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As a simple model for some diluted magnetic systems which present high percolation thresholds,
we study a new type of environmental percolation model. In this model two neighboring magnetic
sites are considered to be in the same cluster only if their nearest-neighbor sites in the same direc-

tion of the line joining them are also magnetic.

By using a large-cell Monte Carlo renor-

malization-group method the percolation threshold in a square lattice is found to be p. =0.741
+0.002 and the exponent for the correlation length 1/v=0.75 % 0.02, indicating that the model
may be in the same universality class as the site percolation problem.

Percolation models play a fundamental role in the un-
derstanding of a variety of phenomena in physics.!"> Par-
ticularly interesting physical realizations of percolation
phenomena are found in disordered magnetic systems. In
these systems nonmagnetic ions replace magnetic ones in a
random manner to produce clusters of magnetic sites of all
sizes. Since for pure magnetic systems the critical tem-
perature is a function of the exchange interaction, a de-
crease of the critical temperature is expected to follow the
dilution of the magnetic atoms. The critical temperature
reaches the limiting zero value at the percolation concen-
tration of magnetic ions p.. At 7=0 the magnetic proper-
ties of the system will be entirely determined by the cluster
distribution.

In the site percolation problem the magnetic ions corre-
spond to occupied sites in a lattice and nonmagnetic ions to
empty sites. Two neighboring magnetic ions are said to be
in the same cluster regardless of the occupancy of the oth-
er neighboring sites. The percolation concentration for
this model, obtained by numerical methods are for the
square and cubic lattices p. =0.5927 +0.0001 (Ref. 3)
and p, =0.3117 £ 0.0002 (Ref. 4), respectively.

Some diluted magnetic systems, however, appear to
display a critical percolation concentration well above that
predicted for the site percolation problem. In these sys-
tems, formation of a magnetic moment in a given magnetic
ion can depend strongly on the local environment.> Thus,
only magnetic sites with a given number of nearest-
neighbor magnetic ions are included in a cluster.®’

Recent®® analysis of °’F NMR linewidths in the ran-
domly diluted magnetic system KMn,Mg, -,F3 and on its
isostructural compound KNi,Mg;-,F3 show striking
differences in their magnetic properties as a function of di-
lution. Experimental results for the percolation threshold
in KMn,Mg, - F3 yield a value consistent with the con-
ventional site dilution model. However, the model appears
to fail for KNi,Mg; - ,F3 whose critical curve shows a ten-
dency towards a higher percolation threshold. The above
experimental results together with arguments on the na-
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ture of the exchange interaction between the Ni** ions for
one compound and between the Mn?* ions in the other led
to the suggestion®® that a model for KNi,Mg, - ,F3 may
be more realistic if one assumes that the exchange cou-
pling between two nearest-neighbor Ni’* ions depends on
their surroundings in the following way: Two neighboring
magnetic ions are considered members of the same mag-
netic cluster if their nearest neighbors along the line join-
ing the two ions are also magnetic (see Fig. 1). In addition
to predicting a higher percolation concentration, the model
defined above could lead to a much larger linewidth in
KNi,Mg, - ,F3 for the same value of p suggesting a possi-
ble explanation for the absence of some of the ’F NMR
lines in this compound.®

The purpose of this work is to analyze the critical prop-
erties of the above described model near the percolation
threshold by using renormalization-group techniques. For
simplicity we shall restrict our analysis to square lattices.

FIG. 1. The cluster on the left side of the figure is broken be-
cause sites along the line joining the atoms are empty in the re-
gion of the bend. The cluster on the right is not broken because
of the environment of occupied sites around the bend.
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To obtain the percolation concentration and the critical
exponent v for the correlation length we have applied the
large-cell Monte Carlo renormalization-group (RG)
method introduced by Reynolds, Stanley, and Klein,'
which has provided reliable estimates for site and bond
problems in two'® and three!' dimensions as well as in
higher dimensions.!? In this method we start partitioning
the lattice into cells that cover the entire lattice and have
precisely its symmetry. Each cell now is replaced by a site
whose probability of being occupied depends on the cell
size and of the fraction p of the magnetic sites randomly
distributed in the lattice. The renormalized site occupa-
tion is defined as the total probability p’=R(b,p) in which
a cell of size b containing b¢ sites percolates (a two-
dimensional cell percolates if a connected path of occupied
sites exists which spans the cell from top to bottom) at
a given concentration p. This procedure defines a renor-
malization-group transformation p'=R(p), where p*
=R (p*) is the fixed-point equation. One should em-
phasize that, to avoid proliferation of probabilities in the
renormalization-group transformation, the connectivity
between distant cells is neglected. However, as one in-
creases the cell size this interface effect becomes progres-
sively small.'® The linearization of the RG transformation
about the fixed point provides the thermal scaling power
y, =1/v through the relation,

=l_né_

V=i (1a)
where
dR
A=— .
dp L* (1b)

This approach can be applied exactly for cells of small
sizes. In the present model for »=3, the exact recursion
relation p’=R(p) reads as

p'=p’+9p°q+36p’q’+57p°¢’

+45p°¢*+18p*g>+3p3q° | )
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with ¢ =1—p. The corresponding nontrivial fixed point
and thermal exponent are, respectively, p* =0.682 and
y:=0.605. This is, however, a crude estimate for these
critical parameters since the independent-cell approxima-
tion fails for small . To obtain better results one should
rely on larger cells. However, since it is not feasible to cal-
culate the recursion relation in closed form we shall evalu-
ate it in a quite accurate way by using Monte Carlo simu-
lations.

The recursion relation is numerically found by con-
structing a histogram for the density probability L(p),
that is, L(p)dp represents the probability for the cell to
percolate in the interval [p,p +dpl. Hence the site occu-
pation probability which renormalizes a cell at concentra-
tion p is given by

p’=R(p)='fL(p)dp .

From numerical results, the density probability L(p)
shows a peak near the average percolation threshold {p).
Finite-size scaling also predicts that for large b the {p) ap-
proaches the asymptotic value p. for the infinite system as
(p)—pe~b~"¥. Moreover, the width o?=(p® —(p)? of
L(p) also behaves for large b as o~b~1/v and fits a
Gaussian distribution:

L(p) =Qrc?) ~Yexpl—(p —(p))*26?], (b— =) . (4)

3)

We have approximated the maximum of L(p) by (p)
which by its turn, for large b, may be identified with the
fixed point p*. By using (1) and (3), one can relate the
thermal exponent y,, with the width of the Gaussian distri-
bution o, through

v =In27c?) ~*/Inb, (b— ) . (5)

Our results are shown in Table I for a sequence of in-
creasing cell sizes up to b =250. The second column
represents the number of cells of size b used to obtain the
average value of the percolation threshold {p. (b)) and the

TABLE I. Environmental percolation (square lattice).

Cell size (b) Trials (pe) (pD) —(p I\ v
3 Exact 0.578571 0.182857 0.605 30

3 100000 0.578758 0.182855 0.71009
10 50000 0.702699 0.081 640 0.68900
20 40000 0.727432 0.047100 0.71319
30 30000 0.733072 0.034456 0.72008
40 30000 0.735785 0.027813 0.72198
50 10000 0.736 941 0.023386 0.72511
60 10000 0.737475 0.020356 0.72672
70 8000 0.738215 0.018419 0.72388
80 8000 0.738476 0.016421 0.72803
100 8000 0.738859 0.013970 0.72785
120 6000 0.739033 0.012311 0.726 54
150 4000 0.739 346 0.010229 0.73116
200 2000 0.739216 0.008 401 0.728 62
250 2000 0.739459 0.007034 0.73135
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FIG. 2. Results for the dependence of the thermal exponent
y:(b) with the size cell b. The intercept gives the estimate for
the infinite square lattice.

width o of density probability L(p). The thermal ex-
ponent y, =1/v has been calculated from (5) by assuming
a Gaussian distribution for the probability density L (p)
independent of the cell size. The numerical calculation for
b =3 has been performed for the purpose of checking our
computer program. The discrepancy between exact and
numerical estimates for the thermal exponent 1/v reflects
the fact that the Gaussian approximation fails for small
size cells. Extrapolation of the data to the limit b — oo by
using a least-squares fit of the data points in the interval
50=<b =250 are shown in Figs. 2 and 3. In Fig. 2 we
present the results for the dependence of the thermal ex-
ponent y, with the cell size. Extrapolation for infinite b
gives y, =0.75 £ 0.02, which is consistent with the conven-
tional percolation problem. By assuming the conjectured
exact value for the thermal exponent y, == we obtain
for the extrapolated percolation concentration p. =0.741
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FIG. 3. Average percolation threshold p.(b) vs b ”*. The tri-

al value for y, was chosen to be 0.75. The intercept gives the es-

timate for the percolation concentration for the infinite square
lattice.

+0.002, which is substantially larger than that found for
the conventional percolation problem.

To conclude, we have studied a new type of environmen-
tal percolation problem which may be useful to model
some dilute magnetic systems which present high percola-
tion thresholds. Monte Carlo analysis of these dilute mag-
netic systems for finite temperature will be presented else-
where.
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