physical significance, together with the lines
8=0.1, 1, and 10, in order that the degree of degeneracy
of each plasma may be assessed. Note that the density
has been scaled by the effective Bohr radius
(ao ——ii) /me ), while the temperature has been scaled by
the effective Rydberg (1 Ry=e /2ao). (For the ionic
plasmas in Fig. 1, these quantities differ from their values
for the electronic plasmas by the electron-ion mass ratio. )

The significance of the semidegenerate region is apparent.
Previous calculations of the thermodynamic and dielec-

tric properties of the fermion plasma at intermediate de-
generacy have been of several types. Pokrant has
developed a theory that uses a finite-temperature varia-
tional principle to evaluate the diagonal density matrix,
which he approximates as a product of an ideal fermion
diagonal density matrix and a product of pair functions.
He then calculates the energy by using two- and three-
body correlation functions obtained from the hypernetted
chain and convolution approximations, respectively.
However, he presents equation of state data in tabular
form only at four densities (r, =a/ao ——0.5, 1, 2, 3.39).
Several other groups have studied the thermodynam-
ic ' and dielectric ' properties of the OCP by using
finite-temperature perturbation than within the
random-phase approximation. Particularly noteworthy is
the work of Perrot and Dharma-wardana and of
Kanhere et QI., who have recently presented closed-form
parametrizations of the exchange-correlation free energy
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and chemical potential within the random-phase approxi-
mation for the paramagnetic and spin-polarized cases,
respectively. The work presented here follows a calcula-
tional scheme similar to these approaches. However, it is
known that the random-phase approximation (RPA) is a
weak coupling theory that results in considerable error at
coupling strengths appropriate to metallic densities.
Thus, in order to obtain results applicable to more strong-
ly coupled plasmas, we use a dielectric formulation com-
monly used at zero temperature and in the classical re-
gime that includes static local-field corrections to the
RPA. In the following, we use this scheme to study the
thermodynamics, the dielectric properties (including
plasmon dispersion}, and the pair-correlation function of
the finite-temperature electron liquid. Calculations of the
thermodynamic properties, with local-field corrections in-
cluded, have also recently been performed independently
by Tanaka, Mitake, and Ichimaru. They combine the
integral equation scheme of Singwi, Tosi, Land, and
Sjolander (STLS) for 8&5 with the results of calcula-
tions using the hypernetted chain approximation in the
classical regime to present parametrizations of the excess
energy and free energy. As we show below, our calcula-
tions of the excess free energy of the intermediate degen-
eracy regime find good agreement with the more exact re-
sults of Tanaka et al.

Before doing so, however, it is perhaps worthwhile to
delineate the region in the density-temperature diagram of
Fig. 1 in which the results of the present calculations are
meaningful. To do this we first define so(r„8) as the
(purely kinetic) energy per particle of an ideal Fermi gas,
with eo(r„8=0)=3s~l5 and eo(r„8&&1)=3kiiT/2 as
familiar limiting cases. A reasonable approximation for
the relativistic domain in Fig. 1 is the criterion co» me .
Thus the current nonrelativistic results are applicable only
inside the line eo ——mc, which is drawn in Fig. 1. A fur-
ther constraint on the apphcability of the present calcula-
tions can be made by defining a generalized coupling con-
stant g as the ratio of a typical potential energy e /a to a
typical kinetic energy eo.

0.905r„8« 1

g(r„8)—:"" =
~,

=
-', r, e»»1 (1.2)

where I =e2/akti T is the classical coupling constant. As
mill be shown below through comparison mith Monte
Carlo results, the present theory gives accurate results for
roughly g & 10. Thus the line g= 10 is also drawn in Fig.
1, and inside this line the results of the present calcula-
tions become increasingly inaccurate (i.e., as g increases).
Also drawn in Fig. 1 is the line (=119,which is the ex-
tension through all degeneracies of the classical sohd-
liquid phase boundary at I =178 as found from the
Monte Carlo calculations of Slatterly, Doolen, and DHVi-
tt. ' Thus the domain g& 119 is a reasonable estimate of
the region of stability of the Wigner crystal. At zero tem-
perature, this corresponds to r, » 131, which is of the
same order of magnitude as many other estimates for
Wigner crystallization of the degenerate electron
liquid. * ' ' Although the present calculations are not

applicable to such strongly coupled plasmas, we point to
the interesting fact that there exists a maximum density
and temperature for the crystalline OCP (in our approxi-
mation, T,„=3.8X 10 ' Ry, r, '"=131). As the density
is increased at a constant temperature less than T,„, the
OCP first freezes, but then melts at yet a higher density
because of degeneracy pressure. Finally, we observe that
the present calculations are only for the paramagnetic
liquid phase. The zero-temperature Monte Carlo results
of Ceperley' do however predict a stable ferromagnetic
phase at densities intermediate between those of the
paramagnetic liquid and Wigner crystal. The nature of
this magnetic phase boundary at finite temperature is thus
far an unexplored question.

In the following section we present a detailed account
of our calculational scheme. In Secs. III—V we give the
results of our calculations of the thermodynamic, dielec-
tric, and pair-correlation functions, respectively. After
concluding in Sec. VI, we present in the Appendix the
closed-form-fitting expressions for the thermodynamic
and dielectric functions as discussed below.

II. CAI.CUI.ATIONAI. SCHEME

In this section we briefly review our theory of the ther-
modynamic and dielectric properties of a paramagnetic
Fermi liquid at any degeneracy. The present method can
basically be characterized as a dielectric formulation of
the thermodynamic functions, since as we show below, the
primary approximation is to the polarizability of the Fer-
mi liquid in terms of that of ideal fermions. Consider
then a system of N fermions in a volume V at tempera-
ture T, with density n =X/V and chemical potential p.
As usual, the thermodynamic functions are expressed as a
sum of ideal fermion, exchange, and correlation parts,
e.g., F=Fo+F„+F,. The basis of our calculation of the
excess free energy is the fact that it is expressible as a cou-
pling constant integration over the potential energy. We
perform this coupling constant integration in the canoni-
cal ensemble (at fixed N, T, and V), to obtain the excess
Helmholtz free energy. Previous calculations within the
random-phase approximation ' 2 (RPA) have, however,
proceeded in the grand canonical ensemble, where an ap-
proximate inversion of n(p, T) to obtain p(n, T) needs to
be performed in order to obtain equation-of-state data. It
can be seen however, from the discussion of Perrot and
Dharma-wardana, that if this inversion is carried out to
the same order in perturbation theory as the calculation of
the grand potential itself, the results of the two ensembles
are equivalent. In the following we use the canonical en-
semble, because of the practical and conceptual simplifi-
cations involved in using the density as the basic variable.

Bef'ore considering the exchange-correlation free energy,
we establish the ideal fermion contribution for the sake of
completeness. The ideal fermion energy Eo and pressure
po are

Eo(T VN)= ipov=2V(2~) ' Jd'keokfko (21)

where (using units with fi = 1 } ek ——k /2m,
fk =[1+exp(Pek —i)o) ] P= 1/ka T. and go(n~ T)=Pro
is the ideal fermion activity, defined by
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I(n(no) =
3 8 ' '.2 „—3/2 (2.2}

I„(rl)= f dx . (2.3)

Using this notation, the ideal fermion energy, free-energy,
and bulk modulus can be simply expressed as

Here we have used the commonly used notation for the
Fermi integral of order v:

(8» 1). However, even at temperatures as high as 8= 1,
(T =TF), the exchange contributions are still comparable
to those at T =0. Accurate closed form Pade approxi-
mants for Eqs. (2.10) and (2.11) are presented in the Ap-
pendix, from which small and large 8 expansions can be
read off. A closed-form parametrization of f„(r„O) is
given by Perrot and Dharma-wardana. %e point out,
however, that this flt to f, does not include the weak log-
arithmic singularity at small 8:~2

bio 38'"
so(r„8)= =

z Iqf2(go) Ry,
2a2r,

fo(r„8)= ——', so(r„8)+(uo(r„8),

(2 4) f„(rd,8 (& 1)

(2.5)
3 2

n'
2

2

1 —0.8538'+ — 8 ln8+ Ry .
2ma, r, 6

(2.12)

1 4B—o(r„8)= Ry.
3(z r, 8I i f2(rlo)

(2.6)

Accurate closed-form-fitting expressions for I3/2(T/o) and
I (fi(rlo) as functions of 8 (for the sake of practicality)
are presented in the Appendix, while a parametrized in-
version i}o(8}of Eq. (2.2) is given by Dharma-wardana
and Taylor. 23

We now consider the exchange contributions to the
thermodynamics. The coupling constant expression for
the excess free energy is~

F (T, VX)= J, dX—&XU), , (2.7)

where U is the potential-energy operator and ( )i,
denotes a canonical ensemble average in a system interact-
ing via a Coulombic potential of M /r. In Eq. (2.7) the
contribution first order in e is the exchange free energy,
I', =(U)o, which from a straightforward application of
finite-temperature perturbation theory can be written

("„(T,V N)= —V(2m) ' f d'k J d'qU(k —q)fif,',
(2.8)

where v (q) =one /q . In terms of the Fermi integrals de-
fine in Eq. (2.3), this can be conveniently expressed as3

S(q)+Ã5q, o J —— coth ImX(q, oi)
—1 ~ doi PN

7l —~ 2''

readily permits (2.13) to be rewritten as

(2.14)

This singularity is, of course, cancelled by a similar term
in the correlation free energy.

We now examine the correlation contribution to the
thermodynamics. If the exchange part is subtracted from
the excess free energy defined by the coupling constant in-
tegration of Eq. (2.7), and the potential energy is ex-
pressed in terms of the static structure factor S(q), the
correlation free energy can be written

V,(r, Vdd)= f dX—j— .,(q)(&x(q) —&o(q)) .N i 1 dq
(2m)'

(2.13)

Relating the static structure factor to the retarded polari-
zability X(q,oi) by the fluctuation-dissipation theorem '

f„(r„8)=—
382 go(8)

gI jg2 g Ry.
S

X 1m[Xi(q, (v) —Xo(q, (v)],

(2.15)

—1
(M (r,8)= v 8I (f2(rIo} Ry,

mar,
(2.10)

—4 I'- i f2(iso)
8~(rd, 8)=- Ry.

n
' 3~ar 8 I (f2(rlo}

(2.11)

The exchange pressure is p, ln =p,„f„,and because of-
the 1/r, scaling in Eq. (2.9), the exchange energy can be
expressed as e„=3@,, /2 f, . (Equivalently, —this follows
from the virial theorem). It is worth noting that all of
these quantities vamsh as 1/0 at high temperatures

(2.9)

Similarly, the exchange parts of the chemical potential
and bulk modulus are

Xo(q, (v) Xo(q, (v)
X(q, (v) =

1 —[1—G(q)]v(q)Xo(q, to) g(q, rd)
(2.16)

where Xo(q,oi) is the ideal fermion polarizability.
As mentioned previously, the evaluation of (2.15)

within the RPA, where XRpA
——Xo/(1 —v~Xo), leads to

overly negative correlation energies at metallic densities.
This is because the RPA pair-correlation function [ob-
tained by using XRpA in Eq. (2.14)] is actually quite nega-
tive at small distances, which can be attributed to the
RPA's erroneous inclusion of the self-field of the electron
in determining the dielectric response. In order to include
local-field corrections in the pair-correlation function, we
foBow an approximate procedure commonly used both at
zero-temperature ' and in the classical regime,
where the polarizability is related to its ideal part by
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W~«q ~}=[1—6{q}]{('~i(q.~}

=&(q)[1—6(q)](p(q, ai) & . (2.18)

From this it is seen that [1—6(q)] partially corrects for
the RPA assumption of independent particle response to
P,„,+{(}~i.since 6(q) &0, the factor [1—6(q)] weakens
the couphng to the polarization field and thus approxi-
mately accounts for the neglect of short-range correlations
inherent in the use of the independent particle response
function. We stress however, that the assumption of a
static LFC function is only a convenient approximation,
which (as discussed in Sec. IV following) neglects some of
the dynamical and dissipative aspects of the true local
field.

In order to determine 6(q), we make use of the two
standard constraints upon it. First, the compressibility
sum rule s requires that 6(q~0)=y(q/2kF)', where the
parameter y is related to the excess bulk modulus

3mar, B~(r„8)—y{r„8}=
2 nRy y, (O)+y, (r„8) . —

(2.19)

Secondly, the cusp condition on short range correlations
requires that 6(q~ao)=1 —g(0), where g(0) is the
pair-correlation function at r =O. These two constraints
are conveniently included in 6(q) by use of the Vashista-
Singwi form for the local-field-correlation (LFC} func-
tion

6(q)=A(l —e ~ ), (2.20)

where A and B are determined by y(r„8) and g(0).
Here we have simply fixed g (0) to a value appropriate for
metalhc densities, i.e., g(0)=0.1, because the large q

Here 6 (q} contains the local-field corrections to the RPA
(6 =0 in the RPA).

The relation (2.16) is our fundamental approximation in
calculating the dielectric and thermodynamic properties
of the semidegenerate OCP. It has in the past been
motivated by several different routes. Hubbard'2 first
used the approximation (2.16) in his calculation of the
electron gas ground-state energy. He showed hove such a
form followed from an approximate evaluation of the
higher-order "exchange-conjugate" diagrams to the "bub-
ble" diagrams of the RPA polarizability. Langrethis and
Vignale and Singwi s have shown how the form (2.16}fol-
lows from approximating the effective particle-hole in-
teraction I by a static form dependent only on the
momentum transfer along the particle-hole channel (a "lo-
cal" approximation):

Iq (ki, coi,k2,a)2)~I{q}= —2u (q}G(q} . (2.17)

Finally, the polarization potential approach of Piness al-
lows for a more physical derivation of Eq. (2.16}by intro-
ducing u(q}[1—6(q)](p(q, ru) } as the pseudopotential
with which electrons couple to induced density fluctua-
tions (p(q, ai)). The relation (2.16) is then immediately
obtained by assuming that electrons respond as indepen-
dent particles [i.e., via Xo(q, ro)] to the sum of the external
field and the modified polarization field '~

1.0

0.4

q/2k,

0.0 1.0

FIG. 2. Static LFC function 6{q) in various theories at
T =0 and in the classical regime (0=100). Notation is UI, Ut-
sumi and Ichimaru (Ref. 38); IKP, Imamoto, Krotscheck, and
Pines {Ref. 34); P, present; VS, Vashishta and Singwi (Ref. 9);
IP, bvamoto and Pines (Ref. 34), 0, Hubbard (Ref. 32). The
dashed lines labeled MC on the right are the Monte Carlo based
curves of Tago, Utsumi, and Ichimaru (Ref. 42).

behavior of X(q, cu} is rather insensitive to 6 (q) [note that
U (q)XO(q, co) which multiplies 6 (q) in the denominator of
(2.16} vanishes as q at large q]. The function y„(8) is
then calculated from a closed-form pararnetrization of
Eq. (2.11) which is presented in the Appendix, while

y, (r„8) is obtained from an appropriate interpolation be-
tween known Monte Carlo results at zero temperature
and in the classical regime. ' %e note that the error at in-
termediate degeneracy caused by this ad hoc interpolation
is a second-order effect, since we have found that the final

E, calculated is quite insensitive to the form of interpola-
tion. At temperatures where 8 & 1 this is to be expected
because y„strongly dominates y, . Further evidence for
this is the fact that Hubbard~2 obtained quite good results
for the zero-temperature electron gas correlation energy,
even though his value of y was in error by a factor of 2.
The present scheme for the determination of local-field
correlations thus hinges solely on the determination of a
correlation length rr-any, within which short-range
correlations, not included in the RPA are approximately
accounted for.

In Fig. 2 the results of the present calculation of the
static LFC function 6(q) are compared with other calcu-
lations, in both zero-temperature and classical regimes
At zero temperature (and r, =2) we make comparison to
the following: (a} Utsumi and Ichimaru4' who have used
an equation of motion approach for the Wigner distribu-
tion to obtain 6 (q); (b) Iwamoto, Krotscheck, and Pines
who have obtained 6(q) from existing Monte Carlo cal-
culations of S(q) by assuming the spectral function
ImX(q, co) to consist of a single delta-function peak only;
(c} Vashista and Singwi who have modified the self-
consistent integral equation theory of Singwi et al. for
6(q) by partially including three-body correlations in or-
der that the compressibility sum rule be satisfied; (d)
Iwamoto and Pines who have obtained the LFC func-
tion by combining existing Monte Carlo calculations of
the compressibility and spin susceptibility with a theory
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that accounts for both the spin symmetric and spin an-
tlsymmetrlc components of 6 (q); aild (e) flinally, as men-
tioned previously, Hubbard3 who used an approximate
evaluation of higher-order polarization diagrams to calcu-
late 6(q). In the classical regime, comparison is made to
the LFC functions obtained by Tago, Utsumi, and
Ichimaru from existing Monte Carlo calculations of
S(q). In both cases, it is seen that although the form
(2.20) inisses the peaked structure at q =2k' predicted in
some of the theories, it is nonetheless a very reasonable
approximation for the LFC function in general.

Having thus detailed our calculation of the OCP polari-
zability, we now return to the calculation of the correla-
tion free energy as given in Eq. (2.15). In order to proceed
with the evaluation of F„one further approximation is
made. Specifically, the coupling constant integration of
Eq. (2.15) can be carried out in closed form if the A,

dependence of 6 (q) is neglected. Since y„ is independent
of e, this is a very good ap roximation for 8&1.
(Iwamoto, Krotscheck, and Pines point out that it leads
to errors of less than 1% at zero temperature. ) With this
approximation, we obtain

V 1' d g f dot (~ Plu

2 (2~)i 2m 2

X [1—6(q)) '[arg(g) —Im(()],

(2.21)
where g(q, ro) is defined in Eq. (2.16) and arg(z) is the ar-
gument of the complex number z. This form for F, is
essentially a finite-temperature generalization of the zero-
temperature form of Hubbard but with an improved
6(q) (i.e., one that satisfies the compressibility sum rule
and also has more correct behavior at large q). Equation
(2.21) is evaluated numerically in order to obtain the
correlation free energy; note that it requires a three-
dimensional numerical integration. A closed form param-
etrization of f,(r„8)=F,/N, valid for all 8 and for r,
between 1 and 6, is presented in the Appendix. In the
subsequent sections, we describe the results of the calcula-
tions of the thermodynamic, dielectric, and pair-
correlation functions of the OCP.

III. EXCHANGE-COa. REI.ATION
THERMODYNAMICS

FIG. 3. Exchange contributions to the thermodynamics at
r, =l as a function of S=T/TF. Here u =1/n. Note that all
five functions plotted scale as 1/r, times a function of 8, so
that their value at any r, can also be obtained.

ting procedure described previously and in the Appendix.
Note that several of the functions have a peaked structure
near 8=1, and that they all vanish as 1/8 for O~ && l. It
is observed in Fig. 3, however, that the exchange thermo-
dynamic functions do not become small compared to their
T =0 values until 8& 10 or so.

Consider now the correlation contribution to the free
energy. In Fig. 4 we compare our calculated values of the
zero-temperature correlation energy to the RPA values, ~
to those of the variational theory of Pokrant described
in Sec. I, to Vosko, Wilk, and Nusair's fit to the Monte
Carlo values of Ceperley and Alder, ' to the self-
consistent STLS calculations of Tanaka et al. is and to the

In this section we present our results for the calculation
of the thermodynamic functions of the electron gas at any
degeneracy. Through comparison with other recent work
on the degenerate electron liquid and classical OCP, we
are able to gauge the range of validity of the present cal-
culational scheme. Comparison is also made at intermedi-
ate degeneracy to the previous RPA calculations, and
also those of Pokrant and Tanaka, Mitake and
Ich1maru.

%e begin by plotting in Fig. 3 the exchange contribu-
tions to the thermodynamic functions versus 8, at r, =1.
Note, however, that all five functions plotted scale as
f(8)/r„where f(8) is a function of 8 alone. It thus
follows that values at any density can also be extracted
from this plot. All the curves were obtained from the fit-

c0
D

-IOG-
Lo

FIG. 4. Comparison of various calculations of the zero-
temperature correlation energy. Fit to Monte Carlo and RPA
are from Vosko et al. C;Ref. 40) current LFC is the present
theory, the dotted line marked HL is the interpolation form of
Hedin and Lundqvist (Ref. 43), while the solid triangles are the
results of Pokrant tRef. 20), and the sobd circles are from Tana-
ka et aI. (Ref. 28).
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commonly used interpolation form of Hedin and
Lundqvist. The overestimation of the correlation energy
by the RPA is quite apparent and is fairly well corrected
in all the other theories. For example, at r, =2, the RPA
value of e, differs by 37% from the Monte Carlo result,
while the STLS, present, and variational theories differ by
2%, 5%, and 7%, respectively. It is interesting that the
results of the present calculation coincide very nearly with
the Hedin-Lundqvist interpolation form. By fixing
G(q) =0 in our evaluation of Eq. (2.21), we were able to
reproduce the RPA values of Vosko et al. with devia-
tions less than 1%; this served as a convenient check on
the accuracy of our numerics.

Similar behavior is found in the classical regime, as can
be seen in Fig. 5 where the results of the present calcula-
tion of the excess free energy are compared to the Monte
Carlo results of Hansen, ' to the hypernetted-chain (HNC)
calculations of Tanaka et al. , and to the RPA results.
Classically these RPA results are equivalent to those from
Debye-Hiickel theory, where

CXCCSS
(3.1)

B

Again, is it seen that inclusion of local-field corrections
according to Eq. (2.16) has largely corrected for the
overestimate of the correlation energy found in the RPA.
We note, however, that at coupling strengths beyond
I =10 the present calculations also lead to substantial er-
rors. This is the basis of our earlier remark that the
present calculations are accurate only at coupling
strengths less than about 10. As is seen in Fig. 1, howev-

er, this seems to include most of the important physical
plasmas. Figures 4 and 5 also show that the STI.S and
HNC calculations of Tanaka et al. do reproduce the
Monte Carlo results more accurately than the present

LFC approximation. However, the present approxima-
tion, being calculationally more tractable [our form for
G(q) is essentially the first iteration in the self-consistent
STLS scheme], allows us to analyze quantities such as the
pair-correlation function which are computationally more
deITlandlng.

It is perhaps worth pointing out how the classical limit
is obtained from our quantum formulation of Eq. (2.21).
By evaluating the RPA (G =0) counterpart of Eq. (2.21)
with Boltzmann statistics, DeVAtt has shown that the
diffraction type quantum corrections to the RPA excess
free energy are given by

RPA DH
~CXCeSS =+eXCCSS

0~

' 3/2

—0. 182
I
0~

(3.2)

where the classical Debye-Hiickel result is given in Eq.
(3.1). Thus, within the RPA, the classical limit is ob-
tained at increasingly larger 8 as I is increased. Such
behavior was in fact observed in our numerical evaluation
of the RPA curve in Fig. 5. Within the present LFC
theory, however, no such behavior is definitely observed,
and, with I" kept constant, the excess free energy actually
becomes independent of 8 for 8p 100 or so. The LFC
curve in Fig. 5 is obtained therefore with 8 fixed at 171
(r)o= —8.0).

In Fig. 6 we compare the results of the present calcula-
tion of the correlation free energy at intermediate degen-
eracy, to those of the variationa12 RPA, 24 and STLS~s
theories. The present LFC curve is obtained by using the
closed-form parametrization of f,(r„8) given in the Ap-
pendix. Note that the RPA overestimate of the correla-

STLS r,=3.39

—100
E

-200

FIG. 5. Excess free energy in the classical regime, versus the
classical coupling constant I =e /ak~T. Current LFC is the
present theory. The Monte Carlo results are from Hansen (Ref.
13), and the hypernetted chain (HNC) results are from Tanaka
et ah. (Ref. 28).

log)oa
FIG. 6. Correlation free energy at r, =3.39 throughout the

degenerate to classical regime. The variational results are from
Pokrant (Ref. 20), and the STLS results are from Tanaka et al.
(Ref. 28). The solid RPA line is from the parametrization of
Perrot and Dharma-wardana (Ref. 24), which is valid only at
0~0. 1; the curve is thus interpolated via the dotted line to the
zero-temperature RPA value.
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tion energy, attributable to its overaccounting for the
exchange-correlation hole, does indeed extend throughout
the region of intermediate degeneracy. As with the zero-
temperature results, the variational theory of Pokrant
gives slightly smaller (in magnitude) free energies than the
present or STI.S theories. Note that all the curves ap-
proach the RPA result at large e. This happens because
as the temperature is increased at fixed density, the cou-
pling constant g decreases, so that $=2I /3~~1 in the
classical regime of Fig. 6, and the RPA theory is accurate.

Given the rather good comparison between the various
calculations of the correlation free energy as seen in Fig.
6, it is reasonable to assume that the fitting expressions
given here (in the Appendix) and by Tanaka et al.z both
represent a very accurate description of the semidegen-
erate electron liquid thermodynamics. In particular, the
pronounced minimum in the correlation free energy f, at
8=1 must be a realistic effect. (Note that this implies
that the correlation entropy is positive at low tempera-
tures, but negative at high temperatures. ) We point out,
however, that when the exchange contribution f„(see Fig.
3) is added to f, this minimum is no longer seen, and the
excess free energy f actually remains fairly constant for
temperatures less than TF at fixed density. This simply
reflects the fact that the coupling constant g(r„8)

remains quite constant under these circumstances [see
Eqs. (1.2), (2A}, and (A3)].

The significance of the parameter g(r„8}as a coupling
constant is clearly depicted in Fig. 7, where f~ and f, are
plotted as a function of 8 at fixed values of g. Note that
for 8&0.1, the ground-state values are obtained, while
for 8 & 10—100, f„vanishes and f~ takes on its constant
classical value. Note also that plasmas within nearly two
decades of coupling strength all have excess free energies
of order —e2/a, for all teinperatures. This scaling of f
by e /u is not complete however, for although

f„,(8=0)/(e /a) is fairly constant throughout the full

range of paramagnetic densities, and although f (0
»1)/(e /a) approaches a constant for I (or g) »1,'

the same classical ratio vanishes like v I as I"~0 due to
the e behavior of the Debye-Huckel free energy [see Eq.
(3.1)]. This behavior is seen clearly in Fig. 7.

IV. DIELECTRIC PROPERTIES

e '(q, co)=1+u(q)X(q, co),

or equivalently,

e(q, co) = 1 —u (q)X„(q,~),

(4 1)

(4.2)

where X„(q,ci) =e(q, ci)X(q, co) is the irreducible polariza-
bility, which measures the electronic response to screened
external fields. Within our "extended-RPA" theory of
Eq. (2.16), the irreducible polarizability is given by

X0(q ~)
1+u (q)G (q)X0(q, cu)

' (4.3)

where the LFC function 6 (q) is discussed fully in Sec. II.
The ideal fermion retarded polarizability is given by

d3 0 0

(2ir) co+i 5 (ep+q e—u)—
where 5 is a positive infinitesimal. If a dimensionless
response function F (q, co) is defined by F, +iF3
=u(q)X0(q, co), the imaginary part of X0(q, co) can be
evaluated from Eq. (4.4) to be2'

2

In this section we study the implications of Eq. (2.16)
for the polarizability X(q, co) and for the dielectric func-
tion, energy-loss function, and plasmon dispersion. Our
interest is in both obtaining a qualitative understanding of
how the dielectric function evolves from its degenerate to
classical form, ' and in presenting a quantitative theory
that leads to a very practical closed form description of
the dielectric function e(q, co) at any density and tempera-
ture.

The dielectric function is related to the polarizability by

—0.4
C4

Q

v O 6

—izrg 0"

Fz(Q,z) = ln .
gQ3

1
1+exp 8

1+exp
O~

z——Q

—+Q

(4.5)

Here we define scaled momentum and frequency variables
by Q =q/2k~ and z =co/4eF. Similarly, the real part of
X0(q,co) can be expressed as

Iog)o 8
FIG. 7. Exchange-correlation (solid curves) and correlation

only (dashed curves) free energy throughout the degenerate to
classical regime at fixed values of the coupling constant g. Note
that the small oscillations in f, at intermediate degeneracy stem
from the approximate nature of our definition of the coupling
constant g [see Eq. (1.2)].

P(x)= I dy

J2

1 +exp —'go

1n
X —P
X++

Fi(Q») =
3 4' —+Q —4' ——Q

4irQ Q Q
(4.6)

(4.7)
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For many purposes it is convenient to have a closed-form
expression for +, (Q,z). For this reason, we have general-

ized the zero-temperature Pade approximate form of Pet-
tifor and Ward for F, (Q,z =0) to nonzero temperatures
and nonzero frequencies. This extension is made possible
for two reasons. First, the r, dependence of F i (Q,z;r„8)
scales out, as seen in Eq. (4.6). Second, the Q and z
dependence of F

&
is folded into a single variable

x =z/Q+Q. Thus it is only necessary to parametrize
P(x;8) in order to describe Fi completely. This is ac-
complished by writing

I.O

—0.5-
2kF

0.0

—05-
2kF

T =O.OI TF T&IOTF

Re g{~)

~~,:p o.d/66

and

4(x 'O) = t/81 —i/i(rio}xP(x '8) (4.8a}
0.0

0.0 0.5 I.O 0.0 0.5 I.O 0.0
ktsi/4CF htu/4eF

0.5
%lest /4 4F

I.O

P(x;8)=
1+ g &2J(8)x J

j=1
S

1+ g bzj(8)x J
(4.8b)

FIG. 8. Contour plots of the real and imaginary parts of
e(q, ~) at 8=0.01, 1, and 10 and r, =4. The curves were ob-
tained by using the approximation (4.8) for Redo(q, ~), together
with the static I FC approximation of Eq. (4.3).

Here I t/2(rio) is the Fermi integral defined in Eq. (2.3).
The functions bj(8) are determined by considering the
small and large x behavior of P(x}, while the functions
aj(8) are then obtained by fitting the form (4.8) to the ex-
act P(x) in Eq. (4.7}. This procedure is detailed in the
Appendix. The form (4.8) is indeed quite useful. For ex-

ample, in our preliminary discussion of this work' we
have shown that (4.8) leads to a closed-form expression
for the state-dependent pair potentials in simple metals
which emerges as the sum of complex Yukawa potentials.
Also, when (4.8) is used rather than (4.7) in the numerical
evaluation of F, in Eq. (2.27), results that differ by at
most 2% are obtained, but in 2 orders of magnitude less
computing time. In the remainder of this section we use
Eqs. (4.2)—(4.6) and (4.8) to make some general observa-
tions concerning the dielectric properties of the OCP
throughout the full range of electron degeneracy.

The most obvious effect of an increasing temperature
on the dielectric function is a broadening of its peaked
structure, due, of course, to the evolution of the Fermi
distribution function from a sharp step function to a
broad Maxwellian. An immediate consequence of this is
that exponential tails develop in the region (at zero tem-
perature) of forbidden single particle-hole excitations:
where z & Q +Q or z g Q —Q. These features are clear-
ly seen in the contour plots of Re@(q,rv) and Ime(q, ro)
sho~n in Fig. 8 at the three temperatures 8=0.01, 1, and
10 (with r, =4). Notefor , example, how the contour
Im(e) =0.01 evolves from the line z =Q +Q at 8=0.01,
to regions of larger energy absorption for a given change
in momentum. Note also hoer the nonanalytic structure
in e(q, r0) at z =Q —Q and 8=0.01, due to the sharp
Fermi surface, is washmi out at higher temperatures.
Furthermore, note that the magnitude of the peaked struc-
ture in e(q, tu) near its singularity at the origin decreases
with increasing temperature, as it must due to sum rule
constraints. Inspection of the Re(e)=0 contours in the
top panels of Fig. 8 shows how the small q plasmon
dispersion increases vnth temperature. Also, comparison
of these plasmon curves with the corresponding regions
where Ime(q, ro) becomes non-negligible demonstrates

quantitatively how the Landau damping of the plasmon
begins at smaller wave vectors as the temperature is in-
creased. These features can similarly be seen in Fig. 9,
where the energy-loss function

IITl
—1

e(q, ro)
= —v (q)lmX(q, rv)

=v(q)tanh S(q, co)
2

(4.9)

is plotted at the same density and the same three tempera-

T = lO TF

0.0

FIG. 9. Energy-loss function 1m[ —1/e(q, co}] at r, =4 and
8=0.01, 1, and 10. The bold solid lines denote the position of
the delta-function peak of the undamped plasmon. Note that all
the curves are truncated at Im[ —1/e(q, co}]=3.
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tures. Here the bold solid lines represent the delta-
function-like peaks of the nearly undamped plasmons at
cur (q). It is apparent that this undamped plasmon
broadens once it enters the area of Landau damping where
Ime(q, to) is non-neglible. The increasing dispersion with
temperature of the peak in the energy-loss function is also
seen in Fig. 9. Also noteworthy is the double-peaked
structure in S(q, to) at low temperatures, near where the
plasmon co&(q) enters the boundary of the particle-hole
continuum z=Q +Q. (See, for example, the Q=0.45
curves in the low-temperature plot of Fig. 9.) In general,
the evolution of the dielectric function from its low- to
high-temperature form refiects a decrease in the screening
capabilities of the electron liquid. This is quite apparent
in Figs. 8 and 9, where the energy and wave-vector scales
are seen to progress from scales based on the Fermi ener-

gy and Thomas-Fermi wave vector at low temperatures,
to ones based on the temperature and Debye-Huckel
screening vector at high temperatures.

With these qualitative features of temperature effects
on the plasmon dispersion in mind, we now present a
quantitative description of this roblem. Following the
RPA work of Arista and Brandt, it is straightforward to
show that the small q plasmon dispersion described by the
LFC form for X(q, co) is given by

to&(q) =coro[1+Az(r„8)Q +A4(r„8)Q + ] .

(4.10)

Here oi~o 4nne ——/m and

9m.
A2(rs 8)= 8'"Iin(halo) y(rs 8—»

2org

A4(r. 0)=, i [ i 8'"I5n(rto) —48'Iin(rio)lor,

(4.11)

3'+ —y( „8),
or,

(4.12)

cd (q) =max I Im[ —I /e(q„co) ]I,
is plotted at r, =2 and 0=0.01, 1, and 10. For the low-
temperature case, comparison is also made to the experi-
mental data of Batson, Chen, and Silcox on the nearly
free electron metal a1uminurn, and to the dynamical LFC
theory of Holas, Aravind, and Singwi. Note that al-
though the present I,FC theory does lead to some irn-
provement on the agreement with the experimental data at
q=1.5kF, it still leaves a large disparity near q=kF.
(These wave vectors are sufficiently large that band-

(4.13)

and y and y are defined by G(q~O)=yQ +yQ The.
fact that y, related in Eq. (2.19) to the excess bulk
modulus by the compressibility sum rule, is generally pos-
itive means that the inclusion of static local-field correc-
tions decreases the plasmon dispersion at small q. This is
an important feature, since the experimentally obtained
values of A2 for Be, Mg, Li, Ba, Na, and K are all be-
tween 0 4 and 0.9 of the RPA predictions A z

"
[given by

(4.11) with y=0]. Both these effects of temperature and
local-field corrections are shown clearly in Fig. 10, where
the plasmon dispersion, defined by

4.0

3.
3

2 0

3
1.0

0.0 0.5
q/2k,

0.0 0.5
q/2k,

0.0 0.5
q/2k,

1.0

FIG. 10. Plasmon dispersion (defined by the peak position of
the energy-loss function) at r, =2 and 8=0.01, 1, and 10. Solid
curve is present theory, dashed curve is RPA, and the dotted
curve is the border of the zero-temperature particle-hole contin-
uum. At 8=0.01, the dot-dashed curve is from the dynamical
LFC theory of Bolas et al. (Ref. 48), while the experimental
points are those of Batson et aI. (Ref. 47) for aluminum.

structure effects should not be significant here. ) By
comparison, the theory of Holas et al. , which by way of a
dynamical (and complex) LFC function G(q, to) includes
dissipative effects of the local field, finds much better
agreement with the data on aluminum.

Given the state of comparison between the present
theory and experiment, as shown in Fig. 10, it is perhaps
worthwhile to present a more detailed assessment of the
validity of our fundamental assumption given by Eq.
(2.16) [or equivalently, Eq. (4.3)]. In general, of course,
the LFC function will be dynamical and complex. The
present assumption of a static LFC function implies that
the exchange-correlation hole moves rigidly with the elec-
tron. This should be a reasonable approximation so long
as the frequencies of the external fields to which we are
seeking the electronic response to are much less than the
plasma frequency. Correspondingly, our assumption
that the LFC function is entirely real implies a neglect of
the dissipative aspects of the spin and Coulomb correla-
tions that determine the true dynamical local field. The
present extended-RPA theory also considers only the col-
lective plasmon branch and single particle-hole excitations
in the spectral function; it neglects the contributions due
to multipair excitations. [Note, for example, that within
the present theory at T =0, ImX(q, co) vanishes exactly
where ImXo(q„co) does, which is just the forbidden region
of single particle-hole excitations. ] Iwamoto et al. point
out that although the f sum rule is satisfied by the static
approximation (2.16), the compressibility sum rule and co

sum rule cannot both be satisfied. Finally, we note that
the neglect of multipair excitations means that we were
not able to obtain the high-frequency tail (at z )Q +Q)
in the experimental measurements of the energy-loss func-
tion in the degenerate electron liquid. This has also been
suggested as the cause of the failure of static LFC theories
to explain the double-peaked structure of S(q,ai) found in
some metals, such as beryllium at Q =0.73 and 0.88.
These shortcomings of the present dielectric formulation
are shared, at least in part, by all first-principle theories
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espoused to date. (As mentioned above, however, at-
tempts have been made to include dynamical effects, and
to satisfy the various sum rules. )

In Figs. 11 and 12 we compare e(q, ~) and
Im[ —lie(q, n~)] (at q =kF, r, =2, and T =0) as calculat-
ed within the RPA, within the present static LFC theory,
and within the theory of Bolas et al." where dynamical
local-field effects are partially accounted for by including
the first-order corrections to the irreducible polarizability.
Note that this first o-rder theory gives spurious singulari-
ties at z=

~ Q +Q ~. As indicated in Fig. 11, the
present theory and the first-order dynamical theory agree
quite well in terms of their corrections to the RPA dielec-
tric function. As mentioned previously, both theories
predict a decrease (compared to RPA) in the peak position
of the energy-loss function, and this is seen in Fig. 12;
however, the disparity between them is considerably larger
than that observed in Fig. 11. As with the RPA-type
theories, the first-order dynamical theory (at zero tem-
perature) also fails to predict the experimentally observed
nonvanishing energy-loss function in the high-frequency
region z& Q +Q, where single particle-hole excitations
are forbidden, but multipair excitations are not.

In summary, although the static I.FC approximation of
Eq. (2.16) represents a marked improvement over the
RPA in terms of the thermodynamics it predicts, it does
have some shortcomings in terms of its description of
some of the high-frequency dielectric properties of the
electron liquid. These errors are, however, diminished sig-
nificantly by the frequency integrations required in calcu-
lating the free energy.

V. PAIR CORREI.ATION FUNCTION

Finally we analyze the pair-correlation function g (r) of
the electron liquid, defined by

3.0

q=kq

[r.=2, T=O]

1.0

I

E
0

0,0
0.0 0.5

Tl Gl/48F

1.0

FIG. 12. Comparison of 1m[1—je(q =kF, co)] in various
theories at r, =2 and T=O. Solid curve is present theory,
dashed curve is RPA, and dotted curve is from the dynamical
LFC theory of Holas et aI. (Ref. 48).

g(r)=1+ —I,[S(q)—1]e'q',d g
n (2m)

(5.1)

where S(q) is the static structure factor, related by the
fiuctuation-dissipation theorem to a frequency integral of
the spectral function [see Eq. (2.14)]. In particular, we
wish to show how g(r) evolves from its degenerate form
to its nondegenerate form as the temperature is increased.
%e will show how, even at large 8 where the classical re-
sults normally hold, quantum effects persist in g(r) at
small r.

Numerical evaluations of S(q) from Eq. (2.14) have
been performed, using the Pade approximant form of Eq.
(4.8) for ReXo(q, co). The results are shown (at r, =2) for
various degeneracy temperatures 0 in Fig. 13. The very
small irregularities observable in some of the S(q) curves
at small q are numerical errors resulting from the compli-

2.0 1.0

Q 1,0

0.0

E 0.5

0.0
G.G 0.5

'hu/4s„

0.0
0.0 0.5

q/2k,

1.0

FIG. 11. Comparison of e(q =kF, co) at r, =2 and T =0 in
various theories. Solid curve is present theory, dashed curve is
RPA, and dotted curve is from the dynamical LFC theory of
Holas et al. (Ref. 48).

FIG. 13. Static structure factors as obtained from Eq. (2.14).
Solid curves are for r, =2; the degeneracy temperature 0 labels
each curve. The dashed curve is the classical Monte Carlo result
(Ref. 42) at I =2.
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cation, that the plasmon-pole and single-pair contributions
to S(q) no longer remain distinct at intermediate degen-
eracies. Specifically, the plasmon peak in S(q, to)
broadens from an approximate delta function at small q
to a peaked structure with sufficient width that its contri-
bution to S(q) via the frequency integral of Eq. (2.14) can
be evaluated numerically. Thus, for q less than a critical
wave vector q, (which decreases with temperature, as in-
dicated in Fig. 9), we approximate the plasmon contribu-
tion to S(q) as

6~Q' [Fi(g*zr(g) }]'
Spl„(g) =

car~

F)(g,z)o

(5 2)

z=s (Q)

where Fi(g, z) is given by (4.6) and (4.8), and zr(g) is the
plasmon dispersion. The small numerical errors men-
tioned above arise both from the inaccuracy in BFi /Bz in-
troduced by the Pade form (4.8), and from the inexact na-
ture of the determination of q, at nonzero temperatures.
Note that the small Q behavior of (5.2) is

lim Q [S(g)—1]= (1—G„),
g ~ 6m

(5.4)

where G„—:lim& „G(q).
fhe major feature of Fig. 13 is the manner in which

S(q) approaches unity more quickly for the higher-
temperature plasmas. This is mainly attributable to the
fact that the plasma becomes more weakly coupled as the
temperature is increased at fixed density. (The coupling
constant g ranges from 1.81 at 8=0.01 to 0.031 at
8=23.2.) To exemplify this point, we have also plotted
in Fig. 12 the static structure factor for I =2 (g= 1.33) as
obtained from classical Monte Carlo. Note that the
8=0.01, r, =2 curve and the classical j."=2 curve have
very similar values of g, and do indeed fall very near each
other in Fig. 13.

In Fig. 14 are plotted the pair-correlation functions ob-
tained by Fourier transforming the S(q) curves of Fig. 13.
In order to ensure accurate values of g(r) at small r, the
large Q contribution of the integral (5.1) is accounted for
analytically by using

Rg
g(R)= 1+12f dg Q [S(Q)—1]

ar, R cos(RQ,„}+ Si(Q,„)—
10m tttt(X

sin(RQ, „}
(RQ,„)

lim Spills(g) = [ 1 ——,
'

&2(r„8)g + ], (5.3)
Q~o g

where Az(r„8) is defined by Eq. (4.11). This satisfies the
exact long wavelength constraint on the plasmon contri-
bution to S(q).6 Two further constraints on S(q) that are
also satisfied by our numerical evaluation of Eq. (2.14) are
(i) that the single-pair excitations contribute only to order
q at small q, and (ii) that the large q behavior of S(q) is

I.O

0.5

o.o
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/
O.OI (RPA)

/
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t i

0.0 I.o 2.0
r/O

FIG. 14. Pair-correlation functions obtained through Fourier
transform of the structure factors of Fig. 13. The degeneracy
temperature 8 labels the solid (present calculations) and dashed
(RPA) curves, all of which refer to plasmas with r, =2. The
dotted curve is the classical Monte Carlo result of Hansen (Ref.
13) at I =2.

where R =2kFr, Q,„ is so chosen that for Q & Q,„ the
asymptotic form (5.4) holds, and the sine integral
S((a):—f dt t 'sin(t) is obtained from numerical
tables. We first note that the inclusion of local-field
corrections does correct for the strongly negative values of
the RPA g (r} at small r. It is known, however, that even
the present type of static LFC formulation still leads to
negative values of g(r =0) for sufficiently large r„due
largely to the lack of self-consistency in the present
theory.

The major effect of an increasing temperature on the
pair-correlation functions plotted in Fig. 14 is the con-
comitant shrinkage of the exchange-correlation hole.
Again, this is largely due to the decrease of the coupling
constant g as 8 increases at fixed density. Note however,
that since S(g =0)=0 for all the curves in Fig. 13, there
still remains exactly one excess charge in the exchange-
correlation hole at all temperatures, and so the high-
temperature g (r) curves in Fig. 14 must contain more of a
long-ranged contribution to the Coulomb hole than the
degenerate curves. As in Fig. 13, we also plot the classical
1 =2 curve, obtained from the Monte Carlo calculations
of Hansen, ' in order that comparison can be made to the
degenerate r, =2 curve, which has a similar value of g.
Note that although the small r behavior of the classical
g (r) is rather different from the degenerate case, for r )a
the two curves are quite similar.

Interestingly enough, the small r behavior of g (r) is, in
fact, largely dominated by quantum effects, even in plas-
mas that are otherwise quite classical. Note in Fig. 14,
for example, that g (r =0), after initially decreasing
slightly to a minimum when 8=1 [due probably to the
peaked structure in y(r„8) at 8=1; see y„ in Fig. 3],
then increases for the more weakly coupled high-
temperature plasmas. [Note that we are here discussing
the output value of g(r =0); recall that on input, in Eq.
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(2.20), we used g(r =0)=0.1. Again, the disparity be-

tween the two values'reflects the lack of self-consistency
in the present approach. ] For 8=23.2, g (0)=0.3,
whereas for classical plasmas g(0) vanishes identically.
At Q=23.2 and r, =2, however, our calculated excess
free energy differs by less than 2/o from its classical
value. It can thus be seen how quantum effects are ob-
servable in the short-range pair-correlation behavior of a
plasina that, for thermodynamic purposes, can be classi-
fied as classical. It is possible that for a real plasma with
8»1 (but with ~0), there exists a critical distance
within which the pair-correlation function crosses over
from classical behavior [where g(r =0)=0] to quantum
behavior [where g(0) need not vanish]. Furthermore, this
critical distance should decrease as 8 is increased. These
purely quantum aspects of the very short-range correla-
tions existing in otherwise classical plasmas may have
some influence on, for example, the calculation of the
enhancement rates for thermonuclear reactions. ' No de-
finite conclusions in this regard can be drawn from the
preliminary results presented here, however.

VI. CONCLUSION

The goal of this work has been to present a unified
theory, together with practical results, for the dielectric
and thermodynamic properties of a one-component Fermi
plasma throughout the full range of particle degeneracy.
Through the inclusion of static local-field corrections, we

have extended the range of validity of previous RPA
theories from the weak coupling regime (where /&&1) to
the regime of intermediate coupling strengths (g & 10). A
major result of this work is the presentation of closed-
form parametrizations of the free energy and dielectric
function at any degeneracy; this should greatly enhance
the utility of these calculations for practical applications.
We also showed the qualitative and quantitative effects of
both the local-field corrections and an increasing tempera-
ture on the dielectric function, particularly in terms of
their effects on the plasmon dispersion and damping. Fi-
nally, we have studied the temperature effects on the
pair-correlation function, and have shown how quantum
effects can persist in the short-range correlations of an
othenvise classical plasma.

APPENDIX

In this section we present the analytic fitting expres-
sions that allow a closed-form description of the electron
gas thermodynamic and dielectric properties as functions
of density and temperature, as described in Sec. II. We
begin by presenting the promised fits to the Fermi in-

tegrals I„(gp) as functions of 8=T/TF. By analyzing
the low-temperature behavior of I„(rip) via a Sommerfeld
expansion, and the high-temperature behavior by a fugaci-
ty expansion, we are led to the following Pade approxi-
mants, valid for all values of 8:

Is/i(rIp) = —', 8

2 1+C Q~ +C Q~ +C Q~

I-in(s)o) =
v 8 1+(ci+m /12)8 +c48"+(cs/~2m )8"~ +(3cs/2)8

I+ci8~+ci8~+cs8I' i/2(r)o)= 8
1+(ci mi/6)82+—c48 +cs8 +(3v 2cs/4v n )8"~'+(3cs/4)8

j +C Qiii +C QH +C Qili

1+(ci —5m /12)8 +c48 —(2cs/15' 2n. )8"i +(2cs/5)8'

(Al)

(A3)

„—7/2 1+C 82+C 84+C ()1S/2
1 2 3

Isn(rio)= v 8
1+(ci 7m /6—)O (pcs—/35~m)8 +(4cs/35)8"

(A4)

The constants c; are given in Table I. The forms
(Al) —(A3) are found to be accurate to within 0.1%, while
(A4) is accurate to within 1%.

A convenient fitting expression for our calculated
values of the correlation contribution to the electron gas
free energy is (in rydbergs per electron)

e +d S +d Q" +d 8"
1+d40 +ds8 ds(3r, /Sa )'~—8

d2(r, ) =ci+c2r, +c4r,

~3Irs ~=cl +c2rs +c4rs

C1+C2rs +C3rs +C4rs +CSrs2 3 4

14(r, )=
1+c6r, +0.022 06r,

(A10)

I

where y =r, /20 52, and the fu.nctions dj(r, ) are given by
—c3

1 ( r~ ) =c I +c2 rs

Here e, (r, ) is a Hedin-Lundqvist type ' of interpolation to
our calculated zero-temperature correlation energy ds(r, )=(r, +ci)(ci+csr, ') . (Al 1)

e, (r, ) = —0.0448[ (1+y )ln(1+ 1/y)

+y/2 —y' —
3 ] (A6)

The constants cj are given in Table I. This match to f,
reproduces our calculations for all 0 and for r, between 1

and 6 with a maximum error of 3%, and an average abso-
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lute error of 0.5%. The largest errors in this parametriza-
tion occur for small 8 (8=0.05 to 0.30), because the
form (A5) neglects the weak Q ln(Q) singularity in f„
known to cancel a similar singularity in the exchange free
energy [see Eq. (2.12)]. Note that at large 8 it reduces to
the Debye-Huckel form.

Finally, we present the closed-form-fitting expression
used in Sec. IV to describe the electron gas polarizabiHty.
This is obtained by relating the interacting polarizability
to the noninteracting one via Eq. (4.3), and using the Pade
approximant for ReXo(q, c0) given by Eqs. (4.6)—(4.&). By
analyzing the large x behavior of P(x), the functions
b~ (8) there are related to the functions a (8) by

b )o(8)= 'v 8I—)/2as,

(Q») ——~Q~I (/2a~ 2
Q» I3/2bs

—
&o 8 I~n&]o„7/2 (A14)

b (0») =a2+2J(O»)/(3~OI ~/p ) (A15)

bg(8)=bp —apb2+a4+2E(8)/(15~8I (/p)

where

(A16)

J(8)—= —J dxx '[f(x)—f(0)],
K(8)—= —3 f dx x [f(x)—f(0)——,'x f"(0)],

(A17)

where we have set I,=I„(rlo}. Similarly, the small x
behavior of P(x) implies that

bs(8) =
g
~8I 1/ga6 8~ I3/tb 10 (A13)

(Al &)

and f(x)=[1+exp(x /8 —go)] '. Analysis at high and
low temperature leads to the following approximations for
J(8) and K(8):

1+c&O +cq8 +c38J(8)= 1+(., -H/6}8'+c, 8'+c,8'+(3~2c, /4~~)8"/2+(3c, /4)O'
(A19)

1+c 8 +cq8 +c38
1+(ci 3n /4)8—+c40» +c&O» (7v 2c3/—&v n )0"' (3c3/&)0—»'

I

Finally, the functions a;(8) are expressed as

(A20)

c( +0»
a2(Q)

c2+c3Q" +cgQ»
C4 2

'

$ +g ) O~ +g Og2

ag(O) =
c3+c48+c58 +c&8 +20.&33cqO

c) +0"
a,(8}=

c2+c30+c&O» +csO»'+c60»

(A21)

(A22)

(A23)

0.91—6.44538+ 12.232 48as8=
1 +c]Q»+c2Q» +c3Q» +c4Q» +c5Q» +c6Q»2 3 4 5 6

(A24)

The constants cj in (A19)—(A24} appear in Table I. By
testing this approximation for P(x) over a wide range of
8 and x, the maximum error involved is found to be
2.5%, while the average error is less than 1%.

TABLE I. Fitting parameters used to describe the finite-temperature thermodynamic and dielectric
properties of the electron gas. In the column marked c~ is the equation in urhich it appears.

C)

(A1} 41.775 27.390
(A2) 2.2277 126.92
(A3) 5.3588 —2.5433
(A4) —8.6164 —3S7.41
(A7) 0.144 59 —5.4210
(AS) —8.2583 11.196
(A9) 0.054 33 —11.196

{A10) —328.63 316.63
(A11} —0.61061 0.09812
(A19) 3248.8 —691.47
{A20) —4.8780 473.25
(A21) —0.2280 0.4222
(A22} —3.0375 64.646
(A23) —0.1900 0.365 38
{A24) —7.1316 22.725

J =3

4287.2
5248.0
432.89

5711.1
0.90023
0.130 12
2.0470

99.064
—15.633

—3 202 700
—2337.5

—0.6466
19.608

—2.2575
58.092

50.605
97.720

1.8800

12.308
—6.8432

8.0679
1.6810

—4535.6
348.31

0.705 72
—96.978

22.942
—436.02

861.30

2.2634
5.00
0.327 13

—462400
1517.3

5.8820
423.66

—43.492
—826.51

36.371

—331.01
106.40

4912.9
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