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We point out that a standard Monte Carlo algorithm can be made to converge in some cases

for nonpositive definite weights.

Comparison of Monte Carlo and Langevin algorithms for two

simple models with complex actions shows the Monte Carlo method to be always superior; it is
more reliable and gives smaller statistical error when both converge, and converges in cases where

the Langevin method does not.

Recently there have been claims in the literature that
Langevin simulation methods offer the possibility to do
stochastic calculations in cases where the standard
Metropolis Monte Carlo algorithm is not applicable in the
presence of nonpositive weights.!~7 The purpose of this
Brief Report is to point out that in fact a standard Monte
Carlo algorithm does often converge in cases with a com-
plex action, and that there is no evidence that the
Langevin method converges in cases where the Monte
Carlo method does not. In fact, we show here for two sim-
ple models that the Monte Carlo method always converges
where the Lagevin method does, and gives better answers,
and it even converges in cases where the Langevin method
does not.

Consider the Monte Carlo evaluation of an integral
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For complex B, it is clear that cannot be interpret-
ed as a probability. However, one can still use its absolute
value as a probability and lump the phase onto the quanti-
ty to be averaged over.® That is, for f=pg'+ig"
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which, being positive definitely, can be interpreted as a
probability in a Metropolis algorithm.

If the original integral in Eq. (1) converges so will a
Monte Carlo evaluation of Eq. (2), provided that the
integral

fd{x,-}e “FS®) < oo 4)

In practice, of course, the variance of the computed value
of f(x) by Eq. (2) could be very large if (e ~i8"®)) is very
small. For a quadratic action

S(X)-‘%‘ZX,’A,'J'X}' . (5)
iJj

it is clear that the integral of Eq. (1) is finite for any f(x),
provided that

Rer; >0, i=1,2,...,N , (6)

where A; are the eigenvalues of the matrix 4. In that case,
Eq. (4) is also automatically satisfied.

To compute Eq. (1) using a Langevin equation method,
one solves’

dx; as
” ox, n:(t) , @)
with n; a white noise, satisfying
(T][(t ) =), <T]i(t )T’j(t'» =25[j6(t —-t') (8)

by discretizing Eq. (7) and computing f(x) from a time
average. For a quadratic action (5), one shows easily that
Eq. (6) is necessary and sufficient for the Langevin
method to converge. For general S and complex B there
seems to be no general theorem on the convergence of the
Langevin equation method.!

We have studied the two models discussed recently by
Hamber and Ren.® The first one is

S (x)=cosx . )

We have calculated {cosx) by Monte Carlo and Langevin
methods. The exact statistical average is given by

(cosx)=1,(B)/1,(B) , (10)

where 7,(z) is the modified Bessel function of the first
kind. The corresponding Langevin equation is

dx/dt = —Bsinx +n(t) . an
Let z =e'*, then Eq. (11) can be discretized as®
Zi+1=2; EXp —-‘%‘Q{z,—-— ivV24drn;| , (12)
I

where 7; is a random number uniformly distributed in
(—+,%) and d¢ is the step size. It is well known that the
systematic error introduced by discretizing Eq. (11) into
Eq. (12) is proportional to d¢. To have systematic error
within the statistical error and for another reason given
below, we choose dt =0.0005 in all of our Langevin calcu-
lations. There is not much difference in computer time
needed for one sweep between Monte Carlo and Langevin
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simulation (1.4:1). We typically did 10® Monte Carlo
sweeps and 2% 10° iterations in Langevin simulation for
comparison. In Table I we present our results obtained
from exact calculation and both Monte Carlo and
Langevin methods. As can be seen, the Monte Carlo re-
sults converge very nicely for all values of Imp and give
smaller statistical errors than the Langevin results. In
both cases, we did several runs with different initial condi-
tions like starting point x (0) and random number seed,
and we found that the Monte Carlo results are very stable,
but the Langevin simulations are very dependent on the in-
itial condition (the difference between two runs sometimes

is far off the statistical error); the data shown in Table I
are the best ones of several runs. The convergence gets
worse when the phase angle of B gets large and the solu-
tion blows up for =i |B| (Hamber and Ren also found
similar behavior?), while the Monte Carlo method still
gives the right answer in that case. The results for
RepB <0 can be obtained trivially from the symmetry re-
lation

(cosx)(—p*) = — [(cosx)(B)]* . (13)

For this model there should be no convergence problem be-
cause the action is bounded. This is indeed the case in the

TABLE 1. Comparison between Monte Carlo (MC) results (10° sweeps) and Langevin results

(2x 109 iterations) for the action S (x ) =cosx.

(cosx) (MC) {(cosx) (Langevin)

(0.4467, 0.0000)
(0.0010, 0.0000)
(0.4445, 0.0621)
(0.0011, 0.0001)
(0.4375, 0.1261)
(0.0012, 0.0002)
(0.4250, 0.1934)

(0.4532, 0.0000)
(0.0087, 0.0000)
(0.4689, 0.0059)
(0.0081, 0.0025)
(0.4924, 0.1058)
(0.0202, 0.0167)
(0.5065, 0,1070)

Phase
| 8] (deg) (cosx) (exact)
1.0 0.0 (0.4464, 0.0000)
10.0 (0.4444, 0.0621)
20.0 (0.4379, 0.1260)
30.0 (0.4255, 0.1933)
60.0 (0.3165, 0.4225)
80.0 (0.1281, 0.5538)
90.0 (0.0000, 0.5751)
3.0 0.0 (0.8100, 0.0000)
10.0 (0.8141, 0.0386)
20.0 (0.8269, 0.0762)
30.0 (0.8501, 0.1110)
60.0 (1.0200, 0.1125)
80.0 (1.0644, —0.6112)
90.0 (0.0000, —1.3038)
5.0 0.0 (0.8934, 0.0000)
10.0 (0.8955, 0.0200)
30.0 (0.9116, 0.0555)
45.0 (0.9292, 0.0751)
60.0 (0.9440, 0.0996)
80.0 (1.0614, 0.4612)
90.0 (0.0000, 1.8445)

(0.0010, 0.0004)
(0.3173, 0.4221)
(0.0015, 0.0007)
(0.1294, 0.5534)
(0.0014, 0.0007)
(0.0009, 0.5747)
(0.0015, 0.0007)

(0.8098, 0.0000)
(0.0006, 0.0000)
(0.8139, 0.0388)
(0.0006, 0.0003)
(0.8269, 0.0765)
(0.0005, 0.0005)
(0.8502, 0.1109)
(0.0005, 0.0006)
(1.0184, 0.1123)
(0.0014, 0.0014)

(1.0625, —0.6098)

(0.0037, 0.0041)

(0.0055, —1.3059)

(0.0079, 0.0047)

(0.8929, 0.0000)
(0.0004, 0.0000)
(0.8951, 0.0202)
(0.0004, 0.0002)
(0.9117, 0.0555)
(0.0004, 0.0004)
(0.9292, 0.0754)
(0.0005, 0.0004)
(0.9433, 0.0998)
(0.0007, 0.0008)
(1.0610, 0.4654)
(0.0032, 0.0039)
(0.0035, 1.8364)
(0.0145, 0.0099)

(0.0149, 0.0182)
(0.3453, 0.0484)
(0.0233, 0.0194)
No convergence

No convergence

(0.8109, 0.0000)
(0.0049, 0.0000)
(0.8173, 0.0352)
(0.0051, 0.0020)
(0.8251, 0.0667)
(0.0046, 0.0030)
(0.8479, 0.0976)
(0.0041, 0.0038)
(0.8328, 0.1024)
(0.0107, 0.0078)
No convergence

No convergence

(0.8934, 0.0000)
(0.0020, 0.0000)
(0.8952, 0.0197)
(0.0021, 0.0007)
(0.9101, 0.0556)
(0.0016, 0.0017)
(0.9288, 0.0773)
(0.0017, 0.0024)
(0.9486, 0.0908)
(0.0035, 0.0031)
No convergence

No convergence
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TABLE II. Comparison between Monte Carlo results (2% 10° sweeps) and Langevin results (107
iterations) for {x2) for the action S (x) =+4x*and || =1.
Phase
(deg) (x?) (exact) (x? (MC) (x» (Langevin)
0.0 (0.6760, 0.0000) (0.6762, 0.0000) (0.6719, 0.0000)
(0.0008, 0.0000) (0.0048, 0.0000)
30.0 (0.6529, —0.1750) (0.6525, —0.1749) (0.6556, —0.1748)
(0.0010, 0.0006) (0.0052, 0.0020)
60.0 (0.5854, —0.3380) (0.5838, —0.3389) (0.5820, —0.3347)
(0.0013, 0.0011) (0.0050, 0.0042)
80.0 (0.5178, —0.4345) (0.5161, —0.4358) (0.5194, —0.4456)
(0.0029, 0.0029) (0.0058, 0.0062)
Monte Carlo simulation. In the Langevin method, howev-  The exact statistical average is easy to evaluate:’
er, no convergence is obtained when B approaches the /2
imaginary axis. Hamber and Ren attributed this to the in- (x2n) = 4 rl2+1] /rlL , (16)
finite number of poles in {cosx) along the imaginary axis, B 2 4 4

and they found that d¢ must be smaller than 0.001. We
used a smaller dt (0.0005), and we found that for different
random number seeds the solution patterns x (¢) for up to
10 steps (+ =50) in the complex plane look very different.
It seems that for B close to the imaginary axis the stochas-
tic forces affect the stability of the numerical integration
procedure seriously and the problem is not only introduced
by the discretization (remember that the measuring time is
proportional to 1/dt). On the other hand, when g=i | 8],
the average quantity in the Monte Carlo method is

b
f dx exp{RelS (x )} F (x)
(F(x))=——

fa dx exp{RelS (x)1}

-LbdxF(x)/J;bdx , (14)

where a,b are finite numbers. By the Metropolis algo-
rithm, each move x — x’'=(b —a)ranl0,1]+a is always
accepted and [¥)L,F(x;)1/N is nothing but the integral
J bdxF (x) as long as ranl0,1] is a truly uniformly distri-
buted random number. So for this model, the Monte Car-
lo method clearly has better convergence than the
Langevin method and is more reliable.
The second example studied was the noncompact action

S(x)=4x*. a15s)

where I'(z) is the usual T function. For this model, the
statistical integral is meaningless for Re < 0 and both the
Monte Carlo and Langevin methods converge only for
Ref > 0. We calculated (x?) and {x*) using both Monte
Carlo and Langevin methods. The associated Langevin
equation is

dx/dt = —Bx3>+n(t) , a7)
and a simple finite-difference form of this equation is
xi+1=x; —dt x>} +24dt n; . (18)

In this case, the computer time for one iteration in the
Langevin equation is four times less than for the Monte
Carlo, so we did 107 iterations for the Langevin equation
and 2% 10° iterations for the Monte Carlo equation. We
chose dt =0.001 here and did several runs for the same
due to the same reasons as before. The results for | 8] =1
and various values of the phase are shown in Table II and
Table III. For {x?) Monte Carlo again gives substantially
smaller statistical errors for the same amount of computer
time. For (x*) and large phase angle the errors are com-
parable in both methods. However, the Langevin solution
sometimes blows up as one gets closer to the imaginary
axis and we only show the best results obtained; the Monte
Carlo solution is much more stable. We also tried the
Langevin method for Ref < 0. There we again found that
the solution pattern x (¢) in the complex plane is strongly

TABLE III. Same as Table II, for {x*).

Phase
(deg) (x*) (exact) (x*) (MC) (x*) (Langevin)
0.0 (1.0000, 0.0000) (1.0008, 0.0000) (1.0050, 0.0000)
(0.0023, 0.0000) (0.0115, 0.0000)
30.0 (0.8660, —0.5000) (0.8664, —0.4993) (0.8771, —0.5040)
(0.0024, 0.0024) (0.0113, 0.0079)
60.0 (0.5000, —0.8660) (0.5004, —0.8699) (0.5060, —0.8804)
(0.0049, 0.0060) (0.0076, 0.0139)
80.0 (0.1736, —0.9848) (0.1662, —0.9797) (0.1796, —0.9828)

(0.0173, 0.0167) (0.0107, 0.0166)
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dependent on the initial conditions, even if one uses a small
dt, and it is not possible to obtain convergence to the ana-
lytic continuation of Eq. (16), contrary to the conclusion
of Hamber and Ren.?

In summary, we have shown that the Monte Carlo
method can also be used to deal with complex actions and
gives better answers than the Langevin method for two
simple examples. Thus, at present there is no evidence
that the Langevin method is superior to the Monte Carlo
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method for systems with complex actions, contrary to what
seems to be widely believed.
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