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The effect of an electron heat bath on the motion of an electron system is studied using a quan-
tum Langevin equation and deriving the influence functional of the Feynman-Vernon approach.
The generating functional for the time-dependent, finite-temperature correlation functions of a
disordered electron system with interactions is written down, and some of its symmetry properties
are analyzed. Since the disorder only affects the time evolution of the system our formalism avoids
the replica trick and provides a natural physical framework for studying a large variety of open
problems in the field of disordered systems. As an example, we give an explicit expression for the
averaged generating functional for a disordered electron system in the presence of a Coulomb in-

teraction in terms of two complex matrix fields.

I. INTRODUCTION

One of the main difficulties arising in the theory of
disordered systems is the so-called “denominator prob-
lem” which occurs when one tries to calculate the average
value of a measurable quantity described by an operator A
because, in addition to thermal averages, one has to take
the average over the disorder. One then has

<<A>>D=( (L1

Tr(e —BH ) >
Tre=FH [p’

where the thermal average is denoted by { - - - ) and the
disorder average by ( - - )p, and B is the inverse tem-
perature.

Since the Hamiltonian H which contains the disorder
appears also in the denominator, it becomes difficult to
perform the disorder average. Up to now, essentially
three methods have been found to circumvent this prob-
lem: The first two methods (the so-called replica trick'
and the superfield method?) are formal manipulations to
get rid of the denominator, whereas the third method? is
more physical. Instead of the static problem, one consid-
ers in Ref. 3 a dynamical nonequilibrium system which
evolves for large times to the proper equilibrium limit.
The random average is then performed over the corre-
sponding generating functional. The first two methods
have been applied successfully, e.g., to describe the locali-
zation of noninteracting electrons, whereas the last
method was crucial in formulating the spin-glass problem
for classical spins.’

It is our purpose to extend to quantum systems the last
method, which also offers the possibility of studying
dynamical properties of the system and which, up to now,
has been applied only to classical systems. However, we
do not start from the Langevin equations (as is the case of
classical systems>?) but instead use the Feynman-Vernon
approach,® which studies the dynamics of the quantum
system coupled to a heat bath. In this way we have the
advantage both of studying physically interesting dynami-
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cal quantities and of being able to avoid the denominator
problem at the same time.

The basic idea is as follows. We couple our quantum
system described by a Hamiltonian H; to a quantum heat
bath described by a Hamiltonian H,. The combined
Hamiltonian is

H=H,+H,+H,, , (1.2)
where H,., describes the interaction of our system with
the heat bath. Next, we consider the time evolution of the
density matrix p of the total system from a time ¢; to a
time #;:

iH(rf—ti) ) (1.3)
If we assume that the system (s) and the bath (b) are ini-
tially uncorrelated at ¢ =t¢; and that the heat bath is in
thermal equilibrium, we can write

—iH (ty—1t;)
4 'p(t,~)e

P( tf)=e

plt)=ps(t;)pp(t;) , (1.4)
with
—BH,
p,,(t,~)=m . (1.5)
This ensures the normalization of the trace:
Trp(ty) =Trps(t;) Trppp () =1 . (1.6)

Taking the trace over the heat-bath variables, we obtain
the reduced density matrix p,(tf) of our system. For
tr— oo, it will approach (in the zero-coupling limit) the
proper equilibrium density matrix of our system:

—iH (tp—1;

lim Tryplty)= lim Tr[e ps(t:)py (1:)

eiH(tf_ti)]=p§q ) .7
After performing the random average, the equilibrium

density matrix p3? of our system becomes

X
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—iH(t;—1) iHt,—1,)
p Do

(ps)p= llim (Try[e s (2 )ps (t;)e
>

(1.8)

Since p;(t;) can be chosen to be independent of the ran-
domness, one only has to average over the random in-
teractions occurring in H, which appears in the exponen-
tials, i.e., one has circumvented the denominator problem
by studying the time evolution of the system in a heat
bath.

The outline of this paper is as follows. In Sec. II we
study the equations of motion for one free electron in a
Fermi sea coupled to a heat bath which is also made up of
electrons. The density of states of the heat bath and the
coupling between the system and the heat bath are chosen
appropriately to ensure that our system approaches
thermal equilibrium in the long-time limit. In Sec. III we
study the time development of the density matrix of a
many-electron system coupled to a heat bath, using path
integrals. We generalize the Feynman-Vernon theory®’
which has been established for oscillators using real vari-
ables, to fermions using Grassmann variables.! Eliminat-
ing the heat-bath variables, we calculate explicitly the in-
fluence functional for the many-electron system. This al-
lows us to present a closed expression (in the form of a
path integral) for the generating functional for an arbi-
trary many-electron system with interactions in a heat
bath. This formalism can be immediately applied to bo-
sons having a finite chemical potential simply by replac-
ing Grassmann variables by complex numbers and Fermi
functions by Bose functions. As an application, we calcu-
late in Sec. IV the generating functional of a random elec-
tron system with interactions and study its symmetry
properties. Performing the random average we obtain,
after a Hubbard-Stratonovich® transformation, a closed
expression for the generating functional in terms of com-
plex matrix fields. Finally, in Sec. V we draw our con-
clusions.

II. ONE ELECTRON IN A HEAT BATH

In this section we study two coupled fermion systems
described by the model Hamiltonian:

Hy=Ec'c + > (Vica, + Viaje)+ S exajay . (2.1)
k k

The creation and annihilation operators ¢ and ¢ describe
an electron of energy E in a Fermi sea. The second fer-
mion system described by a,Ir ,a; acts as a heat bath. Note
that the energies E and g; are measured relative to the
common chemical potential u of both systems which are
coupled via the coupling constants V. We will now
study the equations of motion for both systems and
choose the couplings V; and the density of states for the
€;’s in such a way that the system described by c',c tends
for t— o« to thermal equilibrium. The coupling between
the system and the heat bath in Eq. (2.1) is somewhat dif-
ferent from the one used by Caldeira and Leggett,” who
couple a quantum particle to a set of quantum harmonic
oscillators simulating the heat bath. In fact, our approach
is similar to the method used for bosons by Haken.!® Us-

ing Eq. (2.1), the coupled equations of motion for ¢ and
a; become

i¢=[c,H]=Ec + Ek; Viag , (2.2a)
iay=[ay,Hl=¢rax +Vic . (2.2b)
Equation (2.2b) can be solved formally,
a=e " ¥a =i [ are " pew), @3
and yields for Eq. (2.2a)
é=ic= 3 | Vil 2 [are ™™ e )
—i % Vie "Ka,(0) . 2.4)

This equation becomes a Langevin equation for the ¢
operator if we choose the couplings V; and the density of
states p(g; ) for the g;’s such that

plex) | Vi |2=£=const , (2.5)
which implies

—iEL T l o0 .
vV, |2 fgr__ 1 dee—ieT .
% | Vi | %e = f_# ee ¥ T2I8(7),  (2.6)

where the last equation (which makes the integral approx-
imately equal to twice a 8 function in time) holds only for
times 7 that are much larger than typical time scales 1/u
of the reservoir. Since we are interested only in the low-
frequency behavior of the system, 1/7 <<pu, we can safely
replace the integral by 2I'6(7). Using Eq. (2.6), Eq. (2.4)
becomes

¢=—(E+T)c+F(t), 2.7)

i.e., we obtain indeed a Langevin equation with a damping
constant I" and a random force F(1):

Fi=—i3 Vie "*a,(0) . (2.8)
k

If we assume that our heat bath is initially in thermal
equilibrium, i.e.,

(ajap) Tre "ol Fleg)=—1 (2.9)
aray ) =————=f(gg)=— , .
re P eBE"+1
with
Hy=3 exajay , (2.10)
k

the random forces F(t) are correlated as follows: the an-

ticommutator for different times is
{F(0),F(t")} =2r8(t —t") 2.11)

and the expectation value of the antisymmetrized product
is

(+[F(OF(¢")=F'(t"YF(D)])

=rf gf_—e —fet=t) tanh

Be
> ] . (2.12)



These are the fermion counterparts of the well-known
noise-noise correlation functions for boson Brownian
motion.””!! The choice of Eq. (2.5) ensures that the
anticommutation relation between the c¢’s is preserved,
ie.,

fe,ctiny=1, (2.13)

and that in the long-time limit #— oo the thermal occupa-
tion number of the ¢ system tends, for weak coupling, to
the proper equilibrium limit

F'-0t—>ew

. . .1 r
im lim {(c'(t)c(2)) = lim — [ ae e E)zf(E)

=f(E). (2.14)

Let us add two clarifying comments. First, the fermionic
bath yields a grand canonical ensemble which conserves as
usual the average particle number of the system. Equa-
tion (2.14) shows that our formalism yields the correct
and well-known Fermi distribution for the electrons of the
system. It is therefore physically sensible to use a fer-
mionic heat bath. An explicit example for an electronic
system coupled to a fermionic heat bath would be, e.g., d
electrons in a transition metal which are coupled to s elec-
trons which provide a heat bath. But we would like to
stress that one can always use a fermionic heat bath for
equilibrating an electron system, in the same way as one
could simulate a heat bath using harmonic oscillators.
Second, Eq. (2.14) shows that the limit t— o has to be
taken before ' 0. This means physically that one first
has to wait until the system has reached thermal equilibri-
um and one can then make the coupling arbitrarily small.
If one first switches off the coupling (I'—0), the system
could never reach thermal equilibrium even if one would
wait an arbitrarily long time. Thus the sequence of limits
is dictated by physics and their performance does not gen-
erate problems.

III. PATH INTEGRAL APPROACH
FOR THE GENERATING FUNCTIONAL

We will now use the path integral approach to present
an explicit expression for the generating functional for the
correlation functions of a many-electron system in a heat
bath. This method has been introduced originally by
Feynman and Vernon® and was applied successfully by
Caldeira and Leggett’ to describe quantum Brownian
motion. The main difference with our approach is that
we are using path integrals with Grassmann variables,® in-
stead of real or complex variables, because they are more
appropriate for electron systems. The heat bath is made
up of electrons and the coupling between it and our sys-
tem is also different, as outlined in the preceding section.

Our starting point is the evolution equation [(1.3)—
(1.7)] for p,, the reduced density matrix of our system

—-iH(tf—ti)p iH(tp—1;) )

ps(tf)=Trbe 3(1,')Pb(t,')e (3.1

The total Hamiltonian of the system (s) interacting
with the heat bath (b) is
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H=H,+H,+H,, , (3.2)
where
H,=H,{c/,c)} (3.3)

describes a many-electron system (with arbitrary interac-
tions) with creation and annihilation operators c,T,c,. The
heat bath has, as in Sec. II, the Hamiltonian

Hy,= 3 eiafay , (3.4)
k

and the coupling Hamiltonian is, in analogy to Eq. (2.1),

Hop=3 (Vielag+He.), (3.5)
Lk
assuming
r
SoteaViVie. =y [ e, (3.6)
k

in analogy to Eq. (2.5). We are again interested in time
scales of our system much larger than those correspond-
ing to the characteristic frequencies of the heat bath, as
was discussed following Eq. (2.6).

Next we calculate p;(zs) in the so-called holomorphic
representation; i.e., we consider the matrix elements of the
density operator p,(¢) in a basis of unnormalized states

lla)=e"=|0) , 3.7)

where the a’s are Grassmann variables (see Appendix A).
These states are the fermion equivalent of the (unnormal-
ized) coherent states used for bosons. For the convenience
of the reader we list some properties.

(i) The unit element can be written as
[ dalja)e~*"*(al|=1. (3.8)
(ii) The states are not orthogonal and their overlap is
given by
((BIN]|a))=e"e. (3.9)

(iii) Matrix elements can be easily calculated using the
normal ordered form Ay of the operator 4 (expressed
with creation and annihilation operators):

A(B*,a)=(B||A(a",a)||a)=eP 24y (B*,a) . (3.10)

(iv) The trace of an operator is given by

Trd=— fdzae"‘“A(a",a) (3.11)

if A(a*,a) is an even function of the Grassmann vari-
ables.

By using these formulas in Eq. (3.1) the matrix element
(¥7llps(to)||y ) can be written as
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. , iH (tp—1;) H(tp—1;)
(rrllos(ee)lly sy =Trp yylle T (o (e T Ty )
=— [ expla}-a;—a-a;—aj*-ai—y} -y} —vi*-vi)d asd’a;d aid?yd%y;
, —iH(tp—t;) , ' vy JHe—1)
X (¥paslle ™ T lany ) vl los e [7: e lps )l lai M viaille 7~ % llasyy)
(3.12)

where

a=(ap,...,q-..),

[ d?a=T] [ d%
k
refers to the bath and

Y=(YI7' .. ’YI’-”)n

fd21’=l—llfd27’1

refers to the system. Representing the time-evolution
operators by bath integrals, i.e.,

—iH(t;—t;)
o Ha1771’>

<T}’afHe
r}' a}‘ .
= [, o [,/ D" T )

where

r‘l

’ _ 2, 2., —r.-‘ Yi—Yi 'Y
rllesttp)llyy) = [ d*vid*vie i fn

where
F{y,y'} feaf ayafa—aitaly ’a;d’a;da;

XK {a},t5;a;,t;v 1K (@, —iB;a;, 00}

XK{ai*,t;a5,t57') (3.17)
is the influence functional. Here we used
1 —BH, , ,
(allps(t)lla’) =— (alle ST
= ZCXP Se aka }
=K{a*,—iB;a’,0;0} (3.18)
and
Zk=1+e_ﬁ€" .

The influence functional F{y,y'} is equal to 1 if the cou-
pling between the system and the heat bath is switched off
(H,.,=0). Then Eq. (3.16) describes the time evolution of
the density matrix p; as given by the time-evolution

[feg)Ot' —t)— f(—g)O(t —1")

Gi(t,t')=i —fl—g)

T . iSslyl—iSs(y) ' i
DYy fyf Dxye s TSRy Willps )71

Fle)0t —t)—f(—g)O(t"—1) |©

iSs=3rfvr+viv)
'f 1, * PO .
+ [, dilz Gy —y* 1) —iHs(y*,p)]
and
iSg=sla}-a;+af-a]
tf 1, .
+ ft’ di[7(a*-a—a*-a)—iHy(a*,a)
(3.14)

—iH, ,(y*,y;a%,a)],

and introducing

a}’ s
[,/ D% s

the matrix element of p,(¢/) in Eq. (3.12) can be written in
the convenient form

K{af,tpa;,t;7(0)) =

(3.16)

I
operators of the system H; alone:

Ylf* iS.
fr,- Dye’ str)
and (3.19)
y'."' . ,
i 2., "‘SS[Y}
frf D*y'e .

In the presence of coupling, the influence of the heat bath
on the time evolution of p; is contained in F{y,y’}.

Since F{y,y’'} contains only Gaussian integrals it can
be calculated in explicit form. Using the expression for
K {a,'-,tf;a,-,t,-;y] for a free system derived in Appendix
B, one arrives at

F{y(),y'(1)}
=exp _zf dtf dt’ z | Vi | 7 J0)Gi (e, 7,2 |
(3.20)
where
7IO=[vi Ly )] (3.21)
and
St it =t (3.22)
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Its Fourier transform becomes, in the limit t;— + o0,t;— —

fl—egg) f (ex) .
2 8
o—c, 16 T oeid mif (€;)0(cwey )
Gilo)= if " ) Fleg) fl—e) |° (3.23)
TR O 6 O—¢€x+id0 w—g—id
T
where 8 is an infinitesimal positive constant introduced to ~ with
regularize the propagators when the limit #y— + oo,
— — o i taken; and | . [tanh(Bor2)  —2f(a)
riw)= [ die™y 1), @==iT| 2f(_w) tanh(Bws2)|- (29
with similar definitions for the other fields. Performing I 4 to obtain th i functional
the sum over the states k of the heat bath and using Eq. n - orger ootamn  the generatng lunctiona

(3.6), one obtains

Fiy(o),7" (@)} =exp

b

. do et s v~
—i f;;YI(w)G(w)y;(w)

(3.24)
]

Z{g,q )= [ DY [ DY exp

with

7l o=[y*0,9*0],

where the functional integral over the variables y(s) and
7'(¢) extends now over all times — o0 <t < 0.

The normalization of p; is automatically assured since
one has

Z{0,0}=Trp,( 0 )=Trp,(— 0 )=1. (3.27)

As a matter of fact, it is not necessary to set the sources
7(2),m'(¢) equal to zero. It suffices to take them equal,
i.e.,, 9'()=7(2) to find

Zin(t),q(t)}=1.

Equation (3.26) for the generating functional
Z{n(1),m'(2)} is, together with the explicit expression for
F{y(2),y'(t)} in Eqgs. (3.24) and (3.25), one of our main
results. By taking derivatives with respect to the source
fields #(¢),'(z), one can generate directly from
Z{n(t),m'(t)} all relevant correlation functions and
Z{0,0} =1 ensures the absence of the denominator prob-
lem (the denominator is 1). Random averages over

1 o —E —itanh(Bw/2)

Golw)= (co——E)2+F2 erf( —o)

[ _wi[ﬁ*(t)‘f(z)+7*<z)‘ﬁ<r)]d:}e‘sS"“”e“'SS"""‘F[ym,y'u)} :

(0—E)—iT tanh(Bw/2) | *

Z{q(t),m'(t)} for the electron system from which one can
derive all time-dependent correlation functions, we intro-
duce in Eq. (3.16) source fields #(¢),n'(¢), couple them to
the y(2),7'(¢), use for p; (t;=— 0 )=|0)(0| (for simpli-
city, since the initial value of p; is not relevant), and take
the trace. This yields

(3.26)

[

Z{n,7’} can be easily performed since they involve only
averages over e's{7lg =Ss(7),

In order to establish a connection to the results of Sec.
I, we finally calculate Z{7,’} explicitly for a free elec-
tron in a heat bath which is described by H,, in Eq. (2.1).
We can then drop the index / and obtain for the action of
a free particle (without the boundary terms)

iS{y}= fdt[%(?'r—y'?)—iEr‘r]
(3.28)

=if%$(w-—E)}"(a))y(m).

Using Eqgs. (3.24)—(3.26), Z{n,n'} can be calculated by
performing Gaussian integrals and one obtains

Z{n(),n(w)} =exp —if%ari'ﬁT(w)Go(w)ﬁ(w) :

(3.29)
where
7 l0)=[1*(0),7"*(0)]
and
-2il
iTf (@) (3.30)
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This yields for the thermal occupation number
do _ 3 3

tay e
{c'e) 27 3n*(w) an'(w)z

n=7"=0

L [ do— 5 fl@)=f(E) for [0,
™ (@—E)+T?

(3.31)

i.e., the same result as Eq. (2.14). Therefore, the path in-
tegral formalism of this section is, for the case of one free
electron in a Fermi sea, equivalent to the Langevin-
equation approach of Sec. II. For an interacting system
the result of Eq. (3.30) is the free propagator to be used in
perturbation theory.

For I'—0, Eq. (3.30) yields just Eq. (3.23) (with the
sign of the off-diagonal elements changed). This is not
accidental, as one can see, comparing this propagator,
which refers to a system coupled to a heat bath and where
the temperature dependence comes from this heat bath, to
the propagator (3.23) for a system in thermal equilibrium
at temperature T.'>!? In this case, we do not have the
heat bath and p,(¢;) is the equilibrium density matrix. To
derive the propagator we could again add a source term to
the action similarly to what we did in Eq. (3.26). Due to
the similarity between this source term and the Hamil-
tonian of Eq. (3.5) for the coupling between the system
and the heat bath, the calculation of the new propagator is
similar to the calculation of the influence functional
which we have performed [see Eq. (3.17)]. One then ar-
rives again at Egs. (3.22) and (3.23), the only difference
being that the sign of the off-diagonal elements of those
matrices must be changed, since in Eq. (3.26) the source
terms in 7 and 7' have the same sign. One concludes then
that the propagator for the system coupled to a heat bath
can be obtained from the propagator for the system in
thermodynamic equilibrium replacing the infinitesimal
positive constant 8 by the finite damping I and using
necessarily, for the argument of the Fermi functions, the
frequency (and not the energy of the system). As a result,
the physical quantities are expressed by Lorentzians of fi-
nite width ' convoluted in frequency with the Fermi
functions, as found in Eq. (3.31). In the weak-coupling
limit, I'—0, one recovers the equilibrium results.

Finally, Eq. (3.30) can be interpreted as being the zero-

temperature propagator to which the heat bath gave a
self-energy correction given by Eq. (3.25). The damping
and the noise-noise correlation functions can be read off
from Egq. (3.26), similarly to what happens in the case of
harmonic oscillators.”!! The independence of the initial
ps(t;) is easily understood, since it only affects the infini-
tesimal 8§ regularization, and in the presence of a finite
damping I, one can take §—0, washing out that depen-
dence.

IV. DISORDERED ELECTRON SYSTEMS
WITH INTERACTIONS

In this section we calculate the generating functional
for a disordered electronic system'*~!¢ with interactions
and discuss some of its symmetry properties. Our model
Hamiltonian reads

t t .t
H=3 (tycpcy+Vuecucpcycy) , (4.1)
wp
where pu=(i,0) denotes the site i and the spin index o.

The hopping matrix elements t,, =;;8, , with t; =1;

are chosen to be a random Gaussian distribution having
a width A;=(|#;|?)p. The interaction term ¥,
=V(i —j)(1—8;;) describes, e.g., the unscreened
Coulomb interaction between the electrons. But we would
like to point out that our formalism works as well if we
take for Vs the interaction term in the Hubbard model,
%.e.,‘ Vup=Ub;;(1-8, ,) or, with a proper change of spin
indices

t 1 t t

“2, Viweuewewen—V Zencicien, V<0,
- i

the attractive electron-electron interaction of a model su-
perconductor. Using Eq. (3.26) the generating functional

which corresponds to the Hamiltonian of Eq. (4.1) be-
comes

Z{h}= [ D [ Dryeto"?) 42),
where
Lo{y,v'}=Laly.¥'} +L.{y.7'} (4.3)

and L,,L, denote the random and nonrandom part of the
Lagrangian L,, respectively. The nonrandom part is
given by

L, Y}=73 f dt{[v p Oy () =y Y (D] =7 S Dy () —yl (D ()]
mn

—i 3 Vi [ @l 0y 0y, (0 —y i 0y ey ey 0]
oy

+ 3 [at [dry Gt =18, +hu (1,t)]yt") .
Hop'

Here, y,t(t):[y;(t),y,'f(t)]; the matrix G(t —t’') is given
by the Fourier transform of Eq. (3.25),

O T @.5)

(4.4)

and we introduced a matrix of source fields A, (z,¢').
The random part of L reads

Ly=—i 3ty [ atlysoyun—y y0] . (4.6)
"y
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Let us now discuss some symmetry properties of L. We
consider three questions: (i) What corresponds in our for-
malism to the replica symmetry? (ii) What happens to the
hyperbolic symmetry of the localization problem in the
presence of interactions? (iii) How does time-reversal
symmetry show up in Ly?

To answer the first question we consider the nonin-
teracting case, i.e, V,, =0, and put h,,(t,t')=0 and
I'=0. Then Eq. (4.3) becomes, after Fourier transforma-
tion in time,

L=i3 [ %;ra—’-w[y;(w)yp(w)—y,','(w)}';,(w)], @.7)
m

L= 3 iy [ 2200~y @) . @9
By

By comparing L, to the corresponding expression in the
formulation which uses replicas [Egs. (2.7) and (2.8) in
Ref. 16], one can see that the frequency @ plays a role
which is somewhat similar to the replica index n and that
the static limit ®—0 corresponds to n—0. But although
L, is invariant with respect to rotations of y(w) or y'(@),
the Lagrangian L, does not have this invariance because
of the factor @ in L,. Therefore, we conclude that a sym-
metry which is equivalent to the rotation symmetry in re-
plica space does not exist in our formulation.

However, the hyperbolic symmetry'>!® which ex-
changes the branches ¥ and ¥’ and whose important role

i,j,0,0'

~Vio OV Lol E VY o (W D)+ 7 (0 ot W ol )y o (0]

As a next step, variables which are coupled by A;; and
V,u are decoupled by a Hubbard-Stratonovich transfor-
mation and (Z{h} ), can be written in terms of complex
matrices:

(Z{(h})p~ [ DQ [ DPLIOP) 4.12)
where
L{Q.P}=— 3 [(A~"); TrQ,Q; +i (V") Tr(P,MP;)]
iJj
—TrIn(E —P —Q +h) (4.13)
and the matrices Q, P, E, h, and M are given by
Q:{a,0,0;a',0',0'}; hi{a,0,0;a'0'0"} ,
P{a,0,0;a',0',0'} =8, 48, o Pila,0+ ') , (4.14)
i - 0
E =6, ,8w—o’) 0 —iw —iG(w) |,M = 0o —1/

Here, the index a labels the different branches y and ¢’
and we have specialized the source field to be diagonal in
the spatial variables. Equation (4.13) yields, to the best of
our knowledge, for the first time, a closed expression for

Li=—3 3 A [dt [drlyie(or, ey} )y, o0

for localization was first observed by Wegner is preserved
by Lo [see Egs. (4.4)—(4.6)]. This symmetry is weakly
broken for I's40. But, if we include the interaction part
Vw0, then the hyperbolic symmetry is broken massive-
ly. This means that, in the presence of interactions, a
delocalization transition in two-dimensional systems is no
longer forbidden by massless Goldstone modes.

We observe finally that time-reversal invariance shows
up as a Z, symmetry in Lo,'* i.e,, L, is invariant against
taking the Hermitian conjugate and interchanging primed
and unprimed variables:

Lity'v)=L{r.v'} .

This symmetry is always present in the full expression for
L, [i.e., [0, Vw70, but h,,(t,t')=0] and does not
change if one takes the random average of Z{h}.

In order to obtain a field-theoretic formulation of the
localization problem in the presence of interactions, which
is amenable to a renormalization-group analysis, we next
calculate the averaged generating functional (Z{h}),
and perform a Hubbard-Stratonovich® transformation to
express (Z{h})p in terms of complex (not Grassmann)
matrices.

Taking the random average of Eq. (4.2) yields

(4.9)

(Z{h})p= [ D [ Dyeet, (4.10)
where L =L, +L, and
_YZG(I)Y;',G(t,)Y;:a’(tl)Yj,o(t)
(4.11)

the generating functional of a disordered electronic system
with interaction, in terms of complex matrices. One re-
covers for P =0, B— w0, the noninteracting case in a form
which looks strikingly similar to previous results'4~16 but
which avoids the replica trick. The interaction introduces
an additional matrix field Ps40. As mentioned in the in-
troduction to this section this formulation is appropriate
to study the competition between localization represented
by the Q fields and ferromagnetism represented by the P
fields, or superconducting represented by some other P
fields associated with the Cooper-pair densities.

V. SUMMARY AND CONCLUSIONS

We started by studying the motion of an electron sys-
tem in the presence of an electron heat bath, i.e., the
Brownian motion for electrons. First, we considered a
system of free electrons. Choosing in an appropriate way
the density of states for the heat bath and the coupling be-
tween the system and the heat bath, we derived a
Langevin equation for the electron system, with damping
and noise terms. The noise-noise correlation functions
were obtained, providing us with the fermion analog of
the noise-noise correlation functions for the usual
harmonic-oscillator Brownian motion. In order to be able
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to consider interacting electron systems, we used the
Feynmann-Vernon approach. Using path integral tech-
niques with Grassmann variables and making use of the
density of states and coupling chosen before, we obtained
the influence functional reflecting the presence of the heat
bath on the action for our system. The unperturbed prop-
agator for a perturbation theory was derived. It is in-
dependent of the precise expression of the initial density
matrix for our system, and it gives immediately the results
obtained before for the free system. Comparing it with
the propagator for an electron system in thermal equilibri-
um, one observes the broadening and the frequency convo-
lution effect due to the finite damping. In the weak-
coupling limit we recover the equilibrium results. We
wrote then the generating functional for the correlation
functions of a many-electron system, with interactions, in
the presence of a heat bath.

This formalism is particularly important for disordered
systems where one has a thermal and a random average to
perform. Choosing initial conditions independent of the
disorder, all disorder will be in the time evolution of our
system and the so-called denominator problem is avoided.
The heat bath ensures that the system approaches equili-
brium.

Finally, we considered the electron localization problem
due to a disordered hopping matrix, in the presence of an
interaction. Our method provides a natural formulation
of this problem, on physical grounds, avoiding formal ma-
nipulations like the replica trick or the superfield method.
Some symmetry properties of the effective action of the
electron localization problem in the presence of a
Coulomb interaction were discussed and we gave an expli-
cit expression of the corresponding generating functional
in terms of two sets of complex matrices (one referring to
the disordered noninteracting electron system and the oth-
er taking into account the interaction).

We would finally like to point out that our method has
a number of important physical applications. It could be
used to study in electronic systems the interplay between
disorder and Coulomb interaction or disorder and super-
conductivity. Furthermore, one could also study the in-
fluence of disorder on the electron-phonon interaction by
using for the electrons our method and for the phonon
field, e.g., the Caldeira-Leggett approach. Finally, our
formalism could be immediately applied to bosons with a
finite chemical potential, just using complex variables in-
stead of Grassmann variables and replacing Fermi func-
tions by Bose functions. This would, e.g., be important
for the study of superfluidity of helium on a random sub-
strate.
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APPENDIX A: GRASSMANN VARIABLES
AND HOLOMORPHIC REPRESENTATION

Grassmann variables are the classical fields associated
with electrons and are therefore characterized by their an-

ticommutation relations,? given by

{anaj}={a],a]}={a;,aj}=0. (A1)

As a result, the most general function of a finite number
of them is a polynomial, with the product of all the vari-
ables in the highest monomial. When working with them
one tries to keep, as much as possible, to the usual rules.
As an example, differentiation still follows the usual rule

da*B)=(da*)B+a*df, (A2)

but since the variables anticommute, we must make the
distinction between left (d /d) and right (3 /d) deriva-
tives, according to out of which side we take the differen-
tial da* (or dB).

The requirement of translational invariance for integra-
tion, i.e., of

[ fla+Brda= [ fla)da, (A3)
implies that

[ da= [da*=0. (A4)
As a convention, one then defines that

f ada= f da*a*=1 (A5)
and uses the notation

d’a=dada* . (A6)

Complex conjugation is the analog of Hermitian conju-
gation and so it reverses the order of multiplication. As a
result of the rules for integration, the change of variables
is similar to the usual one, with the only difference being
that one must divide by the Jacobian of the transforma-
tion instead of multiplying by it [see also Eq. (B6)].

Finally, by definition, the electron creation and annihi-
lation operators anticommute with the Grassmann vari-
ables, and if one chooses that

al0)=]0), (A7)
one finds that
all)=—|1Da, (A8)

where |0) and | 1) are the usual electron states.

Electron coherent states |a) are, by definition, (right)
eigenvectors of the annihilation operator a, with eigen-
value a, i.e., one has

ala)=ala). (A9)

Their properties are formally similar to the boson
coherent states. They are given by

la)=D(a)|0), (Al0)
where

D(a)—et'a—a%a (A1D)

—¢—(1/2a*a,a'a, —a*a (A12)

as can be seen from the property
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D~ Ya)aD(a)=a +a . (A13)
Their inner product is given by

(B|a)=exp(—+B*B—ta*a+B*a) (A14)

=exp[+(B*—a*)a—3B*(B—a)] (A15)

and they can be used to write down a decomposition of
the identity

f la)d’ala|=1.

One could use these coherent states |a) and consider
the matrix elements of the different operators between
these states. In the path integral formalism, however,
where the variables a and a* are treated as independent, it
is preferable to use the unnormalized states ||a) given by

||a)=e(l/2)a*a|a>=ea+a’0) , (A17)
|

(A16)

which depend on the single variable a (and not on a*) and
are still (right) eigenvectors of the annihilation operator.

The decomposition of the identity, the inner product of
these states, and the holomorphic representation of opera-
tors is given in Egs. (3.8)—(3.11).

APPENDIX B: PATH INTEGRAL
FOR ELECTRONS

The path integral expression for the evolution operator,

—iH(t;—1;)
K{astpa;,t;0) =(aslle YA

| ]a,- ) , (B1)
can be obtained by splitting ¢, —1; into N subintervals of
length (¢, —1;)/N, using the decomposition of the identity
given by Eq. (3.8), defining ay=aq;, ay =af and keeping
only terms of order 1/N for the action,

N=1 N-1
K{a},t,«;a,-,t,-;O}:}}im f I1 daxexp Hakay_1+afa)+5 3 (@ky1—akla
—® k=1 k=1
N2, N-1 .
-3 3 akplagp—ax)— 2 Hylakpake (B2)
k=0 k=0
11 |da* da , .
= szaexp‘%[a}a(tf)+a‘(t,~)a,~]+ f"_ [7 i a—a —dt—]—tHN(a ,a)|dt i, (B3)
|
where . = -
da =iaH’ da _OH B7)
dt da dt 3ca*
N=1
D= lim [J d%a . (B4)  Their solutions, with the appropriate boundary conditions,

Noreo =y

The appropriate boundary conditions for the path in-
tegral trajectories are a(t;)=a; and a*(t;)=ajf, as one
should expect from the functional dependence of
K{af,tp;ai,t50}) on @; and af or from the derivation of
the path integral. For the case of a free-electron system
with time-dependent sources 7(t),7*(z) described by a
Hamiltonian

H=ea'a—n*a—a'y, (BS)

the path integral for the matrix element (B2) can be solved
exactly using the basic Gaussian integral with Grassmann
variables:

: — * —i *
[ d2aet "o T _ger _iGg e ™ 0. (B6)

As for the case of Gaussian path integrals with real
or complex variables the exponential factor of
K[a},tf;ai,ti;o] is in fact equal to exp(iS), where S is the
action evaluated at the trajectory which satisfies the equa-
tions of motion

—i —t. t . ,
aly=e " Vo qi [ e ="ty (B8a)
. t
a*(=aje " pi [ Tntaeti—"ar (B8b)
t
yield
K{af,tpai,ti;m) =exp(a}e_i€('f_"' a; +afn+7 *a;+A4)
(B9)
with
t .
w=i [ dre ™ "y, (B10a)
t S
7r=i [Tdiqgte ™, (B10b)
and
t t . ,
=- fz.fdt f:. dt'n*(t)e 7" ~n(t’) . (B10c)

As can be seen from Eq. (B2) the determinant for the pre-
factor in Eq. (B9) is simply 1.
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