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The local-density-functional description of chemical bonding in first-row homonuclear dimers is
analyzed in terms of both static and dynamic orbital forces. The dynamic orbital force of the ith
molecular orbital is equal to the negative of the derivative of the one-electron energy c; with respect
to the pth nuclear coordinate, i.e., —Be.;/BX~. The static orbital force is also equal to a derivative of
the one-e1ectron energy, but the differentiation is carried out with the orbital held fixed, i.e.,
( —()s;/BX~)g. It is shown that the static force is the orbital s contribution to the total Hellmann-

Feynman force, whereas the dynamic force describes the change in the total force due to change in
the orbital s occupation number. The chemical bond force in the first-row dimers is observed to be a
delicate balance between bonding and antibonding orbital forces. Most of the bond force comes
from the 20~ orbital and to a lesser extent from the 1m„state. The polarization of the core orbitals
in N2, 02, and F2 is found to originate indirectly through their interaction with the 30.

~ orbital. The
dynamic orbital force gives accurate predictions about the change of equilibrium bond distances ac-

companying electronic ionization and excitation. The formalism and results are related to earlier
Hartree-Fock studies.

I. INTRODUCTION

The Hellmann-Feynman (HF) theorem' states that the
exact force on a nucleus in a system of electrons and nu-
clei is simply the classical electrostatic interaction of the
nuclear charge with the field set up by the other nuclei
and the electronic charge density, p(r), which is itself
determined quantum mechanically. The x component of
this force (on the pth nucleus) is expressed in atomic units
as

P((HF)= fp(r) drZp

X~ r —R~

(I)
Zp Zq

(~ ) BX~ ~Rp —Rq ~

In the density-functional formalism, the ground-state
charge density p(r) is expressed in terms of the solutions
of the one-electron Kohn-Sham equations and occupation
numbers n; as

p(r)=gn;
~
g;(r) )

The explicit decomposition of the charge density in terms
of one-electron orbital charge densities allows the elec-
tronic part of the Hellmann-Feynman force to be similar-
ly decomposed into orbital forces, "'

F~;(HF)= f i @;(r) i

i dr .

The total Hellmann-Feynman force then becomes

Ff(HF) =gn, r~, (HF)+rg(NN),

where F~(NN) is the nuclear-nuclear repulsive term in Eq.
(I).

The significance of this last equation is that it allows a
chemical bond to be resolved into one-electron orbital con-
tributions. Bader and co-workers '6' have shown that an
analysis of comparable orbital forces in Hartree-Fock
theory can be useful in elucidating characteristics of
chemical bond formation. In particular, they showed that
these orbital forces, when compared to a prescribed refer-
ence force, could be taken to define a quantitative measure
of the bonding or antibonding character of a molecular
orbital.

Later, Tal and Katriel introduced another orbital force
defined in terms of the one-electron energy s; as
( —()s;/BX&). They demonstrated that this orbital force,
which is related to the change in bond force upon ioniza-
tion, is more consistent with the traditional concepts of
bonding and antibonding suggested by Mulliken.

The purpose of the present paper is to first develop the
concepts of orbital force in the density-functional theory
(Di i') and secondly to apply these concepts to a study of
the first-row homonuclear diatomic molecules. The orbi-
tal forces computed in the local-spin-density approxima-
tion (LSDA) will be compared and contrasted with those
obtained in the Hartree-Fock approximation.

II. THEORY OF ORBITAL FORCES
IN THE DENSITY-FUNCTIONAL FORMALISM

FI(r)g;(r) =e;P;(r), (5)

is obtained by requiring that the total energy E be a
minimum (corresponding to the ground-state density and
energy F) with respect to variations in the ith orbital.
The one-electron Hamiltonian can be written (in atomic
units)

In the density-functional formalism, the one-electron
equation,
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H(r)= ——,
' V'i —g + V„(r)+V„,(r),

fr —Rq/
(6)

where V„(r) is the classical Coulomb potential of the
charge density p(r), and V„,(r) is the exchange-correlation
potential, which depends upon the charge density.

Multiplying both sides of Eq. (5) by g,'(r) and integrat-
ing over all space gives the one-electron energy eigenvalue
as

causes the Hellmann-Feynman force to diverge somewhat
from the true total-energy derivative BE/BX~. However,
this problem can be overcome by the formal computation
of the total-energy derivative (or gradient force), ' '"

Bgj (r)
=Fg(HF) —gnj f H(r}l(j(r)dr

+C.C.

From this, it is easy to show that

XP

with the subscript g indicating that the partial derivative
is taken while holding the orbitals 1i; fixed in space. By
reason of this constraint, the force defined by Eq. (8) is
called the static orbital force. This eigenvalue derivative
with constrained orbitals is in the spirit of the familiar re-
sult' relating the one-electron eigenvalues to the depen-
dence of the total energy on occupation numbers,

In what follows, it will be important to know the details
of the derivation of Eq. (9). Janak" has shown that the
unconstrained derivative of the total energy F is given by

-=e;+conj ej(BS),
Bn(

=gnJF~ j+F~(NN),
p j

(16)

The terms in large parentheses correct the Hellmann-
Feynman force by including the exphcit dependence of
the orbitals upon the nuclear coordinate X~. If gj(r) were
a true eigenfunction of H(r), then the term in large
parentheses would be zero, and Eq. (14) would reduce to
the Hellm ann-Feynman theorem. However, for most
practical basis sets, this term will be nonzero and must be
included for accurate force values.

Like the Hellmann-Feynman force, the basis-set correc-
tion can be decomposed into orbital components, e.g., for
state "g"',

Bfj"(r)
F~ j(BS)= — H(r)P~(r)dr+e. c.

BXq

The total force can then be expressed as the sum over oc-
cupied states (with occupation numbers nj },

where (BS denotes basis set)
yP.

BXP
+Ff j(BS) . (17)

B1tj (r)
ej(BS)=e, g, (r)dr+ec.

Bn;
(12)

The right-hand side of Eq. (12) can be written as the
derivative of the normalization integral of QJ(r) and must,
therefore, be zero.

It is important to note that the step from Eq. (11) to
Eq. (12) is possible only if gj(r} is an exact eigenfunction
of H(r). If Pj(r) is expanded in terms of an incomplete
basis set, e;j(BS) will not, in general, be zero and Eq. (12)
will not be satisfied. However, assuming a complete
basis-set expansion for it(t;(r), the constrained and uncon-
strained derivatives of the total energy will be equal giving

BE BE

The incompleteness of practical basis sets generally

Bli,'(r)
ej(BS)=f H(r)gj(r)dr .

Bn;

Clearly, if the orbitals are held fixed during the differen-
tiation, the derivative in Eq. (11) will be zero and Eq (10).
will reduce to Eq. (9). If the orbitals are not held fixed,
s;J (BS) will still be zero if the basis is complete and the or-
bitals are rigorously eigenfunetions of the Hamiltonian
H (r). Then Eq. (11}becomes

BE
=conjBXr

Bej
+F~(NN) .

P

(18)

Comparison of Eqs. (16) and (18) suggests a possible
equality between —BEj/BX~ and F~j. Actually, this
turns out not to be the case as will be shown in the follow-
ing.

Taking the derivative of both sides of Eq. (7) leads to
the definition of the dynamic orbital force, '

= —fPJ'(r) ij'jj(r)dr+F~J. (BS) .BH
(19)

Again as in Eq. (17), the term FfJ(BS) is seen to correct
an orbital force for basis-set incompleteness. However,
the dynamic orbital force defined by Eq. (19) is demon-
strably very different from the static orbital force
( —Bsj/BX~)~. The difference can be made more explicit
by rewriting Eq. (19). Factoring the electron-nuclear po-
tential from H(r), Eq. (19) becomes

BE,J-' =F~j(HF)+a~ j(BS)+Ffj(EE),
P

This equation defines the basis-set corrected form of the
static orbital force. If the unconstrained derivatives in
Eqs. (14) and (16) are replaced by constrained derivatives,
Eq. (16) becomes
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F.j
BLP

Bs;
+F»»J(BS}+F»J(EE) .

»

The static and dynamic orbital forces differ by the sum
of the basis-set correction term F»»J(BS) and a force term,
F»J(EE)„which depends on the derivatives of the effective
interelectron potentials. For a complete basis set, F» J(BS)
will be zero, but the static and dynamic forces will still
differ by the term F»i(EE). Recalling that Eq. (1) can
also be written

XP

the static orbital force appearing in Eq. (18) emerges as
the jth orbital's contribution to the Hellmann-Feynman
force.

In the following, we address the question of how the
dynamic force is related to the Hellmann-Feynman and
total forces. Taking the derivative of both sides of Eq.
(10) with respect to X» gives

a&; B
+conj Sij(BS) . (24)

Assuming that the order of differentiation in B E/BX Bn;
can be reversed, ' Eq. (24) can be written as

BV„(r) BV„,(r)
F»J(EE)= —fPj (r) + P, (r)dr .

» P

(21)
Then using Eq. (8), we have

BF»(HF) BF»

Bn; Bn.

and for the gradient force

BF» BF» Be;

all; p Bn; BX»

(32)

(33)

Using Eq. (23), this can be rewritten as
T

as; BF»(HF)

BX» g Bll(

Comparing Eqs. (26) and (30), it might at first sight ap-
pear that the static and dynamic forces should be equal,
since for a complete basis set F»»=F»»(HF) (i.e., the gra-
dient and Hellmann-Feynman forces are equal). This
would be contrary to Eq. (22), however, which shows that
the static and dynamic forces are, in general, not equal.
The apparent paradox is resolved by remembering the
conditions for equality of gradient and Hellmann-
Feynman forces, F»=F»(HF}. The Hellmann-Feynman
theorem is satisfied only if all gi(r) are eigenfunctions of
H(r). This condition will be satisfied in the unconstrained
differentiation BF„J(BS)/Bn; but not in the constrained
derivative [BF»»i(BS)/Bn;]&, where the orbital does not ad-
just to the changing occupation number. Consequently,
even for a complete basis set

BF»(HF)
(31)

"i

However, for the unconstrained derivative in a complete
basis set

BF» Be;

a. =
ax &" ax"'"'

P j P

For a colilplete basis set, s(i(BS) and all its Qlfcoli-

strained derivatives' will be zero. Then Eq. (25) becomes

BF»

Bn;

BF»(HF)

B/ii

Bs;

BX»
(34)

BF» Bs;

an,
=

ax„
(26)

III. APPLICATION TO THE FIRST-ROVE
HOMONUCLEAR DIMERS

The dynamic orbital force therefore describes how the to-
tal force changes in response to a change in the occupa-
tion number n; The chan.ge in the force F»» upon ioniza-
tion of an electron from the ith state (at fixed bond dis-
tance) is

F»+ F» f F)
dn; . (27)

~'

B BE
BXP BPl)

BE
BPl]BXP

(29)

This result is the analogue to the expression for differ-
ences in total energy given by"

0F+ F. =f e;dn; . — (28)

Let us look further into the relation between the static
and dynamic orbital forces. From Eq. (9), it follows that

A. Computational details

The calculations reported here mere carried out using
the augmented Gaussian orbital linear variational
method' within the local-spin-density approximation.
The exchange-correlation functional of Vosko, Wilk, and
Nusair' ' (VWN) was employed in this study.
Molecular-orbital basis sets were derived from the atomic
basis sets given by van Duijneveldt, with the addition of
a single d orbital (and three p functions in the cases of Li
and Be). In each case beyond Be, a (10s,6p, id/5s, 4p, ld)
contraction was carried out by supplementing the op-
timized (within the LSDA) atomic orbitals with the one
free d and the three most diffuse s and p Gaussians. The
present basis is essentially the same as that used by the au-
thors in earlier work ' on the first-row dimers in which an
analytic linear combination of atomic orbitals
(LCAO) —Gaussian-type orbital approach was used. In
principle the augmentation step does not introduce any er-
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ror in the calculation, and the good agreement of the re-
sults reported here with the earlier work further indicates
negligible numerical errors occur with the present calcula-
tional method in practice.

In Table I, the equilibrium bond distances computed in
our earlier work ' by total-energy minimization are com-
pared with those calculated here using the gradient force
method to search for zero total force. The differences in
the ground-state bond distances are all 1% or less. Good
agreement with the other computed spectroscopic data re-
ported in Ref. 21 is also found, but those results will not
be repeated here.

The VWN functional in the LSDA gives the correct
ground-state symmetries for Liq('Xs+), Beq('Xs+), Ni('Xs+),
Oz('Xs ), and F&('Xs+), but not for Bi or Ci. For Bz the
energy is slightly lower (less than 0.1 eV) for a X„state
than for the experimental iXs ground state, even though
both states have all molecular levels filled below the Fer-
mi energy. In Ci, the experimental ground state 'Xs+ is
higher in energy than a Il„state which has a completely
filled set of levels below the Fermi energy. This oversta-
bilization of states of higher spin and/or higher angular
momentum atomic components is characteristic of the
LSDA. However, for both 82 and Ci, the bond distances
calculated for the experimental ground-state configura-
tions are in good agreement with experiment. Unless stat-
ed otherwise, all the results reported here have been ob-
tained using the experimental ground-state configurations.
For orbitals for which the spin sphtting is nonzero (the
cases of 82 and 02), the forces and energies reported in the
tables below are averages over the two spin-state values, if
both states are occupied.

For linear variational calculations utilizing a fixed basis
set, the basis-set correction term, F~;(BS},can be put into
a more computationally convenient form than Eq. (15).
The orbital solutions are expanded as linear combinations
of basis functions X~(r):

it';(r) =QCqXJ(r) . (35)
j

Equation (15) can then be written as ' '

(36)

Li2
Be2

82
C2

N2

02
Fp

'Reference 23.

5.12
4.63
3.03
2.36
2.08
2.31
2.62

5.13
4.58
3.03
2.36
2.07
2.29
2.63

5.05
4.65'
3.04
2.35
2.07
2.28
2.68

Evaluation of the matrix elements represented by Eq. (36)
forms part of the extra computational step necessary in

implementing the calculation of the gradient force.

B. Study Of N2.'CoalpM1SOQ Of Villous
orbital force components

In the remaining discussion, N& is selected as a specific
case for analysis. Table II gives the orbital forces for Ni
at the equilibrium bond distance. Note that F~;(EE}
tends to be of about the same magnitude as the static
force but opposite in sign. As a result, the static and
dynamic forces are, in general, of very different inagni-
tude [see Eq. (22)]. With the exception of the 3rrs orbital,
the basis-set correction terms, Ff;(BS), are small com-
pared to their associated static forces. This is fortunate,
because as long as Fg;(BS) remains small compared to
( —Bs;/BX&)~, the orbital forces, I'~;, can be readily
analyzed in terms of classical charge and force argu-
rnents.

The good agreement between the dynamic force and
BF~/dn;, which are equivalent only if the basis-set correc-
tion vanishes, suggests that the basis-set correction term
in Eq. (25) is small. The dynamic force can then be used
as a good approximation to dF~/dn; to make predictions
about how the internuclear separations in a molecule will
be changed by ionization.

The binding energy of N2 as a function of the bond dis-
tance is given in Fig. 1 and corresponding total forces in

Fig. 2. If the molecular orbitals are restricted to D„i,
symmetry, the separated atom limit of the 'Xs+ ground

TABLE I. Comparison of bond distances (in bohr) computed

directly from the total force on the nucleus (bF) vnth bond dis-

tances computed by Painter and Averill {Ref. 21) by energy
minimization {bF)and with experiment {Ref.22) {b pt).

TABLE II. Orbital forces for N2 at equilibrium (units are eV/bohr).

lag 30'g

—24.60 7.30 —25.30

—0.12 —0.13 0.60 —0.63 —1.09

—24.47 —57.11 —25.88

49.46 21.74 3.06

—7.65 3.75 —0.38

—7.59 3.75 —0.38
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—14.0
1.0 8.0 3.0 4.0 5.0 6.0 7.0

R (a.u.)
FIG. 1.G. 1. Binding energies of paramagnetic (solid line) and an-

ti erromagnetic (dashed-dotted line) N2 as functions of the bond
distance (8).

0.0
8.0 6.01.0 3.0 4.0 5.0

R(a,u.)
FIG. 3. Mulliken population analysis of the 2p-spin-up (2p ))

and 2p-spin-down (2p l) atomic orbitals in N2 as a function of
the bond distance (8).

state is that of two zero-spin atoms with occupation num-

22 22 1.5 I.s
bers in the p shell averaged over spin u d d

s p, '
2p,

' . In order to obtain the correct atomic
ground-state population, 1si2s22p „ the spin reflection
symmetry between the two sites must be broken, and the
molecular orbitals allowed to have C sym t Wh

is is one, the molecule becomes antiferromagnetic at
bond distances greater than about 2.50 bohr. This is il-
ustrated in Fig. 3 by the Mulliken population analysis re-

1.5 1,5
suits for one of the nitrogen atoms wher th 2crc e p OCcQpS"

ion, p, ' p, ', changes to 2p, ' at large bond distances.

14
The Hellmann-Feynman [Eq. (4)] and gr d' t jEq

( )] forces for the Xs ground state of N are both 'v1 +

in Fi . 2.'g. . The basis-set corrected force is lower than the
Heiimann-Feynman force by an amount that increases as
t e bond distance decreasim. At the equilibrium bond dis-
tance, the basis-set correction is already over 2 eV/bohr.
The force curves for the antiferromagnetic state of Ni

6.0

(dotted lines) follow the paramagnetic curves at small
nd distances, but beyond b =2.50, they tend to zero

more quickly as the bond distance is increased.
In ig. 4, the basis-set corrected static orbital forces

Fp; o paramagnetic (D„s) Ni are plotted. The forces
o the core orbitals 1rrs and iver„have a 1/ri-type
behavior which can be easily understood: the charge den-

sity o one of these orbitals at large separation approaches
t e superposition of two spherical symmetric charge den-
sities, each of one half an ele:tron charge, centered on the
two nitrogen nuclei. In this limit, the force of this orbital
c arge density on the nucleus approaches, for internuclear
separation b, ——,

' Z/b . For nitrogen (Z =7), this yields

Fp( RF) Z /b i 95 24 eV
bz bohr

(37)

T is hmit can be taken to defined a reference force (F
Fig. 4) which approximates well the behavior of the core
orbitals in Fig. 4 and is the asymptotic limit of all the
static orbital forces in paramagnetic Ni.

20

10 20'

~o -6.0

I ~ I i I, I, I

00
—10

Q

p) —20
Q
Q
l
O -30

40
05

Ipel

—50

1.0 8,0 3.0 4 0 5.0 6.0 7.0
R (a.u.)

FIG. 2. HHellmann-Feynman (EHF) and gradient (IG) forces
on a nucleus of N2 as functions of the bond distance (8). These
two forces differ by the basis-set correction term iv

e sohd curves are for the paramagnetic case, whereas
the dashed curves are for the antiferromagnetic dimer.

-70
1.0 6.02,0 3.0 4.0 5.0

R (a.u. )

FIG. 4. Static molecular-orbital forces, F~; [sm &q. (16)], in

2 each as a function of the bond distance (E.}.
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These results suggest that a measure of bond character
can be obtained from the static orbital force by subtract-
ing out its asymptotic behavior, F~(RF),

F~;(C)=F~( —Ef(RF) . (38)

This new force is a direct measure of how effectively the
orbital binds the nuclei together in the molecule. For this
reason, we have chosen to call it an orbital cohesive

5force. The sign of the orbital cohesive force indicates the
bond character (bonding or antibonding) of the relevant
state. Another useful property of the orbital cohesive
force is that the sum of all orbital cohesive forces in the
dimer gives (with 2Z electrons in the system) the total
gradient force,

60

O 50

40
Q

v)
Q

20

10
L

0

—10

-P,0

—30

-40 I ~ i

=gn~Ff;(C) .E
p i

(39)

Each orbital cohesive force includes an equally partitioned
share of the nuclear repulsive force.

In an arbitrary molecule with n electrons, the orbital
cohesive force can be defined in terms of a reference force
given by

(40)

However, in this case, the orbital forces would not all
necessarily approach the same asymptotic limit.

Each of the orbital cohesive forces of paramagnetic N2
is shown as a function of bond length in Fig. 5. The
cohesive forces of the core los and lo„orbitals are ob-
served to remain near zero but to become more bonding as
the bond distance is decreased. That the core orbital
cohesive forces are nonzero even at rather large internu-
clear separations appears surprising and suggests that the

1.0 2,0 3.0 4.0 5.0
R (a.u. )

FIG. 5. Molecular-orbital cohesive forces, F~;(c) [see Eq.
(38)], in N2 each as a function of the bond distance (R).

6.0

spherical symmetry of these orbitals about each site is be-
ing disturbed. We give evidence in Sec. III D that this ef-
fect is due to the core-penetration effects of the 3os orbi-
tal.

The 2os and lm„cohesive forces go through minima at
roughly the equilibrium separation of 2.08 bohr. Most of
the chemical bond comes from the 2os state, although the
effect of the relatively weak lm„bond is amplified by its
being occupied by four electrons. In this cohesive force
picture, both the 2o„and 3os states are antibonding.

The unexpected antibonding character of the 3o stateg
and the almost corelike behavior of the lm„state can be
understood in terms of a near balance of orbital density
forces from the charge density along the bond axis and
the density in the regions "behind" the nuclei (Fig. 6).

X
+ + + + + + + + + + + +

FIG. 6. Orbital charge density of the 3o state in 02 for elongated (left panel) and compressed (right panel) bond length h
charge shifts in the bond region. Adjacent density contours differ by a factor of 2.
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TABLE III. Orbital reference forces (dimensionless) calculated in this work for the first-rom homonuclear dimers (distance b in

bohr; reference forces RRF) in eV/bohr).

30'g g f~F~(RF)

Li2

Be2
82
C2

N2

02
F2

5.10
4.57
3.03
2.36
2.08
2.30
2.63

0.22
0.00
0.01
0.01

—0.12
—0.17
—0.17

0.25
0.00
0.01
0.01

—0.11
—0.17
—0.17

—0.47
—1.54
—1.41
—1.35
—1.58
—2.05
—1.89

1.54
1.43
1.39
1.30
1.33
1.00

—0.07'
—0.04
—0.17
—0.28
—0.26

0.84
1.06
1.02

0.58'
0.36

0.00
0.00

—0.06
0.00

—0.02
0.04

—0.02

—1.57
—2.61
—7.41

—14.66
—22.12
—20.67
—17.70

'These entries are for partially occupied states.

C. Static and dynamic descriptions of bonding

In the preceding section, the orbital cohesive force has
been used to define and quantify the bonding or antibond-
ing character of an orbital. If the force E~; is more nega-
tive than the reference force [i.e., Ff;(C) &0], the orbital
is characterized as bonding. An orbital is considered anti-
bonding if F„;(C) & 0. This definition will be referred to
as the static description of bonding and antibonding.

Another reasonable definition of bonding and antibond-
ing can be obtained from the dynamic orbital force. A
negative dynamic orbital force is characteristic of a bond-
ing orbital, since it indicates that the bond length will in-
crease when electronic charge is removed from this orbi-
tal. Conversely, an antibonding orbital will have a posi-
tive dynamic orbital force, i.e., bond contraction accom-
panies ionization from this type of state.

In Sec. IIID, it will be seen that for the first-row di-
mers, the static and dynamic definitions of bonding and
antibonding often agree in sign, although there are impor-
tant exceptions. Tal and Katriel have compared the two
definitions in the Hartree-Fock theory and demonstrate
that the dynamic definition is more closely related to the
traditional concepts of bonding and antibonding intro-
duced by Mulliken. 9

D. Static orbital forces

In their study of the first-row dimers, Bader, Henneker,
and Cade" (BHC) found it useful to divide out the explicit
Z and b dependence of the orbital Hellmann-Feynman
force. Their orbital force is given by (in a.u. )

Z&, (BHC) = (41)

We have also chosen to divide out the explicit Z and b
dependence, but in a way which includes basis-set corre:-
tions and can be generalized to systems containing more
than two atoms. We define a dimensionless orbital refer-
ence force given by

F» i(C)
Ff;(RF)=-

Sg(R.F)
[S»,—Fg(RF)]

~f(RF)

Ff;(RF)=1—F~i(BHC) . (43)

Table III gives the orbital reference forces for the first-
row dimers and can be compared with the reference forces
of BHC reproduced in Table IV. Considering the differ-
ences in the basis sets and exchange-correlation models,
the agreement of Tables III and IV is quite remarkable
and indicates that the orbitals obtained in the two models
are rather similar. The largest discrepancies occur for
Be2, and these are probably a consequence of the Hartree-
Fock values being calculated for a bond distance where
the force is nonvanishing.

Since the forces are evaluated near the equilibrium bond
distances, the sum of the forces for each dimer (weighted
by respective occupation numbers) should be approximate-
ly zero. Examination of Table III reveals that at equilibri-
um the orbital cohesive forces balance one another. For
the dimers I.iz through C2, the orbital force picture is siin-
ple. The icrs, la„, and 2o„orbital cohesive forces are
positive and therefore antibonding, whereas the valence
orbitals 2crg and lm„provide the necessary bonding
charge to balance these repulsive forces. In I.i~, the large

If the basis-set correction is ignored, the orbital force of
BHC is related to this orbital reference force by the ex-
pression

TABLE IV. Reference orbital forces of Bader, Henneker, and Cade (Ref. 4) for the first-row
homonuclear dimers.

30'g g f,F~(RF)

Li2
Be2
82
C2

N2

62
F2

0.29
—0.05

0.02
0.03

—0.16
—0.23
—0.24

0.34
—0.03

0.03
0.05

—0.09
—0.14
—0.12

—0.59
—1.00
—1.31
—1.25
—1.68
—1.93
—1.45

1.40
1.49
1.44
1.46
1.52
1.17

—0.19'
—0.13
—0.22
—0.30
—0.23

0.85
0.83
0.48

0.57'
0.34

0.08
0.64
0.08
0.02

—0.12
0.04
0.12

'These entries are for partially occupied states.
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overlap charge of the 2og orbital in the bond region polar-
izes the log and lcr„states such that these core states are
slightly antibonding, In Be2, the 2o„orbital becomes oc-
cupied and, since the net density of the 2as and 2cr„states
is nearly symmetrical about each site, there is little charge
polarization of the log and lo„states. In Bz and Cz, oc-
cupancy of the ln„orbital places charge in the off-axis
bond region such that the core states become only very
slightly antibonding.

In N2, 02, and F2, the 3og and 1ng states become occu-
pied. The characteristic charge accumulation in both
binding and antibinding regions (the latter located behind
each nucleus) for the 3og state (Fig. 6) causes the lcrs and
1o„states to become polarized so that they exert attrac-
tive forces for the first time. The shorter bond length and
a larger binding energy of Nz compared with Cz may ap-
pear surprising considering that it is the rather strongly
antibonding 30.

g orbital which becomes occupied in Nz.
However, the increased attraction of the ln.„and 2os or-
bitals due to the increased nuclear charge more than
makes up for the antibonding nature of the 3crs state.

Hirshfeld and Rzotkiewicz ascribe the bonding char-
acter of the core orbitals in Nz, Oz, and Fz to the large ex-
change field of the 3os orbital near the nucleus. That the
core polarization of these dimers comes from an indire:t
effect of the 3us orbital can be demonstrated by calculat-
ing the orbital forces of Nz+ and Nzz+ such that the two
electrons occupying the 3crg state in N2 are successively
removed. When one electron is removed from the 3og
state, the orbital forces of the Icrg and lo„states are re-
duced by a factor of roughly 50%. Removal of the
second electron from the 3os state reduces the core polari-
zation nearly to zero, thus verifying the indirect effect of
the 3os orbital on the bonding character of the core states.

E. Dynamic orbital forces

The dynamic orbital forces for the first-row dimers are
given in Table V. In the dynamic force scheme, the core
1og and 1o„orbitals are seen to be antibonding across the
entire row with the forces of these orbitals obtaining max-
ima for Nz. Also in contrast to the static force descrip-
tion, the 30. orbital is a bonding orbital in Nq, 02, and F2,
although it is an unoccupied antibonding orbital in Bz and
Cz These differences between the static and orbital forces
reflect that they are really measures of different quanti-
ties. As in the static force picture, the strongest bonding

orbital is the 2o.
g state.

The dynamic orbital forces provide an interesting
description about the effects on bond length in response to
changes in the orbital occupation numbers. From Eq.
(27), if an infinitesimal (hn) amount of charge is promot-
ed from the ith to the jth orbital, the change in the total
force (for constant bond distance) is

8EJ. 8FI.

ax, ax,
(44)

If the dynamic force of the jth orbital is greater than that
of the ith orbital, the bond distance should be increased
on charge transfer. Conversely, if the orbital force of the
jth orbital is less than that of the ith orbital, the bond dis-
tance will be decreased.

This is illustrated in the case of the Cz dimer. The four
lowest multiplets of Cz can be approximated by the fol-
lowing set of occupation numbers: 'Xg+[ lir„( t t 1 l )],
'Il„[lir„(~~),),3os(t)], 'II„[1m„(&&i),3o.,(i)], and

Xg [lm„(tt), 3os(tl)]. Since the repulsive force of the

3og orbital is greater than the attractive force of the ln„
orbital (see Table V), the bond distance of the multiIzlets
should have the following order: 'Xg+ g zlI„= 'Ii„g Xx .
This prediction is in accord with both experiment and
theory. ' In 82, the 2o„orbital exerts a greater repul-
sive force than the 3og orbital. Therefore, the Xs multi-

plet [2o„(t l ), le.„(t t )] should have a larger bond distance
than the Xs multiplet [20„(t),lir„(tf), 3crg(t)]. Actual
calculations verify this prediction also. '

Another inference from Table V that is substantiated
both by calculation of the equilibrium bond length and/or
by experiment is that each of the lowest-energy states of
the ions 82+, C2+, and Nq+ should have a larger bond
distance than its corresponding neutral partner (Bz, Cz, or
Nz). Also consistent with experiinent, the dynamic orbital
forces predict that Oz+ and Fz+ should have smaller
bond distances than Oz and Fz.

The dynamic orbital forces reported by Tal and Katriel'
as computed within the Hartree-Fock model are given in
Table VI. The signs of the Hartree-Fock forces are the
same as those in Table V, but their magnitudes are, with a
few exceptions, very different. The difference in the
forces in the two tables is likely a consequence of a funda-
mental difference between Hartree-Fock one-electron en-

ergies and those obtained in the LSDA, i.e., the Hartree-
Fock one-electron energies satisfy Koopman's theorem,

TABLE V. Density-functional dynamic orbital forces (in eV/bohr). The energies correspond to oc-
cupied orbitals unless indicated otherwise.

30'g

0.27
0.26
1.51
3.51
4.07
1.55
0.83

0.40
1.18
2.44
3.75
4.34
3.70

Li2 0.25 —0.11
Be2 0.26 —0.82
82 1.45 —1.77
C2 3.31 —3.04
N2 3.86 —7.65
02 1.54 —11.23
F2 0 82 —7.45

'These entries are for partially occupied orbitals.
Energies correspond to unoccupied orbitals.

—1.21'
—1.82
—4.15
—4.62
—2.87

0.04b

0.26'
—0.38
—0.98
—1.95

6.52b

2.39
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TABLE VI. Hartree-Fock dynamic orbital forces (in eV/bohr}, from Tal and Katriel (Ref. 8).

30g

LI2

Be&

82

N2

Q2

F2

0,08

0.93
4.00
3.56
2.45

1.01
4.24
4.05

—2.72
—5.03

—11.51
—13.96

1.93
3.84
3.95
5.41

—2.10'
—3.43
—7.18
—6.07

—2.33
—3.73 5.31'

'These entries are for partially occupied states.

whereas the one-electron energies of the I.SDA, in gen-
eral, do not. ~ Since the one-electron energies in the two
models are related in different ways to the total energy,
their derivatives with respect to bond distances reflect
these differences.

IV. CONCLUSION

Analysis of static orbital forces in the first-row dimers
has been shown to provide useful insight into the roles
played by the different orbitals in chemical bond forma-
tion. The good agronnent of the static forces with those
obtained in the Hartree-Fock model suggests that a static
orbital force analysis will be somewhat invariant to the
exchange-correlation model that is used.

Although they are more sensitive to the exchange-

correlation potential, the dynamic orbital forces are rela-
tively easy to obtain. All that must be computed is the set
of s; for several internuclear separations and from this the
numerical derivative —Be;/BX& can be determined. A
high degree of self-consistency is required in order to ob-
tain highly accurate dynamic forces, but qualitative
analysis of ionized and excited states of molecules should
be possible with only moderately converged results.
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