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Specific-heat study of random-field and competing-anisotropy effects in Fet „Co„C12
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%e report a comprehensive specific-heat study of the mixed antiferromagnetic system
Fel „Co„C12with x =0.286, 0.366, and 0.604. Four different issues related to competing anisotro-
pies and random fields are discussed. {i) In zero field, a single sharp peak at the Neel transition Tg
is seen in each sample. There is no evidence for additional transitions at lower temperatures. %e
suggest that there are differences between systems with competing Ising-XF anisotropies and those
with Ising-Ising anisotropies. Some new neutron scattering data are presented. The behavior of oth-
er competing anisotropy systems is discussed. (ii) %hen a small magnetic field H is applied along
the easy axis (c axis) in Feo 7l4Coo fs6Clq, it exhibits a random-field Ising model (RFIM) behavior
similar to the diluted system Feo6g2Mgo 3lsC12. The reduction of T& obeys the scaling prediction
T~(H}=T~(0} AH —BH r&—, where the crossover exponent p is found to be 1.24+0.09. The
shape of the specific-heat peak also changes continuously with increasing field. This is attributed to
crossover effects in constant applied fields. Small thermal hystereses between the field-cooled and
field-warmed data were detected in Feo6S2Mgo 3lsC12, but not in Feo 7l4COQ286C12. Some previously
unpublished results on Feo 682Mgo 3lsC12 are presented. The measurement of the specific-heat critical
exponent a is also discussed. %e point out that the standard indirect methods, such as susceptibility
and birefringence, may be invalid in finite fields. Our direct specific-heat data suggest that a is
large and negative (= —1). This can be interpreted as a Fisher renormalization effect. (iii) In higher
fields, Feo 7l4Clo 286C12 has a spin-flop (SF) phase. Sharp cusps are observed at the transitions to the
paramagnetic (PM) phase, but no anomalies are observed at the transitions to the low-field uniaxial
antiferromagnetic (AF) phase. The AF-PM boundary is found to join smoothly to the SF-PM boun-
dary at an inflection point and the peak near this point shows substantial rounding. Possible experi-
mental and theoretical causes for these observations are discussed. (iv) In Feo 396Cop 6o4C12, the spins
order perpendicular to the e axis in zero field. For applied fields parallel to the c axis, the system
should correspond to the three-state Potts model in random fields. %e find that the shape of the
specific-heat peak changes with increasing field in a manner similar to the RFIM systems, becoming
quite symmetric at 19.2 kOe. The phase boundary can be described either by the singular equation
given in (ii) with an unusually small crossover exponent /=0. 4220.03, or by an analytic equation
involving unusually large H and H terms. These results are not well understood.

I. INTRODUCTION

Fe~ „Co,C12 is a hexagonal lattice antiferromagnet
with competing anisotropies. The Fe spins have an easy
direction parallel to the c axis (Ising-like) and the Co
spins have an easy plane perpendicular to it (XF-like).
Susceptibility and neutron scattering experiments reported
in a previous paper' (hereafter referred to as paper 1) have
found a tetracritical iike magnetic -phase diagram in zero
field (Fig. 1). For high Fe concentrations, the spin com-
ponent parallel to the c axis (S~~) orders and, for high Co
concentrations, the spin components perpendicular to the
c axis (S~) order. For intermediate concentrations near
x =0.31, S~~ and Sz appear to order at two different
temperatures. These qualitative features of Fig. 1 can be
explained by Landau theory and mean-field calcula-
tions. ' A renormalization-group theory by Fishman
and Aharony (FA) has predicted further that the order-
ing of the two components are asymptotically decoupled
near the tetracritical point M and the phase boundaries
should cross smoothly, but these are not seen in most sys-
tems. For Fe& „Co„C12,paper 1 showed that S~~ and S&
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FIG. 1. Magnetic phase diagram, from paper 1.

are strongly coupled, and the lower transitions, represent-
ed by the lines CM and DM in Fig. 1, are smeared, resem-
bling the behavior of a ferromagnet in applied fields.
These results were thought to be caused by random off-
diagonal exchange interactions, which can generate ran-
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dom molecular fields and destroy the lower transitions.
Such interactions should exist because of the lack of local
symmetry in a random system, ' ' but they were not in-

cluded in FA's theory. During the last few years, several
other systems with competing Ising XF anisotropies have
been studied in detail and they a11 show similar evidence
of S~~-S~ coupling. " ' In particular, when one com-
ponent orders at the upper transition (line AM or BM in

Fig. 1), it seems to induce some degree of ordering in the
other component. In many cases, one of the lower phase
boundaries could not even be observed. However, in
Fe, „Co„C12.2H20, which has orthogonal Ising-Ising
competing anisotropies, the predictions of FA do seem to
be obeyed. ' This was attributed to the quenching of
the orbital moment in the Fe2+ ion, which should
give very small off-diagonal terms.

Although the importance of the off-diagonal terms is
clear, their effects are not well understood. In particular,
when paper 1 was written, it was widely believed that ran-
dom fields could destroy phase transitions for both Ising
and XY systems in three dimensions (3D), and thus
we interpreted the smearing of the lower transitions as a
random-field effect resulting from the off-diagonal terms.
However, more recent studies have shown that the
random-field Ising model (RFIM) has a well-defined tran-
sjtjon jn 3D, 8 whjch js only smeared by nonequjljbn-
um effects in the experiments when the system is cooled
in the presence of random fields. ' Since the lower
transitions are similar to the field-cooled experiments, the
argument in paper 1 may still be valid. On the other
hand, there are other effects which cannot be explained by
random fields. For example, S~ was found to have very
long correlations well above TI, ' while random fields
should suppress these correlations. In order to gain a
better understanding, it would be best to make a more de-
tailed comparison between the lower transitions and other
genuine random-field transitions. For example, the tran-
sitions along the AM line in Fig. 1 are Ising-like in zero
field and they correspond to the RFIM when a field is ap-
plied along the easy axis. ' These can be compared
with the lower transitions on the CM line. Similarly, the
transitions along the upper line SM are XF-like. An axial
field induces a finite moment (S~~(i)) at every site i,
which produces random molecular fields on S~ through
the off-diagonal exchange terms. At the same time, Ba-
zhan and Ul'yanov have shown that the crystal symrne-
try of the system allows a fourth-order term in the Lan-
dau free energy of the form uM~~Sq, where M~~ is the uni-
form magnetization. This gives a three-state Potts aniso-
tropy. Hence, the transitions should correspond to the
three-state Potts model in random fields. According to
Mukamel, the transitions along the DM line are also
described by the same model, because a mSI~S& term in
the free energy is allowed by symmetry. Thus by studying
the upper transitions in applied fields, one can gain some
insights on the smeared lower transitions in zero field.
Furthermore, if the coupling constant u is large enough,
one may be able to observe random-field effects for a
three-state Potts system.

In this work, we carried out a comprehensive specific-
heat study on three FeI Co„C12 samples with x =0.286,

0.366, and 0.604. Our objectives are fourfold:
FeQ 7&4CoQ 286C12 and Feo 634Coo 366C12 have concentrations
on different sides of the multicritical point M in Fig. l.
We can characterize the specific-heat behavior of the
lower transitions and compare it to the
Fe~ „Co„C122H20 system which shows sharp lower tran-
sitions. ' (ii) Feo 7&&Coo 2s6C12 has spins that order uni-

axially near the upper transition. %e can study its RFIM
behavior and compare it with the lower transition in

Feo 634COQ 366C12. In addition, because previous neutron
scattering studies on FeQ 725CoQ 275C12 and FeQ 7MgQ 3C12

have shown some difference in the nonequilibrium
behavior (hysteresis), it is of interest to compare the
specific-heat of Feo z&&Coo 2s6C12 to Feo 6&2Mgo 3isC12,
which had been studied previously. Some unpublished
data on Fe06s2Mgo»sC12 are presented here for this pur-
pose. (iii) From a neutron scattering study on

FeQ 725COQ 275C12, we expect Fep 7&4CoQ 286C12 to have an33

unusual spin-fiop phase in high fields with no long-range
order. A specific-heat study will further characterize the
behavior of this phase. (iv) The Feo 396Coo ~C12 sample
orders hke an XY system in zer'o field. An axial field
should cause it to behave like a three-state Potts system in
random fields. The results can be compared with both the
lower transition of Feo 7i&Coo 2s6C12 in zero field, and its
high-field transitions associated with the spin-fiop phases.

The organization of this paper is as follows. In Sec. II,
we describe the technical details of the experimental
method. Section III gives the zero-field results of
FeQ 7~4Coo. 286C12 and FeQ 634CoQ 3«C12. Sections IV, V,
and VI describe the effects of applied fields on

FeQ. 714Co0.286C12 F 0.682MSO. 318C12 and F 0.396Co0.604C12

respectively. In each of Secs. III—VI, we also compare
our results to other studies on similar systems. Section
VII summarizes the current status of competing-
anisotropy systems and random-field systems. Some un-

published neutron scattering data on FeQ 725COQ 275C12 are
presented for the discussion of competing-anisotropy sys-
tems. The issue of critical behavior in RFIM systems is
discussed in detail. In particular, me point out the prob-
lems of using indirect specific-heat techniques, such as the
linear birefringence, on random-field systems. Based on
our direct specific-heat data, and similar data on
Mno 45Zno 55F2 by Ikeda and Kikuta, we suggest that the
specific-heat exponent a is large and negative (= —1).
The possible theoretical explanations are discussed.

II. EXPERIMENTAL METHOD

Single-crystal boules mere grown by the Bridgman
method. They have composition gradients typically
about 0.01 at. %%uo/c malon g th egrowt hdirection . Tomin-
imize the smearing of the transition due to sample inho-
mogeneity, we use small samples in the shape of flat
platelets, about 3X3X0.2 mm in dimension and 5 mg in
weight. This limits the variation in x (5x) to about 0.003
and the transitions are always sharper than 10 (sorne-
times as sharp as 10 ) in reduced temperature r. Al-
though this is not sufficient for a reliable measurement of
the exponent a, much useful information can be obtained.

As in our previous work on Fe& „Mg„C1„, we used a
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thermal relaxation technique suitable for small samples.
The large surface of the sample is the natural cleavage
plane of the crystal, perpendicular to the c axis. It is
glued onto a Aat bolorneter by melting a small amount of
Apiezon-N grease (-0.2 mg) between the surfaces and
pressing them together. The bolometer is made of a 76-
pm-thick sapphire slide slightly larger than the sample.
Separate Au-Ge alloy and Cr films were deposited on the
back of the bolometer which serves as a resistance ther-
mometer and a heater. Each of these films is attached to
two Au —7 at. %%uoCuwire s(76pm indiamete ran dabou t 1

cm long) which are thermally anchored at a copper block.
The block is held at a fixed baseline temperature To by a
temperature controller. The whole assembly is mounted
inside a chamber that can either be filled with exchange
gas or evacuate. An additional vacuum jacket isolates
the chamber from the helium bath. A superconducting
solenoid in the bath provides a vertical magnetic field up
to 20 kOe. The gold wires attached to the bolometer serve
to suspend it in a slightly flexible way such that the
sample's orientation can be adjusted to have the c axis
parallel to the fleld. The wires are strong enough to resist
possible magnetic forces (which are less than the sample's
weight) due to field inhomogeneity and the sainple's an-
isotropy. Each of the wires is soldered to two electrical
leads at the copper block, so that quasi-four-terminal
resistance measurements can be made. The resistance
versus temperature curves for the films are determined
against a calibrated Ge resistance thermometer in zero
field. Magnetoresistance correction is negligible over our
field range (e.g. , at 4.2 K, the correction for 20 kOe is less
than 0.05 K).

The principle of the technique is similar to that
described by Forgan and Nedjat. The sample and
bolometer are assumed to be in thermal equilibrium with
each other, i.e., the internal and boundary relaxation times
are short compared to the measuring time. The sample
chamber is evacuated so that the gold wires and thermal
radiation define a fixed thermal link between the bolome-
ter and the copper block. If the sample temperature T is
above the baseline temperature To at the copper block, it
loses heat at a rate W(T, TO). This heat flux has a negli-
gible effect on the temperature of the copper block be-
cause of its much larger thermal mass. If there is a con-
stant heating power P in the Cr film, the sample tempera-
ture will change at a rate

dT P —8'(T, TO)

dt C(T)

where C(T) is the total heat capacity of the sample and
the bolometer at temperature T. The heat-loss function
W(T, TO) can be calibrated by determining the equilibri-
um temperature T~ for different P, because W(T~, TO)
=P when dT/dt =0. If W(T, T )ios known, the heat
capacity C(T) can be determined by measuring dT/dt as
a function of T for some given P and substituting the re-
sults into Eq. (1). The measurements were made in two
different ways in our experiments. First, we let the sam-
ple equilibrate at To with no power input, a constant
power was then turned on at time t =0 and the change in
the Au-Ge film conductance G(t) was recorded digitally
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FIG. 2. Conductance of the Au-Ge resistance thermometer
recorded upon warming and cooling the sample.
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FIG. 3. Heat capacity of the Fe07~4Coo 286C12 sample in zero
field. The two curves are obtained from the two traces shown in

Fig. 2. The warming curve is shifted up by one vertical division
for clarity. There is no evidence of a lower transition in the
10—12 K range.

by a computer. After the sample reached its final tem-
perature T~, the power was turned off and G (t) was again
recorded. A set of such data for Feo 7,4Coo 2s6C12 in zero
field is shown in Fig. 2. These traces are digitized at a
rate of ten points per second and each trace consists of
several hundred points. The sample temperature T(t) at
each point is determined from the bolometer calibration
and a piecewise cubic flt gives dT/dt versus T. The heat
capacity C(T) is then determined from Eq. (1). If the ab-
solute specific heat is of interest, the heat capacity of the
bolometer and the grease can be measured and subtracted.
The contribution from the grease can also be estimated
from literature data. ' We have found empirically that
these are small and smooth contributions which have little
effect on observations related to the phase transitions.
Hence, all the data presented in this paper are the total
heat capacity of the sample plus the addenda, without any
background subtraction or normalization to the sample's
mass. The validity of the technique was established by
measuring pure FeC12.

Figure 3 shows the C versus T curves obtained from
the traces in Fig. 2. The warming curve is shifted up for
clarity. %e note that the warming curve is truncated at
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low temperature and more noisy at high temperature.
The reason is that the heat capacity is small at low tem-
peratures. %hen a constant power I' is applied, the sam-

ples heat up very rapidly (as manifested by the steep ini-

tial slope in Fig. 2) and dT/dt cannot be obtained accu-
rately. Near the maximum temperature dT jdt is very
small and, hence, less accurate. In principle, these prob-
lems can be overcome by using a heater power that in-
creases with time. In practice, we find that the heating
curve matches very well the cooling curve (see Fig. 3) and
the latter alone is sufficient for most purposes. Neverthe-

less, heating data were always obtained to provide a com-
parison. For example, the peak positions of the two
curves in Fig. 3 actually differ by about 0.04 K (at -16
K). This indicates a slight thermal lag between the
bolometer and the sample, due to the thermal resistance of
the thin layer of N grease. By averaging the peak tem-
peratures of the heating and cooling data, this systematic
error can be reduced and T~ can be determined with a
0.01-K resolution.

III. Feo 7]QC00 p8gC12 AND Feo g34C~ 3~C12
IN ZERO FIEI.D: COMPETING ANISOTROPIES

Our first effort was to study the zero-field behavior of
7&4Coo.286C12 and Feo 634CO0, 366C12. According to the

susceptibility and neutron data in paper 1,
Fe07i4CO02s6C12 has an upper transition at T~ =16.1 K
and a lower transition at TL —11.5 K. For
Fe0634Coo 366C12, T~-16.3 K and TL -10.0 K. The
specific-heat data for these two samples are shown in
Figs. 3 and 4. Cusplike second-order transition peaks are
observed at 16.05 and 16.3 K, respectively, in good agree-
ment with the values of Ttv obtained previously. Howev-
er, there are no anomalies of any kind in the 10—12-K
temperature range for the lower transitions. Very recent-
ly, Nitsche and Kleemann have used refractive index
measurements to deduce the magnetic specific heat in
samples with x between 0.20 and 0.38. There was also no
evidence for any lower transition. Although these results
are consistent with the smeared lower transitions observed
in the earlier experiments, we shall see in Secs. IV and V
that these are not characteristics of random-field systems.
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FIG. 4. Heat capacity of the Feo 634Coo 366C12 sample in zero
field obtained from cooling data. There is also no evidence for a
lower transition.

Among the other competing-anisotropy systems, the
hydrated Fe, ,Co„Cli 2H20 is the only one that had
been studied by specific-heat measurements. ' In that
study, two successive peaks were clearly seen over a wide

range of concentrations (0.45 ~x &0.65), even when Tl.
is more than a factor of 2 lower than Tz S.uch behavior
is in sharp contrast with our data in Figs. 3 and 4, which
show no lower peak for x very close to x and much
smaller separations of T~ and TL. This difference be-
tween the two systems is consistent with how the spin
correlations develop between TL and T~. In the hydrated
system, a recent neutron scattering by Katsumata et al.
has shown that the correlations of the spin component as-

sociated with the lower transition grew in a small tem-
perature range above TL, resulting in a sharp critical
scattering peak at TL, characteristic of a second-order
transition. For the anhydrous system, however, paper 1

shows that the Si-correlation length becomes very long
when S~~ orders. One would thus expect a much smaller
entropy change at TL and possibly no detectable anomaly
in the specific heat. In Sec. VII, we address the question
of whether Si has true long-range order immediately
below the upper transition.

As mentioned in Sec. I, the hydrated

Fe& „Co„Clz 2H20 system is the only one studied to date
which has competing Ising-Ising anisotropies, and it
seems to obey all of FA's predictions. ' ~o In addition to
the sharp lower transitions, it appears to have smoothly
crossing phase boundaries. Katsumata et a/. have

suggested a logical explanation for this behavior, namely,
that the orbital moment of the Fe + ion is nearly
quenched (it has g =2.23 and S=2) and this should re-

sult in small off-diagonal exchange terms. Unfortunately,
several recent studies provide counter examples of this
idea. In Fe~ „Ni„C12, the Ni + ion has g =2.24 and
S = 1, but the lower XI'line (like DM in Fig. 1) was not
observed and S~~ seems to order at temperatures much
above the CM line in Mn& „Fe„CO3, the Mn + ion
( g =2, S = —', ) has only dipolar anisotropy, but a
Mossbauer study has found smeared lower transitions 6

in another Mn compound, K2Mn& „Fe„F4, no critical
scattering peaks were observed at TL and very long two-
dimensional (2D) correlations were believed to exist well

above TL. These three systems all have negligible orbi-
tal moments but their behavior is very different from
Fe& „Co„C122H20. Instead, they are more like the
anhydrous Fe& „Co„C12which has large orbital moments
(g =4 for the Fe + ion and g =6 for the Co + ion). ' We
note that strong departures from the FA predictions have
also been seen in several other systems with unquenched
orbital moments. In Fe~ „Co„TiO& and KzFe~ „Co„F4,
a lower Ising line (like CM in Fig. 1) was not ob-
served. "' ' In Fe& „Co„Br&,a lower XY line was not
observed. ' Not only do these systems have different g
factors, they also have lattice structures that range from
rhombohedral to tetragonal. The latter suggests that the
weakness of the FA theory is not limited to the absence of
Mukamel's mS~~S~ term, because such a term is only
applicable to systems with three-fold symmetry. The
most obvious common feature for all the systems, besides
the hydrated Fei „Co Clz 2H20, is that they have com-
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IV. Feo 7i4Coo 28gClg IN APPLIED FIELDS:
A MIXED ISING SYSTEM IN RANDOM FIELDS

As mentioned in Sec. I, the upper transition of
Feo 7igC~ 2s6C12 should correspond to the RFIM when a
field is applied along the c axis. ' Figure 5(a) shows the
data in six different fields. We observe that there is a con-
tinuous change in the shape of the peak with increasing
field, a behavior similar to the Fei „Mg,Clq system.
We note that all the data shown in Fig. 5(a) are taken by
field cooling the sample from the paramagnetic phase and
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peting Ising-X1' anisotropies. It is thus tempting to infer
that these systems are fundamentally different from the
ones with Ising- Ising anisotropies, but we have no good
arguments to support this conjecture. (In fact, there was
an early study of another Ising-Ising system
Ni„Co I „C12-282O which has two competing easy axes
115' apart, and no evidence of any lower transition was
observed. Unfortunately, only polycrystalhne samples
were studied. )

that the peak at 3.51 kOe has a rounding of about 0.1 K,
limited by the concentration gradient. Figure 5(b) shows
that there is no significant difference between the field-
cooled and field-warmed data in that field. We show in
Sec. V that a slightly bigger difference can be observed in
the diluted F~6s2Mgo iisC12 system. For fields above 4
koe, the peak in Feo 7~4Coo 286C12 broadens rapidly. The
4.49-kOe data in Fig. 5(a), for example, show a rounding
of order 1 K. In higher fields (e.g., 9.60 kOe), the peak
evolves into a sharper cusp.

Field-warmed and field-cooled data were taken in 25
different fields. The average peak temperature for each
field is chosen as the transition temperature and shown as
the solid circles in Fig. 6. They form a smooth line with
an infiection point near 5 kOe. To understand this, we
show, in the same figure, the H- T phase diagram obtained
previously for F@725COO 275C12 by neutron scattering"
(represented by the open circles and dashed lines). The
latter is known to have a uniaxial antiferromagnetic (AF)
phase in low fields and a disordered spin-fiop (SF) phase
in higher fields. This SF phase consists of large domains
( —10 A) of spins ordered perpendicular to the c axis and
this is believed to be caused by the random fields due to
the off-diagonal terms. Comparing the two sets of data in
Fig. 6, we observe that F@7I4C~ is6Clt has a slightly
lower Tz in zero field, consistent with its higher Co con-
centration. Consequently, we also expect this sainple to
have a SF phase in lower fields and, crudely speaking, the
infiection point near 5 kOe might be regarded as a
"psuedo-bicritical-point. " The specific-heat peaks below
this field correspond to transitions between the AF phase
and the paramagnetic (PM) phase, and those above it cor-
respond to SF-PM transitions. The AF-SF transition is
not observed in the present experiment. This may be due
to the fact that the AF-SF line is almost parallel to the T
axis. On the other hand, we note that this transition is a
spin-reorientation transition like the lower transition in
zero field. The absence of a specific-heat anomaly may
also be related to the existence of long Si correlations in
the AF phase.
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FIG. 5. (a) Heat capacity of the Fe{)7)4coo 286cl2 sample ln
different fields. The vertical scale applies to the bottom curve.
Other curves are displaced successively upward by one division.
All of the data are obtained by field cooling the sample. Round-
ing of the peak is seen around 5 kOe. (b} A comparison of the
cooling and warming data at 3.5 1 kOe showers no significant
difference.
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FIG. 6. A comparison of the T-H phase diagram of the
Feo 71&Coo 286C12 saxnple obtained in this work (solid circles) and
that of Feo 725Coo 275C12 from Ref. 33 (open circles).
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It is interesting to observe that the AF-PM and SF-PM
boundaries in Fig. 6 join smoothly and the specific-heat
peak is severely rounded near 5 kOe. Similar rounding
(but less severe) had also been observed in Mnp 7sZnp 2&Fz

by Shapira et al. These are in contrast to the bicritical
behavior in pure antiferromagnets. There are many pos-
sible explanations, e.g., sample misalignment, dernagnet-
ization effect, impurity smearing of the first-order AF-
SF line, and nonequilibrium effect due to the randoin
fields. p s9 We should also point out that the intrinsic
phase diagram of Fep 7I4Cop is6C12 may not be bicritical
even in the absence of all these effects. As noted in Sec. I,
the applied field induces three-fold in-plane anisotropy
and the SF phase should behave like a three-state Potts
system in random fields. According to recent theories,
such systems should have first-order transitions with or
without random fields. ' Hence, the phase diagram
cannot be bicritical, because the bicritical point is by defi-
nition the meeting point of two second-order boundaries.
In other words, there should be a totally different descrip-
tion for spin-flop phenomena in Potts systems. Conse-
quently, how we should interpret the specific-heat cusp at
the SF-PM boundary is unclear. This is an interesting
problem that needs more careful study.

The shape of the AF-PM boundary in low fields can be
analyzed as a random-field crossover effect. According to
FA,3'

22.6 22.8 23.0 23.2
T (K)

23.4 23.6

FIG. 7. The low-field phase boundary of pure FeC12 (from
Ref. 32). The straight line is a least-squares fit of the data
points, which shows that b T&(H) ~ —H2.

same as the spacing between data points in our C versus 1
curves ( —10 mK). TIv(0) was found to be 23.55+0.01 K,
in excellent agreement with the literature value for
FeC12. ' The prefactor A was found to be 0.0149 K/kOe
with negligible statistical error. These results demonstrate
that, in the absence of random fields, the analytic term de-
scribes the phase boundary extremely well. [We note that

b, TN = T~ (H ) TIv(0) = —AH BH— — (2) 25

This prediction is based on the assumption that the ran-
dom fields are proportional to the applied field. Since the
random fields are partly due to the uniform magnetiza-
tion, it would require M, (H) ccH, where M, denotes the
magnetization at the transition. We have found this to be
a good approximation in our previous study of the
Fe& „Mg„Clz system. Independent work by Gelard
et al. also confirmed this approximation. Hence, we
shall assume Eq. (2) to be true for Fep qI4Cop 2s6C12 in our
analyses. We note that the analytic AH term represents
the simple fact that the applied field favors a uniform
magnetization over a staggered magnetization, an effect
that can be explained by mean-field theory. The singu-

lar term BH ~~ is due to random-field effects and P, the
crossover exponent, is predicted to be the susceptibility ex-
ponent y in zero random field. Since the exchange in-
teractions are site random, one might expect P to be the
random-Ising exponent y„„d, . However, the crossover
from pure-Ising to random-Ising behavior is very slow
and it is unclear what exponent should be observed.
Moreover, y~„„ is well known to be 1.24 theoretically
and the best estimate for y„„d, is 1.34+0.05. This
difference is too small to be distinguished in most experi-
ments but, since the singular term's exponent 2/P is less
than 2 for any II) & 1, its effect can be detected by a plot of
0 versus Ty .2

In Fig. 7, we show an 0 versus T plot of the phase
boundary of pure FeCl& up to 8 kOe. The hne
represents a least-squares fit of the data to the analytic
AH term with two adjustable parameters, TIv(0) and A.
The standard deviation o. of the fit is 11.5 mK, about the
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FIG. 8. (a) The low-field phase boundary of Fe0714Co0286C12
shows a concave curvature in an 0 versus T plot. The hne is a
fii of all the points to Eq. (2), which gives /=1. 27+0.03. {b)
Results for P obtained by varying the maximum field in the fit.
o for the four fits are, with increasing H,„, 13.8, 12.8, 13.2,
and 12.7 IK.
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a mean-field theory calculation, using Eq. (2) from Ref.
58 and the exchange parameters given in Ref. 51, gives
A =0.065 K/kOe, comparable to the measured value.
The difference can be partly attributed to demagnetization
effect: the susceptibility of FeClz is about 0.02 emu/cm
near the transition, which can cause a 25% difference be-
tween the internal field and the applied field. ] In con-
trast, Fig. 8(a) shows a similar plot of the phase boundary
of Fe07iqCoozs6Clz up to 4.8 kOe. It clearly deviates
from a straight line. The concave curvature is indicative
of the BH ~~ term in Eq. (2) with P & l.

An analysis for {(t cannot be performed by directly fit-
ting the data to Eq. (2), because the BH ~ and AH
terms are highly correlated. Instead, we estimate the
value of A and fix it in the fit. In any theory, Eq. (2)
should be written in a dimensionless form which has all
the temperatures and fields normalized with respect to the
exchange J. This implies that the prefactor A, as written
in Eq. (2), should be inversely proportional to J, and
hence A cc 1/T~(0). Since 2 and T~(0) are known for
pure FeClz, we can estimate A for Fe07i4Coo zs6Clz from
its zero-field transition temperature ( —16.05 K):

A =0.0149 X (23.55/16. 05)

=0.0219 K/kOe

Although A is sensitive to demagnetization, we do not
make such corrections, because the susceptibility of
Feo 7i4COO zs6Clz at the transition is nearly the same as
pure FeClz (=0.02 emu/cm ). ' When the data (T in
units of K and H in units of kOe) are fitted to Eq. (2)
with three adjustable parameters, we obtain

/=1. 27(3), 8 =0.081(4), T~(0)=16.05(1) K .

The solid line in Fig. 8(a) is the result of the fit. Since Eq.
(2) is valid only in the H +0 limit, we also —fitted the data
for different maximum fields (H,„), above which the
data is excluded. We find P ranges from 1.22 to 1.28 for
H,„between 2.9 and 4.8 kOe. The amplitude 8 ranges
from 0.076 to 0.083. The quality of these fits is practical-
ly the same, with o between 12.7 and 13.8 mK, compar-
able to the experimental resolution. These results indicate
the insensitivity to the choice of H,„. Figure 8(b) shows
the fitted values of P for different H,„. The maximum
variation of P, including the statistical errors, is between
1.1S and 1.32. Using these as upper and lower bounds, we
estimate

P= 1.24+0.09 .

This result is in agreement with yp„„. However, because
there are additional uncertainties involved in estimating
A, it is not inconsistent with y„„d, . In the next section,
we show that a nearly identical result (/=1.25+0. 11}is
obtained in Feo 68&Mgo 3isC12. In other systems, Shapira
et al. obtained /=1.25+0.07 in Mn075Znoz5Fz, also in
agreement with our results. However, somewhat higher
values were found in Fei „Zn„Fz (1 4 and 1.5) and these
had been suggested as evidence for y„„d,~. ' This is
not unreasonable because FeF2 is a more ideal 30 Ising
system with a~0. MnF2 has smaller anisotropy and
FeClz is less three dimensional; they have effective ex-

ponents a (0 for reduced temperatures r & 10
Thus it is possible that the crossover from pure to random
Ising behavior is more difficult to detect in these systems.
On the other hand, one cannot be certain of this interpre-
tation for many reasons. First, the difference between

y„„d, and y~„„, is very small. Second, the estimate for
the analytic AH is an uncontrolled approximation.
Third, Hutchings et al. have found yz„„——1.38+0.08 in
pure FeFz and Birgeneau et al. have found

y„„d, ——1.44+0.06 in Feo ~Zno 5F2. These results are in-
distinguishable, but they differ from pure MnFz, which
has

& porc 1 27 0 02 The cause is not understood. Fi-
nally, Kaufman and Kardar have found that P = 1.5 in
mean-field theory. This is not inconsistent with the
Fe~ „Zn„F2 results.

V. Feo.s82Mg0. 318C12 IN APPLIED FIELDS:
A DILUTE ISING SYSTEM IN RANDOM FIELDS

During our earlier specific-heat study of
Fe~ „Mg„C12, little was known about the nonequilibri-
um effects in random-field systems. For each applied
field, data were collected by first warming the sample and
then cooling it, after which the field was increased while
the sample was at its lowest temperature and the
warming-cooling sequence repeated. Although the peak
was found to be slightly more rounded in the field-cooled
data, the difference was considered too small to be signifi-
cant. The Fe& „Co„C12data in this paper were obtained
shortly thereafter using the same procedure. The fact that
the field-cooled peak in Fe07i4Coozs6Clz is as sharp in
3.51 kOe as in zero field first suggested that there might
be nonequilibrium effects that are more severe in a diluted
system (Mg doped) than in a undiluted mixed system (Co
doped). Subsequent neutron scattering studies of
FCQ 7Mgo 3Clz and Feo zz5Coo zz5Clz have confirmed that
the hysteresis in the Mg-doped system is indeed stronger.
To make the comparison between the two systems more
complete, we present here some previously unpublished
results of Feo.682Mg0. 318C12'

Figures 9(a)—9(d) show the field-cooled and field-
warmed curves for four different applied fields. The
0.964-kOe data show that, within the experimental resolu-
tion, the two curves are indistinguishable. As the field in-
creases, the field-cooled peak becomes slightly more
rounded than the field-warmed peak. The difference is
barely noticeable in the 2.88-kOe data, but becomes more
apparent in the 3.26- and 4.80-kOe data. The data we
previously published in Ref. 32 were all field cooled ex-
cept those for Fe06szMgozisClz at 3.52 and 4.48 kOe.
Figures 9(c}—9(d) show the small difference that exists in
this field range. If one attempts to integrate these curves
to obtain the entropy or the energy, the difference will
clearly be below the noise level. (A difference should exist
because the field was always increased at the lowest tem-
perature. ) We note that other studies using indirect
methods, such as thermal expansion and bire-
fringence, ' to measure the specific heat have found
much stronger hysteresis. The birefringence work has
also suggested a=0. A possible interpretation for these
experiments is given in Sec. VII.
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Aside from the subtle difference in hysteresis, the
behavior of the diluted FeQ 682MgQ»8C12 is very similar to
the nondiluted Fe07&4Coo286Cl2. Most notably, Figs. 5

and 9 show a very similar change in the peak shape. %e
have suggested before that this can be caused by crossover
effects in a constant applied field, because the random
field HII contains contributions from both the applied
field H and the uniform magnetization M, and the latter
is strongly temperature dependent in a constant applied
field. This effect is illustrated in Fig. 10, where we show
that the path P taken by the sample in the T-Hq plane is
not a straight line parallel to the T axis. This effect
should be more pronounced for FeQ7I4COQ286C12 and

FeQ 682MgQ. 318C12 than for the 3D fiuorides
the former are metamagnets which have large magnetiza-
tions in small applied fields. In Sec. VII, we discuss how
this might affect the critical behavior.

The shape of the T-H phase boundary in

Feo.682Mgo, 3isC12 is also similar to Fe07/4Coo 286C12. Al-
though an analysis of this had been reported before, we
present the results here in a form that can be compared
more readily to FeQ 7I4COQ 286C12. Figure 11(a) shows the
phase boundary in an 0 versus T plot. The data points
represent the average peak temperatures. A slightly con-
cave curvature similar to Fig. 7(a) is observed. Our
method of analysis is the same as that described above for
FeQ 7I4COQ 286C12 Since the zero-field transition occurs at
TIv(0) =12.78 K, the analytic term in Eq. (2) is held fixed
at A =0.0149X (23.55/12. 78) =0.0275 K/kOe . (We do
not make a demagnetization correction on A because the
susceptibility of FeQ682MgQ3I8C12 at Tv is nearly the
same as FeC12). A three-parameter fit of Eq. (2) to the
data in Fig. 11(a) gives
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Varying H,„ for the fit from 2.2 to 4.3 kOe gives P be-
tween 1.20 and 1.32, as shown in Fig. 11(b). cr for these
fits ranges from 10.1 to 11.5 mK, comparable to the ex-
perimental resolution. Including the statistical error bars
in Fig. 11(b), II} ranges from 1.13 to 1.36. Using these
numbers as upper and lower limits, we estimate (~)6x10-4-

I

10
!

12

$ = 1.25+0.11,

in agreement with FeQ 7,4CoQ 286G12. We also verified that
this result is quite insensitive to the chosen value of A.
Setting A =0 for the data in Fig. 11(a), for example, gives
II}=1.20. The change is less than the estimated error of
+0.11. For the prefactor B, it varies from 0.113 to 0.126
over the same range of H,„. We cannot estimate the er-
ror in 8 because it is strongly dependent on the assumed
value of A. However, it is interesting to note that the
value of 8 in FeQ682MgQ3I8C12 is comparable to that in

Feo7~4Coo286Clz, which implies that the magnitudes of
the randoxn fields in the two systems are comparable for
the same applied fields. This is also consistent with the
observation that the two systems have a similar degree of
change in the peak shape (Figs. 5 and 9).

2x10 4 318 2

kOe

I I

10 12
T (K;

FIG. 9. Comparison of field-warmed and field-cooled data in

Feo 682Mgo 3 I SC12 shows that there is a barely detectable differ-
ence in the sharpness of the peak as the field increased. The
field-cooled peak is slightly more rounded. These small differ-
ences are in contrast with the strong hystereses observed in the
indirect specific-heat measurements. The reasons are discussed
in Sec. VII B.
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TN

FIG. 10. For a constant applied field, the random fields in

the sample are temperature dependent, because they are related
to the magnetization. The path taken by the sample in the T-

Hq plane is thus not a straight line parallel to the T axis. This
effect can qualitatively explain the change of peak shape seen in

Figs. 5, 9, and 11. It can also lead to Fisher renormalization of
the critical exponents (see Sec. VII 8).

VI. Feo 3ggCoo ~Clp IN APPLIED FIELDS:
A POSSIBLE REALIZATION OF THE THREE-
STATE POTTS MODEL IN RANDOM FIELDS

that the order-parameter exponent has a value of P=0.33
along the 8M line in Fig. 1, consistent with 3D XF
behavior. %hen a field is applied along the c axis, out-
of-plane magnetic moments are induced and, similar to
the SF phase in Feo 7]4COQ 286C12 the system should cross
over to the behavior of the three-state Potts model in ran-
dom fields. Therefore, one would expect to see drastic
changes in the transition.

The results for fields up to 19.2 kOe, the maximum in
our apparatus, are shown in Fig. 12(a). These data were
all obtained by field cooling. Figure 12(b) illustrates that
there is no significant difference in the field-warmed
data. %e observe that the peak shape changes in a
manner similar to Feo 7I4Coo 286C12 and Feo 682Mgo 3/SClg
(Figs. 5 and 9). At 19.2 kOe, for example, the peak is
quite symmetric. This is suggestive of the random-field
crossover effect depicted in Fig. 10. We note that there is
no significant smearing of the peak even at the highest
field. This is consistent with the existence of the Potts an-

isotropy, because if the system were purely XF-like, the
random fields should have destroyed the transition com-

In zero field, the spins in Fe(I 396COQ 6otC12 order in the
a-b plane with negligible in-plane anisotropy. Previous
measurements on other Fe, ,Co„C12 samples have found (8)
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FIG. 11. (a) The low field phase boundary of
Feo 68QMgo 3 i 8C12 is very similar to that of Feo 7I4Coo 286Clz,

showing a weak concave curvature. The line is a fit of the data
points to Eq. (2), which gives P = 1.26+0.04. (1}Variation of P
with 0,„ is insignificant. o for the four fits are, with increas-
ing H,„, 10.1, 10.3, 11.2, and 11.3 mK.
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FIG. 12. (a) Heat capacity of the Fe0396Coo 6o4C12 sample in
different applied fields. The vertical scale refers to the bottom
curve. Other curves are displaced upward successively by one
division. The change in peak shape with increasing field is very
similar to Figs. 5 and 9, suggestive of random-field effects. {b)
A comparison of the cooling and warming data at 15.37 kOe,
which shows no significant difference.
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FIG. 13. The phase boundary of Fe0396Coo~C12 sho~s a
large convex curvature, in contrast with Figs. 8 and 10. This
behavior may be related to a three-state Potts model in random
fields. The line represents both the fits to Eqs. (2) and (3). The
two fits are indistinguishable (see Sec. VI for a discussion).

pletely. Most interestingly, we find that a plot of the
average peak temperatures on an H versus T scale (Fig.
13) shows a large conuex curvature, in contrast to the con-
cave curvatures seen in Figs. 8 and 11. This implies that a
fit to Eq. (2) will give /&1, as opposed to $&1 in
F 0.714Co0.286Cl2 and F 0.682Mg0. 318Cl2

Before discussing these results further, we have to first
rule out the possibility that they are caused by a misalign-
ment of the field with respect to the c axis. We estimate
that the accuracy of our alignment is not worse than 5',
which means that even for H =19.2 kOe, the in-plane
component is less than 1.7 kOe. According to a specific-
heat study of pure CoCli by Moses et al. , a 15-kOe in-
plane field reduces its Tz by about 1 K. Compared to the
value of T~, this reduction is about 4%. Assuming
b, TN0:H from mean-field theory, a 1.7-kOe in-plane
field should reduce T~ by about 0.05% in CoClq. Al-
though the reduction should be somewhat larger in
Fep 396Cop 604C12 due to its weaker interactions, the data in
Fig. 13 gave a b, T&/Tz(0) of about 7% at 19.2 kOe.
This hundredfold increase cannot be the result of a small
in-plane field, but it could be a random-field effect, e.g. ,
the Feo 7i4Cop 2s6C12 data in Fig. 8(a) show a 9% change.
We also note that the specific-heat peak of pure CoCli at
15 kOe has an asymmetric shape similar to that in zero
field. This is in contrast to the symmetric peak observed
in Feo/96Co06oiC12 at 19.2 kOe (Fig. 12). Hence, it is
highly unlikely that the unusual behavior observed in
Feo 396COQ ggClz is an artifact of misalignment.

The phase boundary in Fig. 13 was first analyzed by fit-
ting to Eq. (2). Because the curvature is strong, it was
possible to perform the fit without fixing A. We obtained

T~(0)=19.79(1) K, A =1.2(2) && 10 K/kOe

8=7.2(6.6)X10 5, /=0. 42(3) .

0 for the fit is 10.0 mK, comparable to the experimental
resolution. The line in Fig. 13 is the fitted curve. We
note that the value of A for this sample is about an order
of magnitude smaller than those Fe07i4Cooqs6Cli and

Fep 682Mgp 3 J 8Cl2. This is to be expected because the
mean-field effect should be much smaller for a field per-
pendicular to the spins. (Sharpira and Foner have found
this to be true in MnFi. ) The very large error bar for 8 is
due to its strong correlation with A. The most striking
result is that (|) is very small and completely inconsistent
with the susceptibility exponent of the pure 3D XY model
(@=1.32) (Ref. 59) which is expected to govern the zero-
field behavior of the system. A possible explanation is
that the zero-field transition is not simply XY-like. Ac-
cording to Mukamel and Grinstein, the off-diagonal ex-

change, along with the hexagonal anisotropy, can cause
the transition to become first order. If this is true, one
would expect the transition temperature to decrease
analytically in the presence of randoin fields, i.e.,

b TN =—T~(H) T~(0—) = AH —CH —DH—
(3)

We find that fitting the data up to H (with H in units of
kOe) gives

T~(0)=19.78(1) K, A =6.7(9) 0&10

C =7.8(3)X10

o for the fit is 12.4 rnK, not much worse than the fit to
Eq. (2) with four parameters. If the H term is included,
o reduces to 10.1 mK and the fitted line is indistinguish-
able from that in Fig. 13. The parameters obtained are

T~(0)=19.79(1) K, A =1.1(2))&10

C=4.6(1.2)X 10 ', D=6.1(2.2)X10 '.
In both of these fits, the value of A is comparable to that
obtained by using Eq. (2), but the higher-order terms are
unusually large. For example, in a field as small as 10
kOe, the H and H contributions are as large as the H
contribution. Compared to the similar experiment on
pure MnFz, the H term there is an order of magnitude
smaller than the H term even at 100 kOe. Therefore, our
results cannot be explained as a normal mean-field effect.
As mentioned in Sec. I, the applied field induces both ran-
dom fields and three-fold Potts anisotropy in the plane.
We discuss the possible effects in the following.

We note that Goldschmidt and Xu have calculated the
phase boundary for the Potts model in random fields.
Their unpublished numerical data show a convex phase
boundary in an H versus T plot, in qualitative agreement
with Fig. 13. However, the high-order terms there are
quite small. Specifically, for the first 4% reduction of
T~, 90% of the effect comes from the Hi term. In Fig.
13, we estimate that only half of the first 4% change
comes from the H term. This discrepancy is not surpris-
ing, because Fep 396Cop 604C12 is not a Potts system in zero
field. Both the Potts anisotropy and the random fields are
turned on by the applied field, i.e., there are two simul-
taneous crossovers. Hence, it is unclear how the data
should be compared to the theory. If we assume that the
zero-field transition is XY-like, the crossover to three-
state Potts behavior is governed by an exponent Pq which,
according to Wallace, ' is OA6 in 30, to order c. . This
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should give rise to a reduction in Tz proportional to
H ' .Since 1/113-2, this effect is difficult to identify.
Furthermore, we note that there is another hexagonal
symmetry XF antiferromagnet that shows a similar phase
boundary in axial field: Shapira et al h. ave studied
CSM11F3 and found large corrections to the H term, even
for the first 1% change of Ttv. These authors attributed
the convexity of the phase boundary to the existence of a
virtual bicritical point. The crystal symmetry of that sys-
tem also allows the M~~S& term and the results may be af-
fected by an XF to Potts crossover. In comparison with
Feo 396COO 604C13, we note that there was no change in the
shape of the specific-heat peak in CsMnF3. This may be
due to the fact that it is a pure system without random
fields, but we believe a more detailed theoretical con-
sideration is needed to fully understand the problem.

VII. DISCUSSIONS AND CONCLUSIONS

10

—10

h

10C)

C

O

10'

C

C=
CI

3 X
10

o
CJ

—0.030
I

—0.015 0

g (3.52 A-')
0.015 0.030

FIG. 14. Transverse scans of the {0,0,3) magnetic peak in

Fco 72/Coo 2~5C12. See Sec. VII A for details.

A. Competing-amsotropy systems

We have summarized in Sec. III most of the recent ex-
periments on competing-anisotropy systems. We have
particularly emphasized that there are unexplained differ-
ences between Ising-Ising and Ising-XF systems. The is-
sues center around the seemingly random absence or pres-
ence of the lower transitions among different systems, and
how the spin correlations evolve below the upper transi-
tion. It is quite likely that the random off-diagonal terms
play an important role in the physics, but their effects are
not fully understood. Mukamel and Grinstein and Oku
and Igarashi' have analyzed the problem by the
renormalization-group method and found no stable fixed
points. Hence, little can be said about the nature of the
mixed phase and the lower transitions. What is clear,
however, is that the decoupled tetracritical behavior
predicted by FA (Ref. 6) rarely occurs. In part, this is due
to the fact that FA did not include crystal-symmetry-
related terms in the free energy, which can be important
in real systems. One example is the wS~~Sq term pointed
out by Mukamel for Fei,Co„C13, but this cannot ac-
count for the similarities between tetragonal and rhom-
bohedral systems. It is interesting to note that Inawashiro
et ttl. have performed a Monte Carlo simulation of an
Ising-Ising system in 2D without off-diagonal terms and
they found behavior in excellent agreement with FA's pre-
diction. Hence, we believe a similar study of an Ising-
XF system, with and without the off-diagonal terms, will
be most illuminating.

In paper 1, we have interpreted some of the features as-
sociated with the lower transition as random-field effects.
The present study shows that this is not entirely satisfac-
tory. Most notably, the lower transitions do not behave in
any way like the random-field transitions, i.e., the upper
transitions in applied fields. The data in Figs. 3 and 4
show no anomaly at all at the lo~er transition. Paper 1

also show very long Sj correlations in Fe-rich samples im-
mediately below the upper transition, which is very diffi-
cult to understand in terms of random fields. Whether
these correlations cor'respond to long-range order is un-
clear. The data presented in paper 1 show that the super-

lattice peak is only slightly broader than the instrumental
resolution [-0.0055 A half-width at half maximum
(HWHM)] above Tt. . Since then, we have made some
new measurements in Feo '725Coo 275C13 with a better reso-
lution (-0.0042 A HWHM). We find that by fitting
the data to a composite peak shape, a resolution-limited
component is obtained. This result is depicted in Fig.
14, which shows scans of the (0,0,3) superlattice peak at
11.36 K, well above T't (=8 K). The scattering at this
peak is simply proportional to the (S& Sj ) correlation.
Because the sample mosaic is intrinsically Lorentzian (i.e.,
a Bragg peak would have a Lorentzian shape), the zero-
field data are fitted to a sum of two Lorentzians. We ob-
serve that there is a resolution-limited component
(I L, i

——0.0042 A ') superimposed on a broad diffuse
coinponent (I t, 2

——0.0361 A ). The field dependence of
the widths and amplitudes of these two components are
shown in Fig. 15. With increasing field, I'I, remains
resolution limited while I L 2 narrows. The two merge to-
gether at the spin-flop phase boundary shown in Fig. 6.
In higher fields, the system is in the disordered spin-flop
phase and the data can be fitted by a single Lorentzian
with a width wider than resolution. This is illustrated by
the 10.48-kOe data in Fig. 14. These results suggest that
the zero-field state of Feo 735Coo 275C12 has moments tilted
very slightly from the c axis and (Sj ) has long-range or-
der. When the system approaches Ttt from below, the tilt
angle approaches zero. We note that an independent
study by Ito et al. " on a similar system, Fei „Co„Ti03,
has also found an apparently resolution-limited peak well
above T~. The width is extremely small {0.0013 A
HWHM) and it is temperature independent, consistent
with long-range order. This would explain the absence of
specific-heat anomalies at TL. However, this explanation
implies that both S& and S~~ are ordered at the upper tran-
sition. This is inconsistent with the fact that critical fluc-
tuations due to Sz have not been observed at the upper
transition.

Finally, we mention two interesting recent studies on
competing-anisotropy systems. First, Nitsche and



34 SPECIFIC-HEAT STUDY OF RANDOM-FIELD AND COMPETING-ANISOTROPY. . .

0.Q4

0.03

I

O~
& 0.02

l l
[ i i

Fe0 725 CO0 &&5 Cl2

T = 11.36 K

H lIICreaSing

001

0 ] i r» I

0 5 l0
i i 1

I
i I l I

I
1

X
LA

00

CI

O A)1j I L1

Ai2)'~L'2

H (k0ej
10

FIG. 15. Field dependence of the fitted widths and ampli-
tudes of the (g, g, 3}scans shown in Fig. 14.

considers a cluster with E& spins up and Xz spins down,
and if there are Q bonds linking the cluster to the infinite
one, then this cluster will have to flip when the field H
satisfies H &QJ/n where n =

I
&i —+z

I
The flipping

of such clusters may break up the infinite cluster and
change d, . Quite recently, Kim and Harris have point-
ed out that this "cluster-flip" mechanism is ineffective in
the weak-field limit, because the probability of finding
such a cluster is exponentially small:

P„o:exp[ kn —' " ] o: exp[ —k (QJ/H)' ], (4)

where k is a constant. Thus d, for dilute systems should
be unchanged. These authors also argued that, in finite
fields, the zero-field-cooled states are not in equilibrium
because, for any nonzero value of I'„, some clusters have
to be flipped and this is expected to be an extremely slow
process. Presumably, this is why a time dependence has
not been observed for the zero-field-cooled state, except
for temperatures within 1% of the transition. It is im-
portant to remember that the energy difference between
the "frozen" zero-field-cooled state and the true equilibri-
um state should be negligible, not only because P„ is van-
ishingly small, but because the two configurations of the
clusters are nearly degenerate. For the same reason, the
field-cooled and field-warmed states should have very lit-
tle difference in energy (and hence specific heat) at any
temperature. This is what the data in Figs. 5 and 9 show.

Kleemann ' have studied S~~-S& correlations in

Fei „Co„C12 by birefringence technique. They found fi-
nite off-diagonal (S~~Si) correlations below the upper
transition. This indicates that the off-diagonal terms are
indeed relevant in competing-anisotropy systems. Their
results are also consistent with the idea that both com-
ponents order at TN. In the second study, Endoh et al.
have found evidence of a Lorentzian-squared peak shape
in Fei „Co TiOs. They also observed different in-plane
and out-of-plane correlations. These results suggest that
more high-resolution experiments are needed to under-
stand the competing-anisotropy systems.

B. Random-field Ising systems

I. Metastability of the zero field cooled state--
The understanding of the RFIM problem has advanced

considerably in the last few years. Earlier controversies
related to the lower critical dimension (d, } are largely
resolved. Theoretically, it has been shown that the
roughening of domain walls does not affect the original
Imry and Ma prediction of d, =2 and there is now even a
rigorous mathematical proof of this result. Experi-
mentally, the observation of a domain state in the field-
cooled experiment is also understood to be due to none-
quilibrium effects. ' ' ' ' The present work, as well as
previous neutron scattering studies, suggests that such
effects are more severe in systems with nonmagnetic im-
purities. There had been some doubts that such dilute
systems might have a different behavior, even in equilibri-
um, due to percolation effects. ' Specifically, if one

2. Validity of indirect specific heat meas-urements

In many ways, the specific-heat studies of different
RFIM systems show a remarkable consistency. For ex-

ample, a crossover exponent P=y~„„,=}„,„z, is found in

all the systems. ' ' The change in the shape of the
specific-heat peak with increasing field is seen in at least
three different systems, Fe, „Mg„Cli, Fe, „Co„C12,and

Mn& „Zn„F2. ' As we have discussed in Sec. V, this
can be explained by the crossover effect depicted in Fig.
10. However, the critical behavior of the transition is still
an issue being debated. Our direct specific-heat data in
Figs. 5 and 9 suggest a large and negative a, but the non-
equilibrium nature of the system and the shght inhomo-
geneities of the samples preclude a precise analysis. The
specific-heat data of Ikeda and Kukuta on Mno 4,Zno ssF2
also show the same behavior. On the other hand, several
indirect specific-heat studies have shown quite different
behavior. Most notably, Belanger et al. have studied the
Fei „Zn„F2 system by birefringence (bn} measurements
and they found that the d(hn)/dT peak becomes sharper
in finite field than in zero field. Shapira et al. have
studied Mno 75Zno $5F2 by thermal expansion (dl/dT).
They found a sharp peak similar to the d (b,n}/dT data in
low fields, but it disappears in high fields. More recently,
King et al. have studied Fe& „Zn„F2 by a capacitance
technique, extending the measurements to higher fields
and more dilute samples. These data are related to both
dl/dT and de/dT, ~here e is the dielectric constant. The
results are very similar to the d (bn)/dT data, showing a
sharp and symmetric peak, consistent with e=0. The ap-
parent discrepancies among these several studies have
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been puzzling for some time. In the following, we suggest
two possible explanations.

First, we consider the Ising Hamiltonian for an antifer-
romagnet:

~=+J,,S,S, +H gS, ,

where Ji =J&0 for nearest-neighbor pairs of magnetic
ions and Ji =0 otherwise. Taking thermal average of Eq.
(5) shows that the total magnetic energy ( E«, ——(A ) ) of
the system consists of two parts, the exchange energy

Ei ~ J(S()S) )

and the field energy

HH=H g (S;)= HM(TH—)= HJ XD—(Th)dh .

Here, (SOS) ) denotes the nearest-neighbor spin-spin
correlation, M(T,H) is the uniform magnetization, and
Xp(T H) is the uniform susceptibility. For a simple two-
sublattice antiferromagnet, such as FeF2 and MnF2, Fish-
er" has shown that (SOS) ) =Go —1 near a phase transi-
tion, where GO=N ' g, . (S;Si ) is the zero wave-vector

(q =0) spin-spin correlation function and N is the num-
ber of spins. In zero field, E„,=Ei ~ Go —1 and, hence,
the specific-heat singularity is given by

Go

dT

The indirect specific-heat measurements on antiferromag-
nets are essentially all based on this principle. The use of
d(TXO)/dT was first pointed out by Fisher. The use of
d(hn)IdT and deldT was suggested by Gehring. i9 The
proportionality between C„„s and dlldT is more general,
not limited to antiferromagnets. It comes from magneto-
elastic couplings (i.e., the competition between exchange
energy and elastic energy). The validity of these tech-
niques is well established for pure systems. It is easy to
show that these techniques are also valid for random sys-
tems in zero field. One can simply follow Fisher s origi-
nal derivation and add configuration averages (denoted
by [ ],}for the randomness. This gives

Ei =fJ[&Sosl )]c,

where f is a constant, and

G, =N-' g [(s,s, )],=[(s,s, )],+ 1 .

Hence, Eq. (7) is unchanged. On the other hand, applying
the indirect techniques in finite fields is questionable.
This is related to the field energy term in Eq. (6). Since

k~rgo ——Go —60

(where Go" =N' g, [(S;) (Si )—], is the disconnected
part of the correlation function), we can write

E«) =Ei+Ea =fJ[Go(T H} 1—]

I [G()(T,h) —Go"(T,h)]dh .

(10)

The presence of the field energy integral has nontrivial
consequences. Fisher has argued that even for pure sys-
tems, 60 should contain a term directly proportional to
the specific heat. This would invalidate the indirect
specific-heat techniques. For random systems, the situa-
tion is even more complicated because Go" is nonzero in
zero field. FA have suggested that it has a t singulari-
ty. ' This implies that the Go terms in Eq. (10) contain a
similar singularity to cancel with Go", so that E„, has
only a t' singularity. How this occurs is unclear. At
present, we can only note that all the indirect measure-
ments are related to dGO/dT and Eq. (10) suggests that
they acquire a new singularity in finite field. This would
explain why a new sharp peak arises with increasing field
in the indirect specific-heat experiments, but not in the
true specific-heat, but we emphasize that a detailed
analysis of Eq. (10} is needed before we can reach a firm
conclusion. [Strictly speaking, Eq. (10) is not entirely
correct because we have used Eq. (8), which is valid in
zero field, for the first term in Eq. (10},which is intended
for finite fields. This neglects a term of order M, where
M = Xodh. The inclusion of this higher-order term

0
will further complicate the analysis. ]

Next we consider nonequilibrium problems associated
with the indirect techniques. Because these are all related
to the spin-spin correlation function Go, they should be
quite sensitive to the spin configuration. A large number
of neutron scattering studies have shown that there are
strong hysteresis effects in the spin configuration.
The largest difference is that between the field-cooled and
zero-field-cooled states. The former is a domain state and
the latter has long-range order. As a result, one should
expect strong hysteresis in the indirect specific-heat mea-
surements. This is indeed the case for the birefringence, 2

thermal-expansion, susceptibility, and dielectric ex-
periments. The sharpest peak is always observed in the
zero-field-cooled experiments and the most rounded peak
in the field-cooled experiments. As we have argued
above in Sec. VII 8 1, the zero-field-cooled state can only
reach equilibrium by flipping clusters of spins, which may
be possible only very close to the transition. This implies
an abrupt change in Go at the transition and a very sharp
peak in dGO/dT. Indeed, various neutron experiments
have found an abrupt change of G(q) for wave vector q
near the antiferromagnetic peak, and the indirect
specific-heat measurements have shown sharp peaks in
dG(q}}/dT at q =0. %'e believe these should not be used
to determine whether the transition is first order or
second order. ' In addition, we also note that there is a
difference in the sharpness of the peak among different
systems, e.g. , a sharp peak is seen in high fields for the
zero-field-cooled states of Fei „Zn„F2, but not for
Mno qqZn025F2. This may be related to the fact that the
Fe system has a much stronger anisotropy and is more
difficult to equilibrate. (This could also be due to the fact
that the thermal-expansion measurements probe the spin
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configuration through the magneto-elastic strain, which is
equilibrated by the phonons. )

3. Critical exponents and Fisher renormalization

In spite of the ambiguities associated with the indirect
specific-heat techniques and the nonequiiibrium phenome-
na there continues to be arguments about the equilibrium
critical behavior of RFIM systems. Belanger et al. have
reported 2D Ising exponents for 3D RFIM systems, and
they suggested a rigorous dimension reduction of d —+d'
=d —1. ' There are several problems with their inter-
pretation of the data. First, their claim of 7) = —, violates

the Schwartz inequality, which requires 7I & —,
'

in 3D."'

Second, their value for v (=1) in low field seems to in-
crease in higher fields (v=1.5).s' Third, their value for a
(=0) is based on the birefringence data in the hysteretic
region which, from the preceding discussion, probably
does not measure the true specific heat. Here, we offer an
alternative viewpoint of the problem.

We note that direct specific-heat measurements are
least sensitive to nonequilibrium effects. Based on the
original Imry and Ma argument, we know that the phys-
ics of the random-field system is in the competition be-
tween the exchange energy EJ and the field energy EH.
Metastability arises because there are many different
states with nearly the same E„„but have very different
spin configurations. ' As a result, a true energy or
specific-heat measurement should show very little history
dependence. This is indeed what our field-cooled and
field-warmed data in Figs. 5 and 9 show. Recent Monte
Carlo simulation studies have also found similar results.
Had we performed zero-field-cooled experiments, perhaps
a larger difference could be observed. However, since the
zero-field-cooled state is not in equilibrium, this would
still not provide a definitive answer for a. Nevertheless,
some useful inforination can be gained from the existing
data. We note that the only true specific-heat data
currently available are those in Figs. 5 and 9, and those
obtained by Ikeda and Kikuta on Mno &5Zno 5&F2. These
three sets of results on three different systems are entirely
consistent. They all show a peak shape that changes con-
tinuously with increasing field and becomes a broad cusp
in sufficiently large fields. This essential feature has been
reproduced by computer simulation in at least four in-

dependent studies. There are no signs for any latent
heat to support the idea of a first-order transition (al-
though one cannot rule out the possibility of a very weak
one). ' One possible explanation is that this result is
simply due to crossover or nonequilibrium effects. 39

Otherwise, the broadening of the cusp with increasing
field would imply that the value of a is more negative in
finite field than in zero field. Recent calculations by
Schwartz and Soffer have actually reached such a con-
clusion. ' On the other hand, we note that there are also
calculations which found large and positive values for a.
Specifically, a scaling theory by Bray and Moore has
found that in Grinstein's modified hyperscaling relation
2—a=(d —y)v, the exponents are given by y =1+e/2
and v=1/e, where c=d —2. For 30 systems, these give
&=1, y= —,, and a= —,. An independent domain-wall

renorrnalization-group calculation by Cheung has also
found y =1.5+0.2, v= 1.15+0.10, and a=0.35+0.03, in
approximate agreement with Bray and Moore. At a first
glance, these values for a contradict the experimental re-

sults. This is not true, however, if one takes into account
the effect of Fisher renormalization. The reason is that
the theoretical model has constant random fields, whereas
the experiments were done in constant applied fields. The
latter lead to the temperature-dependent random fields de-

picted in Fig. 10. This acts as a constraint on the system,
which can renormalize a positive a to an effective value

a,rr= —a/ (1—a). Thus, for a = —,
' in the theory, one can

observe ad~= —1 in the experiment. The renormalization
effect is usually difficult to observe because the crossover
exponent is a, which is either small or negative in most
circumstances. However, if a is as large as —,', this could

explain the data in Figs. 5 and 9. Given the many uncer-
tainties in the experiments (sample inhomogeneity, hys-
teresis, crossover effects, etc.), we must emphasize that
this is only a possibility and we cannot quote a value for a
with any reliable precision. The situation of the theories

is somewhat similar. For example, Schwartz and Soffer '

have found y =1.43 in 3D, consistent with the results of
Bray and Moore and Cheung. By assuming a dimension
reduction of d ~1'=—d —y, these authors obtained v=1.4
and a= —0.2. Thus it appears that the small variations
of y and v among the different calculations are giving a
large uncertainty in a, to the extent that there is no con-
sensus as to whether a is positive or negative. Therefore,
we believe the correct interpretation of the experiments is
still an open issue. However, since all calculations give
y = —,, the possibility of 2D Ising critical behavior is high-

ly unlikely. We should also remark that, if a is large and
positive, Fisher renormalization can alter the other ex-
ponents, e.g. , v~v, fr=v/(1 —a) and y~y, ff=y/(1 —a).
These might explain why v and y in several experiments
appear to increase rapidly with increasing field.

In Secs. IV and VI, we have suggested that the high-
field behavior of Fep 7i4Cop 2s6C13 and Fep 396Cop 6p4C13 be
described by the three-state Potts model in random fields.
That the peak shape in Fep 396Cop 6~C13 changes with in-
creasing field (Fig. 12) is consistent with the random-field
crossover effect illustrated in Fig. 10. The cusplike
anomalies of the SF-PM transitions in Fep 7i4Cop 3,6Cl,
(Fig. 5) also appear to be an extension of the same
behavior in higher random fields. These results support
the idea that there are random off-diagonal terms result-
ing in random-field effects, but a detailed understanding
of these effects is still lacking. In particular, the
random-field Potts transition is expected to be first order
in 30 ' and this has not been observed. This is an in-
teresting problem for further studies, both theoretically
and experimentally.

Notes added

(1) A recent paper by Aharony shows that, in systems
dominated by random exchange, the random-field cross-
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over exponent P is not necessarily equal to the zero-field
susceptibility exponent y„„a, . Instead, he finds an in-

equality P & y~„d,m. This further prevents one from mak-
ing an unambiguous interpretation on the value of P.

(2) Most recently, Ikeda has refined his ac specific-heat
measurements on Mno q5zno 55F2. A sharp cusp was ob-
served for H =0 but it becomes progressively more
rounded for H =5, 10, and 16 kOe. Comparisons of
field-cooled, field-warmed, and zero-field-cooled data
show no significant difference. Above the spin-flop field,
the cusp sharpens again. These results are substantially
consistent with those reported here.
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