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Earlier atomic d-state models of anisotropic rnagnetoresistanee +/p are reviewed and found io
suffer from a weak-ferromagnetism "catastrophe:" a nonphysical finite value of hp/p as exchange
splitting goes to zero. New calculations of hp/p, including cubic anisotropy, avoid this problem and
offer a new paradigm for interpreting experiments on systems with various band structures: dilute
polycrystalline nickel alloys with virtual-bound-state (VBS}and non-VBS impurities, and also weak
concentrated ferromagnets like Fe-Ni Invar. p states are also found to give nonzero dp/p in an
atomic model.

I. INTRODUCTION

The anisotropic magnetoresistance measures the differ-
ence in resistivity p when the magnetization vector of a
single-domain ferromagnet in zero field lies either parallel
(~ ~) or perpendicular (l) to the current:

P/P=(p(( Pl)/Pav ~

where p,„ is an appropriate average of the parallel and
perpendicular resistivities. The most successful micro-
scopic theories of this effect, applied to a variety of
moderately dilute alloys, rest on an astonishingly simple
atomic d-state model which incorporates spin-orbit cou-
pling and exchange splitting but which appears to ignore a
more realistic band structure. On the other hand, efforts
to take into account the band structure have by and
large led to complex results which do not illuminate the
apparent simplicity of the experimental data. ' '

In this paper, I introduce several basic concepts which
help bridge the gap between the atomic models and a
more realistic band structure. In particular, in addition to
spill-orbit coupllllg alld excllallge spllttlng, the hgand field
effect is an essential ingredient in the physics of anisotro-
pic magnetoresistance. While ligands in principle give
rise to all the complexity of band structure, I model their
effect in the simplest possible way, namely as a cubic an-
isotropy. I show how a new calculation including cubic
anisotropy offers a simple paradigm for improving our
understanding of a mass of experimental data. I also con-
sider the phenomenon of weak ferromagnetism, in which
exchange splitting becomes small; this reveals a serious
fiaw in some earlier work and clarifies the role of the ex-
change splitting in the overall theory

The paper is structured as follows. First, in Sec. II, I
review the experimental data of interest and introduce the
phenomenological framework for the discussion: Mott's
two-current sd-scattering model' and Muth and
Christoph's formulas" for hp. Crucial here is the notion
that the band structure of each individual case determines
the parameters of these formulas. I show how Muth and
Christoph, among others, did not adequately take this into

account. In particular I contrast the band structures of
systems with and without impurity virtual bound states
(VBS's) and also strong versus weak ferromagnets.

Next, in Sec. III, I reconsider the Smit spin mixing and
L,S, atomic models of b,p, as developed by Campbell
er al. and Jaoul et al. , which have so far served, in gen-
eral, as the paradigms for understanding experiment.
Among other problems, these theories give unphysical fi-
nite results in the limit of zero exchange splitting. This
may be termed a "weak-ferromagnetism catastrophe. "

In Sec. IV, I present new calculations of hp/p in the
atomic model: for d states in the presence of cubic aniso-
tropy, and also for p states. The cubic-anisotropy calcula-
tions introduce, in the simplest possible way, a ligand field
effect into the atomic model. As Berger and Potter first
recognized, some kind of ligand effect, whether cubic an-
isotropy or band splittings in some other form, is an
essential feature of any physically plausible model for an-
isotropic magnetoresistance. Indeed, I show that the
cubic-anisotropy results avoid the weak-ferromagnetism
catastrophe and so offer an improved paradigm for under-
standing experiment.

Finally, in Sec. V, I review the band model of anisotro-
pic magnetoresistance and introduce the concept of "band
averaging" over atomic d states. Then I treat three cases
of experimental interest: non-VBS impurities in nickel,
weakly ferromagnetic Fe-Ni Invar, and VBS impurities in
nickel. In each case the cubic anisotropy paradigm offers
a novel, and in some ways more satisfactory, interpreta-
tion of the data, although agreement is still semiquantita-
tive at best. Some preliminary discussion of the weakly
ferromagnetic case was given earlier. '~

II. REVIE%' OF PHENOMENOLOGICAL THEORY
AND EXPERIMENTAL RESULTS

The framework for understanding the galvanomagnetic
properties of nickel alloys is Mott's well-known two
current sd-scattering model. ' At low temperatures, con-
duction occurs by s and d electrons which can be divided
into up-spin (majority) or down-spin (minority) channels.
%'hile the resistivities p' and p' of the two channels act in
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parallel, within each channel resistivity p, from scattering
off s- and p-potential perturbations is usually considered
to add in series to resistivity pd due to scattering from d-
state perturbations. If significant d-state density is
present at the Fermi surface, pq is usually much stronger
than p, in crystalline transition-metal alloys. In principle,
resistance anisotropy + can occur in either channel. To
lowest order in this anisotropy, one can then write

Q.

~ 0.10-

0.05—

(2)

Experimental anisotropic magnetoresistance ratios '

are approximately independent of concentration for
moderately dilute polycrystalline nickel alloys (2—20%
impurity); results are summarized in Table I. Data on
more concentrated nickel-iron alloys are shown in Fig. 1.
Schematic d-band densities of states are shown for NiFe
and NiCr alloys in Fig. 2.

Let us first consider the strongly ferromagnetic alloys
of Ni with moderately dilute Mn, Fe, Co, Zn, Cu, and Au.
In these cases, to a first approximation, there is no d den-
sity at the up-spin Fermi surface, as shown in Fig. 2(a).
Thus, p' is just p„which is of order 1 pQcm/at. % or
less for the transition-metal impurities in Table I. On the
other hand, p', which is dominated by pd, ranges from 2.6
to 5.2 p, Qcm/at. %. The remarkable constancy of these
values (to within a factor of 2) can be traced to the fact
that the impurity d states lie predominantly above [e.g.,
Fe; see Fig. 1(a)t or below (e.g., Cu) the nickel states.

TABLE I. Experimental majority {up&) spin and minority
(down)) spin resistivities p and anisotropic magnetoresistance
ratios bp/p for dilute impurities in nickel at T-0 K, from Dor-
leijn. ~ VBS means virtual bound state.

0
0.4 0.5 0.6 0.7

ATOM FRACTION Ni IN Fe
0.8

Therefore, at the Fermi energy, where scattering occurs,
these impurities look simply like a hole in the nickel band,
which is roughly the same, whatever the impurity. The
bp' and hp' values which can be determined independent-
ly by studies of deviations from Matthiessen's rule, ' also
show a remarkable overall consistency. Normalized by p',
they are all +2+1% and —2+1%, respectively. This
suggests that both Apt and +' are somehow related to p'
but not to p'.

The nickel alloys with Al, Si, and Sn are still strongly
ferromagnetic but have noticeably larger p' (see Table I),

FIG. 1. Anisotropic magnetoresistance ratio hp/p of Ni-Fe
polycrystalline alloys. Circles are data of Campbell (Ref. 9).
Solid lines are predictions from Eq. (9) including weak fer-
romagnetism and bandwidth changes as a function of composi-
tion, as discussed in Sec. VC. Dotted lines are predictions ig-
noring these effects (Ref. 12). Upper and lower curves of each
pair correspond to y =0,005 and 0.01, respectively, at x N;

——0.7.
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FIG. 2. Schematic up-spin (majority) and down-spin (minori-

ty) d-band densities of states Sq versus energy for (a) moderate-

ly dilute Fe in Ni, {b) concentrated Fe-Ni Invar and {c)
moderately dilute Cr in Ni. The relatively sharp up-spin Cr
peak at Ez is known as a "virtual bound state" (VBS), while the
two Ni-Fe cases illustrate (a) "strong" and (b) "weak" fer-
rornagnetism, respectively.
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which presumably arises from stronger sp scattering.
Correspondingly, bp'/p' is noticeably larger than in the
first group of alloys.

It is known that for Fe-Ni alloys with Fe concentration
above about 20% (permalloy), the Fermi level enters the
down-spin iron band. ' Above about 50%, the exchange
splitting is insufficient to keep the d bands fully polar-
ized. ' In other words d-state density appears at the up-

spin Fermi surface as in Fig. 2(b). This condition is
known as weak ferromagnetism. While dy' and bp" have

not been independently determined in this region, dy/p
falls to low values with increasing it on as shown in Fig. 1,
while both specific heat and resistivity increase rapidly. '

The "virtual-bound-state" (VBS) alloys of Ni with Ti,
V, Cr, Ru, Rh, Re, Ir, and Pt have 1 density at the up-

spin Fermi surface, ' as shown in Fig. 2(c}. Because this

peak is relatively sharp, the density of states is high,
which causes large scattering in the up-spin channel and
explains the huge p' values in Table I. p' remains in the
same range as before, being dominated by nickel d-hole
scattering, and so bp'/p' has values —2+1% similar to
the first group Bu.t hp'/p' shows a tremendous range of
values. hp'/p' is somewhat better behaved, being typical-

ly 6+2% except for In with —2.9, for this data of Dor-
leijn (Jaoul et al. " have somewhat more variability in

their values). In summary, in contrast to the non-VBS al-

loys, these alloys appear to have bp' related to p', not to
P.

To explore the origin of these trends in +' and hp', we
use the relations proposed by Muth and Christoph:"

(3)

(4)

where the four y's are constants. The underlying assump-
tion of these relations is simply that any resistance aniso-

tropy is related to scattering off d states and hence to pz
and pq. Then the right-hand side of Eqs. (3) and (4) can
be interpreted as merely the first, or linear, terms in an ex-

pansion in p~.
Muth and Christoph combined Eqs. (2)—(4) and at-

tempted to fit dp/p data on all the nickel alloys of Table
I with a single set of y parameters. Taking yi/yi ——y2/yz,
they obtained yi ———4.25%, —1'i =0.21%, pi=1%, and

yz ——0.048%. They did not, however, consider the more
detailed experimental data on bp' and dy' separately, and
comparison with Table I shows their results cannot
possibly be correct. For example, for the strongly
ferromagnetic alloys where p~ ——0 we can identify
bp"/p'-y2-2% and hp'/p' ——yz- —2% in Table I;
so yi/yz-1 while Muth and Christoph found yq/y2-21.
For the virtual-bound-state alloys, since bp'/p' remains
about the same, it is reasonable to presume from Eq. (4)
that yq-2% is the same as in the strongly ferromagnetic
alloys while y'i-0. But the large values of dp'/p" sug-
gest that y~ —varies from —3 to + 8 k. Since p~ jp~ is
small in many virtual-bound-state alloys, Eq. (3) does not
allow determination of yz which most likely remains at
2%%uo (see Sec. VD}.

The reason for the above discrepancies between the data
and the fit of Muth and Christoph will become clear in

Secs. III—V, where microscopic derivations show that the
y's depend on details of the band structure. Thus, it is
inappropriate to lum. p all the data together as Muth and
Christoph attempted to do. Nevertheless, we shall see
that for certain groups of alloys with similar band struc-
ture, their formula is indeed useful and the systematics in
the values of y can be understood at least approximately
from first principles.

III. ATOMIC THEORY OF
ANISOTROPIC MAGNETORESISTANCE

AND THE %EAK-FERROMAGNETISM CATASTROPHE

A. Smit spin-mixing mechanism

The microscopic theory of anisotropic magnetoresis-
tance properly began with the work of Smit, who pointed
out that the effect depended on spin-orbit coupling, the
Hamiltonian of which can be written

AI. S=AL,Sz+ ,' A(L+—S +L S+),
where A is the spin-orbit coupling constant, I. and S are
the orbital and spin angular momentum operators, and
I.+ and L, etc., are the usual raising and lowering
operators.

Smit considered an atomic d-state manifold of ten
states

~
i ), whose identifications and angular components

are listed for future reference in Table II, along with the
spin-orbit matrix elements. These states are split into two
fivefold degenerate groups by an exchange field H, with
Hamiltonian —H S, where H includes the gyromagnetic
ratio and Bohr magneton. In the matrix of Table II, this
term would introduce H/2 on the diagonal for the first
five states and H/2 on th—e diagonal for the last five
states. Ignoring the L,S, term of Eq. (5) (to which we
will return below), and focusing on the reinaining terms,
Smit noted that in the matrix of Table II, those terms
gave off-diagonal matrix elements which mixed the five-
fold spin-up with the fivefold spin-down manifold. To
first order in perturbation theory (i.e., to order @=A/H)
he calculated the admixture of up-spin states into the
down-spin manifold, finding that the admixtures were
weighted unevenly among the five states.

Next Smit assumed that the Fermi level lay at the
down-spin d manifold and considered that up- or down-
spin conduction electrons

~
k) scattered off the d states,

giving rise to a resistivity which he crudely estimated by
the square of a scattering matrix element (k

~

V
~

i ). This
approximation will also be used in this paper. Because of
the asymmetric admixtures of up-spin states, Smit found
different scattering in the up-spin channel for k parallel
or perpendicular to H. Squaring the matrix element
causes the difference + to depend in second order
[e =(A/H) ] on the spin-orbit coupling. This is known
as the Smit or spin-mixing inechanism of anisotropic
magnetoresistance.

Subsequently, Campbell, Fert, and Jaoul improved
Smit's calculation by noticing that since this was a
second-order effect, it was necessary to go to second order
in the wave functions before calculating the resistivity. In
effect a second-order normalization condition on the
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TABLE II. Angular parts of d wave functions
i
i ) with spin down ( t is the minority) and spin up (t

is the majority}, and the spin-orbit coupling matrix AL 8 normalized by A /2.

2 3 4

1 =yz g

2=zx $

3=xy l
4=[(x —yi)/2]i
5 =[(3z'—r')/2W3] 1

0
0
0
0

0 0
0 0
0 —2E'

2i 0
0 0

—1 —i
i —l

—vs
0 0
0 0
0 0

6=yz 1'

7=zx f
S=xy f
9=[(x'—y')/2] t
10=[(3z —r )/2i/3]t

0 0 —1 —i —i&3
0 0 +i —1 V3
1 —i 0 0 0
i 1 0 0 0

i%3 —v3 0 0 0

0 i 0 0
—i 0 0 0
0 0 0 2i
0 0 —2i 0
0 0 0 0

zeroth-order wave function' introduced a resistivity an-

isotropy of similar magnitude but opposite sign in the
minority-spin channel. This normalization has unfor-
tunately been overlooked in theoretical work by other au-
thors but will be included in what follows.

For future reference, Table III shows the resistivities of
the five primarily spin-down eigenstates to second order,
as calculated in the Campbell er al. model, but including
also the zeroth-order effects coming from the 1.,$, term
of Eq. (5). These resistivities are normalized to the
zeroth-order (no spin-orbit) down-spin resistivity pic.
Very similar results apply for the five primarily spin-up
eigenstates if it is assumed the Fermi level lies opposite
them. All the terms of order e2 in the table come from
the Smit spin-mixing mechanism. Summed over the five
states (i.e., ignoring the first-order splittings), Q/pgp cail
be seen to give +3a /4 for the two channels, independent
of impurity concentration. For the other five primarily
spin-up states, the net dy' and Ap' turn out to have the
same magnitude but opposite signs.

In the case of a strong ferromagnet, p~ is zero and p~c
corresponds to pd, so one can identify yz ——y2

——+3@ /4 in
the Muth-Christoph formulas Eqs. (3) and (4). Substitut-
ing in Eq. (2) and assuming an isotropic scattering p, in
both spin-up and spin-down channels, one finds

4 /p =yw"/p'p'
'2

=ya 1 ——1

a (6)

with

4p/p =y(a —1), (7)

which can be derived if isotropic scattering is completely
neglected in the spin-down channel, i.e., p' pq. Since p'
and p' are both proportional to impurity concentration in
the moderately dilute regime, both Eqs. (6) and (7) predict
dy/p to be independent of concentration.

Thus Campbell et al. beautifully explained (1) the con-
centration independence, (2) the opposite signs of hp'/p'
and +'/p', and (3) their approximate constancy, for the

y=3e /4=3A /48

P =Ps'

P =Pet+Ps ~

~ =p'/p' ~

This differs from the well-known result of Campbell
et al.

TABLE III. Second-order eigenenergies F. and resistivities p for the five primarily spin-down d
eigenstates of a Hamiltonian with exchange field H and spin-orbit coupling A (e= A /H ). hp=p~~ —pi,
and pro is resistivity without spin-orbit coupling.

State

E/0 —
~

Pll/«0
P~/P~o

~P'/P~o

—e/2+ 3e'/2

3e'/2
3e'/8
9e /8

3e /2 e/2+a'

3e'/8
-3e'/8 3e'/4

Pl l
/P&o

Px/Pdo

~P /P«
8
—3e /8

—i ~3@ /8

1 —3e /2

4
—3e /8

4
—9e /8 3

8
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set of strongly ferromagnetic non-VBS nickel alloys in

Table I. Even the magnitude of y, estimated to be of or-
der 0.01, was about right. In an equivalent test of the
theory, they plotted the net hp/p versus a according to
Eq. (7) and found an approximately linear dependence for
the different systems, as long as a & 1 (the non-VBS al-
loys). It should be noted that in the limit of large a, Eqs.
(6) and (7) reduce to y(a —2) and y(a —1), respectively,
and so do not differ substantially within experimental
scatter. For small a on the other hand, Eq. (6) is always
positive while Eq. (7) becomes negative. However, neither
of these equations accounts adequately for the data on
systems with a & 1 (the VBS alloys) and other mechanisms
will be discussed below for these cases.

While the theory of Campbell et al. gives the most
quantitative and coinprehensive explanation of anisotropic
magnetoresistance data to date, several questions remain:
The basic one is how can such a simple atomic d-state
model apply in the context of a realistic band structure?
A more specific and perhaps even more serious question
is: How can hplp go as y =32 /4H, which diverges as
exchange field H ~0?

An H~O "catastrophe" remains even if one attempts
to generalize the spin-mixing model to the weak-
ferromagnetic limit where both up-spin and down-spin d-
state densities appear at the Fermi surface.

In the low exchange-field limit, the difference in up-
and down-spin d-state densities, and hence the difference
in up- and down-spin d resistivities, goes linearly with H.
To lowest order'

hp"'=+?'(p» p»»— (8)

B. I.,S, MECHANISM

Berger first emphasized that in addition to the Smit
mechanism, the L,S, terms of the spin-orbit coupling can
in themselves give rise to anisotropic magnetoresistance.
Berger considered the case of a hypothetical near-
degeneracy in the band structure, but Jaoul et al. pointed
out that the effect can inost clearly be seen in the simple
atomic d-state model introduced above: The I,S, terms
in the matrix of Table II generate zeroth-order contribu-
tions to hp' for three of the priinarily spin-down states;
these are the ——, , —,, and ——, terms in Table III. Identi-
cal values are obtained for hp in the primarily spin-up
manifold. If the first-order energy splittings are ignored
and the states taken as effectively degenerate, the net ef-
fect, reflected in the sum over these values, is zero.

However, Jaoul et al. showed that, if the splittings are

where the signs come directly from Table III and the cor-
responding spin-up calculation. In the notation of Muth
and Christoph, this corresponds to yi ——yz ——y&

——y&
——y.

Substituting in Eq. (2},one finds'

hp jp =?'(p» p» }'jp'p' . — (9)

Since p» —p» 0:H but y cc 1/H, hp jp approaches a con-
stant as H ~0, at least down to a field energy comparable
to the spin-orbit energy. But physically one would expect
hpjp to approach zero as magnetism disappears. We will
return to this problem below.

XNp» Vup»+3~p» ~

~I '= —r~P~+r.p~
(12)

where yn and y„represent values for the nickel host and
the virtual bound states, respectively. Then Eq. (2) leads
to

not ignored, broadening of the component levels to a
width %larger than the spin-orbit splitting 3 leads to hp
with amplitude of order (A/W}, exhibiting a negative-
positive-negative pattern as a function of the Fermi level
position in the band. This mechanism, which can be
dubbed the L,S, mechanism, differs from Smit's spin-
mixing mechanism because it arises from a single spin
channel, up or down. Thus, the spin-mixing mechanism
is, as the naine implies, as interchannel effect, while the
L,S, mechanism is an intrachannel effect

The simple systematics of experimental data on non-
VBS alloys in Table I, especially the roughly equal magni-
tudes and opposite signs of hp'jp' and hp'/p', pointed
strongly towards the spin-mixing mechanism, as discussed
above. In view of this, Berger's original application of
the L,S, mechanism to permalloy (NiFe alloys} seems, in
retrospect, inappropriate. By contrast, the hp'/p" values
for VBS impurities in Table I have no negative counter-
part in hp'/p' and thus these systems are more likely can-
didates for the L,S, mechanism, as first pointed out by
Jaoul et al. They suggested that the virtual bound states
in the up-spin band [(see Fig. 2(c)] are responsible.

More specifically, Jaoul et al. included both the Smit
effect coming from the down-spin nickel band and the
L,S, effect coming from the spin-up VBS:

hp'=?'p»+3IJP» hp'= Yp»— (10)

where 3P, of order (A/8'), represents the L,S, effect.
Once again the Muth-Christoph parameters find different
values: ? i ?z —y, ?'——, =3P, y&

——0. Substituting Eqs. (10)
in Eq. (2) and ignoring p, in both channels, Jaoul et al.
obtained

hpjp=y(a —1)+3[a/(a+1)]P . (11)

Comparing to experiment they found effects of the
correct order of magnitude, but with imperfect agreement
in detail. Only the Sd, but not the 3d or 4d, series
showed some negative values which are expected as part
of a negative-positive-negative pattern.

There are also more fundamental questions. As before,
one must wonder how band structure can be ignored.
There is also an 0~0 catastrophe: Although
Pa:(A/W) does not diverge as H~O [as? ~(A/H)
does in the spin mixing case], both hp'/p' and hp'/p' ap-
proach the same value according to the results in Table
III and the corresponding spin-up calculation. Then Eq.
(2) predicts a constant hpjp as H ~0, which is physically
implausible as before.

Yet another problem is that according to Table III, the
virtual bound states should give a spin-mixing effect.
Thus
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For Cr and other 3d VBS transition metals, y„ is expected
to be comparable to yz, for the 4d and 5d series it will be
even larger. Furthermore, for all the VBS impurities in
Table I, a=p'/p' is substantially less than 1. Then the
y„/a term in Eq. (13) can be expected to dominate, drasti-
cally changing the original predictions of Jaoul et al. In
the case of Cr for example, taking y„=2%, one finds
y„/a-2X29/6. 1=9.7%, which is positive and large,
clearly disagreeing with Eq. (11) and the data for +'/p'
in Table I, which are negative and small.

IV. NE% PREDICTIONS OF THE ATOMIC THEORY:
CUBIC ANISOTROPY AND p STATES

A. Cubic anisotropy

A cubic anisotropy will modify the atomic d-state cal-
culation of anisotropic magnetoresistance. Marsocci"
first attempted such a calculation, but incorrectly, as sub-
sequenctly admitted by Thomas, Marsocci, and Lin. '9

The latter authors, however, did not correct the calcula-
tion, choosing rather to focus on fourth-order terms in the
spin-orbit coupling, which are unnecessary in the present
context. Berger and Friedburg also introduced cubic an-
isotropy, but in a phenomenological rather than micro-
scopic way. Here I present a calculation for cubic aniso-
tropy using the atomic model. In many respects it is simi-
lar to the work of Potter, although it corrects spin-orbit
matrix elements (compare Table II with the corresponding
Table II of Ref. 7), includes the all-important normaliza-
tion terms, and is not specific to the particular tl-state
structure which Potter assumed at the top of the nickel
band. For whichever of these reasons, Potter's results
concerning the relative magnitudes and signs of spin-up
and spin-down contributions were in complete contradic-
tion to the experimental results of Table I, while as shall
be seen, the results obtained in the present paper agree
quite well.

To carry out this calculation for current along the [100]
cubic axes, the cubic splitting K is introduced on the diag-
onal in the matrix of Table II. Specifically the x —y

and 3z r—d-state energies are shifted up by E, leaving
the other states unchanged. Next the yz and zx states are
rediagonalized, as first suggested by Potter, to eliminate
the need for degenerate perturbation theory. Finally per-
turbation theory is carried out to second order and the
resistivities for currents along [100] and [010]or [001] are
calculated, giving the results in Tables IV and V for the
primarily spin-up and spin-down eigenstates, respectively.
Here

~

H K~—, ~K ~, and ~H
~

must be assumed larger
than A. In particular the results hold for H larger than K
and for K larger than H, both of which cases will be im-
portant in the discussion which follows. A sum over the
doublets and triplets of the cubic symmetry is given in
Table VI. This key table will be the basis for comparison
to experiment in subsequent sections.

Several features of these results are noteworthy. As
K~O, Table VI reduces to the +3ez/4 of the simple Smit
spin-mixing mechanism. However for finite K these
terms evolve into the 3e+/4=32 /4(H+K) terms of
Table VI, which recall the kinds of denominators Potter
obtained in his calculation. The origin of these terms can
be traced back to both interchannel and intrachannel
(L,S, ) spin-orbit matrix elements; in other words they are
not pure Smit spin-mixing terms. On the other hand they
have a form similar to the original Smit spin-mixing cal-
culation of Campbell et al. , and so they may be termed
"pseudo-spin-mixing" terms. Interestingly, the simple
pattern of opposite signs and equal magnitudes of +"is
broken. What is more, for any given spin group of Table
VI, the pseudo-spin-mixing terms are confined to either
dy' or dy' but not both. This feature, however, is specif-
ic to the [100] and [010] directions assumed for the elec-
tric current.

In addition to the pseudo-spin-mixing terms, new terms
in 5 ( = A /K) appear in Table VI, which can be traced ex-
clusively to the L,S, effect. Now the characteristic
negative-positive-negative pattern and the amplitude of
order (A/W), predicted by Jaoul et al. , are replaced by
negative and positive 35 /4 terms for the triplet and
doublet, respectively. This result is a concrete example of
the earlier rather general argument of Berger that a band

TABLE IV. Second-order eigenenergies E and resistivities p (current
~~ [100]) for the five primarily spin-down 1 eigenstates of a

Hamiltonian with exchange field H, spin-orbit coupling A (e=A/H), and cubic anisotropy K [5=2/K, e+ ——A/(H+K),
e =3/(H —K)]. Other notation as in earlier tables, except that states 1 and 2 represent, to first order, the orbital states m, =+1,
respectively.

State

(e+e+ee )/2 (—e+3ee )/2 E/5+ E5+66+ /2 e/5+ 3'+ /2

P~'~/Pdo

px/pdo

~'/P~o
3e' /g
—3e /8

3e /2
3e' /g
9e' /g

p~~/pdo

px /pdo

~p'/pdo

3(1—5 —e+ /2) /4

—3(1—5 —e+ /2)/4

1 —3e+ /2

4
—3m+/8

4
—9m+/8
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TABLE V. As in Table IV, second-order eigenenergies E and resistivities p (current
~~ [100])for the five primarily spin-up 1 eigen-

states of the Hamiltonian with cubic anisotropy. States 6 and '7 represent, to first order, the orbital states. m, =+1.

State 10

—{6—3EE+ )/2 E/~ —366 /2

Pj./P«

+p /pdo —35 /4

3(1—5' —e /2)/4
—3( l —6' —~' /2)/4

l —3e /2

4
—3e /8

4
—9e /8

p~/p~o

~p'/p~o

3m~ /2

3s+ /8

9e~ /8
3e+ /8
—3m~ /8

splitting D can lead to contributions to bp of order
(&/D) .

Another interesting concept which arises from these re-
sults is that of the quenching of I.,S, contributions to bp
by the cubic itnisotropy, a concept somewhat analogous to
the well-known orbital angular momentum quenching ef-
fect. Without the cubic anisotropy, Table III shows
zeroth-order contributions to bp spaced by first-order en-

ergy shifts. The corresponding cubic calculation in Tables
IV and V shows these terms quenched to give only a
second-order contribution ( A /E) . The remaining
zeroth-order terms (+ —, ) now appear in the doublets

(states 4 and 5 or 9 and 10) of Tables IV and V, and be-
cause their energies differ only to second order in 3, these
terms can effectively be summed to zero.

An important feature of the results in Table VI is that
now the weak-ferromagnetic catastrophe is eliminated.
For example, considering the triplet states to lie close to
the Fermi level as H ~0, Table VI implies

(14b)

2
Ap~H

p 4 Kpd0

4pdo1+
pHI(

3A ) 3A
(14a)

4(E H) 4E2—

4(E+H ) 4E~

In this limit p~' can be approximated by p~o+pHH where

pH is just a constant refiecting the slope of the density of
states with energy. Substituting in Eq. (2), one finds to
lowest order in H,

Thus Qp/p goes fo zero as H 0, as required physic»ly
The Smit spin mixing and I.,S, mechanisms, as

developed by Campbell et ar. and Jaoul et a/. have, be-
cause of their apparent success in explaining experimental
data, served as paradigms for understanding anisotropic
magnetoresistance. Nevertheless as shown above, they
suffer from the fundamental conceptual problem of the
weak-ferromagnetism catastrophe. Because the new cal-
culation with cubic anisotropy solves this problem, I ad-
vance it as a new and superior paradigm for understand-

ing anisotropic magnetoresistance. While still very much
a model calculation, it injects a feature recognized as
essential by Berger and Potter, namely what could be
termed a local environment or ligand field effect. They
viewed this in terms of the band structure, which arises
from covalent interactions between neighboring atoms.
Through cubic anisotropy, I have introduced the simplest
possible inodel of the effect of the local environment.
Thus, this is a first step towards a more realistic band
structure but is still simple enough to allow insight into a
calculation which is already quite complicated. As shall
be seen in the next section, these ideas explain experiment
as well as, if not better than, any previous work.

B. Anisotropic magnetoresistance of p states

Previous theory of anisotropic magnetoresistance has
focused exclusively on atomic d states. While s states, by
symmetry, cannot contribute, p states can. The results of
an atomic calculation, exactly analogous to that for the d
states, are given in Table VII. Once again Smit-like terms
give summed contributions which go as the square of

TABLE VI. Spin-up and spin-down anisotropic rnagnetoresistance hp for the doublets or triplets of
an atomic d manifold in a cubic crystal field (splitting E) to second order in spin-orbit constant A, and
with an exchange sp1ittiug H. Current assumed along [100].

Down-spin triplet
Down-spin doublet
Up-spin triplet
Up-spin doublet

~p /Pdo

3A /4{H —E)

—3A /4K
(3A /4K ) —3A /4(H —E)

—3A /4K
{3A '/4K') —3A '/4(H +E )

3A /4(0+K)
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TABLE VII. Second-order eigenenergies E and resistivities p for the three primarily spin-down and

three primarily spin-up p eigenstates of a Hamiltonian with exchange field 8 and spin-orbit coupling
A (a=A/0). Ap=p() —pg and p~o is resistivity due to scattering off p states w'ithout spin-orbit cou-

pling.

—e/2+a /2 e /2 e/2 e/2 ~2 /2

p)) /ppo

W'/pro

e'/4

—e/4

1

2

1

2 1 —e2/2

—, —e'/4

——, +e'/4

pl(/p

pi/pro

4p'/pd0

—, —e'/4

—
z +e'/4

1 —e /2

1 —e'/2 p /4 e /4

A/H, with signs the same as for the d states. Only the
coefficient is smaller ( —,

'
instead of —,'). The three first-

order spin-orbit-split states also give an I.,S, effect with a
negative-positive-negative pattern.

A cubic ligand field does not quench the p-state aniso-
tropic magnetoresistance because it does not split the
three p states. Thus, it appears as if a weak-
ferromagnetism catastrophe could occur as exchange
splitting 8 goes to zero. In a realistic band-structure en-
vironment, however, the p states have strong dispersion.
For the k vectors where p states intersect the Fermi sur-
face, the three p states will in general be strongly split,
and so one can expmt terms of order (A/E) . Further
discussion of the possible experimental relevance of the
p-state effect appears in Sec. V B.

V. BAND STRUCTURE AND APPLICATION
OF THE CUBIC-ANISOTROPY PARADIGM

In this section I give a rather qualitative discussion of
the effect of band structure on anisotropic magnetoresis-
tance. Nevertheless the concepts provide a starting point
for understanding how the model results of Table VI can
apply to real systems.

A. General formulas for band structure

Following Potter, one can calculate the resistivity from
the square of a matrix element Vkk between a propagating
s state with wave vector k and a d state with wave vector
k' and d-quantum number n:

Vkk
——J dr/„'k (r)V(r)e'"'X (16)

'k'

Ink =pe '&, (k')(t (» —&i) . (17)
l, rn

Here J dr is an integral over space. V(r) is the scatter-
ing po«ntial, which represents a difference between the
potentials of the host and impurity atoms, and which is

usually assumed to be spherically symmetric; r =0 is the
location of the impurity. X- is the spin state (up or down)
of the propagating s state with wave function e'"'. p„k is
the nth d-state wave function at wave vector k', which
can be decomposed as a sum over atomic d orbitals (()~
(including spin) and lattice sites Ai with coefficients
a„(k'). Only d states at. the Fermi surface can contri-
bute. These can include both the host d states described
above and the impurity d states which happen to also lie
at the Fermi surface.

The wave functions f can be expanded to second order
in the spin-orbit coupling. Relevant terms are

0nk=0 k 1 Y~ g l
Ann kI +'X Ann'kl('n'k

n'~n n' (+n)

where

A„„„= f dr/„'„' AL SP„'„' (E.k E.k)—(19)

Vkk
n' {~n)

+ X A-k&'m(k )
n' {&n)

where m represents the 3z —r d state with the same
spin as the s state.

Since in general most of these coefficients are nonzero
and n&n' ranges over nine values, the square of this

If we assume that the d states are localized on atomic
sites with negligible overlap between sites, then the in-

tegrals in Eqs. (16) and (19) are confmed to the unper-
turbed atomic d states on the impurity site RI ——0. For
example, for k parallel to the exchange field, it is easy to
show that in Eq. (16) only the integral over the 3z r-
orbital is nonzero. This means only a single term of Eq.
(17) contributes and one obtains
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quantity is, even with these approximations, quite a mess.
Furthermore, to get the resistivity, a sum must be per-
forrned over all nk' combinations which correspond to d
states intersecting the Ferini surface.

B. Non-VBS impurities: band averaging of hp/p

It might be thought, in view of the complexity
described above, that no meaningful prediction of bp/p
could be made without a detailed band-structure calcula-
tion. But this very complexity suggests simplifying as-
sumptions in certain cases which can permit a factor-of-2
comparison with experimental data.

First consider the case of the non-VBS impurities in
nickel (see Table I). As pointed out in Sec. II and illus-
trated by Fig. 2(a), the local states of most of thee impur-
ities do not lie at the Fermi energy. Therefore, as far as
scattering is concerned, the impurity site looks approxi-
mately like a hole in the nickel lattice. Then the relevant
interpretation of P„i, of Eq. (17) is as the pure nickel band
states, which remain the same, to a first approximation,
whatever the impurity. Similarly, a full calculation of
bp' and bp' from Eq. (20) will give the same answer for
all non-VBS impurities. A measure of the validity of this
approximation is the constancy of p" in Table I for the
cases Mn through Au: it works up to a factor of 2. Simi-
larly hp'/p" varies only by a factor of 3.

Now in general for a simple transition-metal d band,
the cubic splitting is usually roughly proportional to the
bandwidth because it is determined by the same interac-
tions which give rise to the band structure in the first
place. Furthermore, the bandwidth of transition metals
like nickel is significantly larger than the k=0 cubic
splitting. These facts suggest that all the local d states

are coupled in to +/p through Eq. (20) and its com-
plicated a„(k') coefficients. Thus the final result will
be to a rough approximation an average over the contribu-
tions of all the local d states. Like in a random-phase ap-
proximation, cross terms between the different local d
states will tend to average out. This can be termed a
"band-averaging" approximation.

Band averaging of bp/p leads to the following conse-
quences. The doublet and triplet contributions for each
spin direction in Table VI can be added together. Then
the L,S, terms +33 /4K cancel, and one is left with
32~/4(K H) and —3A /4(K—H) for hp'/pz—o and
5p'/pzo, respectively. In other words, band averaging
suppresses the L,S, effect but leaves the pseudo-spin-
mixing effect which always gives opposite signs for bp"
in the two spin channels.

To make an estimate of the magnitude, one can average

p just like dy, and then pro should be of order pz. Fur-
thermore E can be taken as a characteristic splitting in
the band structure. If there are five states at a given k
vector in a band of total width 5 eV, K can be taken as
roughly l eV. This is larger than the exchange splitting
H of 0.3 eV determined from photoemission measure-
ments. Thus K dominates 0 in the denominators of
Table VI; so hp'/p' and hp'/p' should be positive and
negative, respectively, and roughly similar in the magni-
tude 3A /4E . Essentially, this is the same as the predic-

tion of Campbell et al. , but with K replacing their H,
and so it has all the nice features of their prediction with
the added advantage of avoiding the magnetic weakness
catastrophe. It agrees with the average 2% magnitude of
bp"/p' in Table I provided A is taken to be 0.16 eV, a
factor of 4 larger than the atomic value, which is accept-
able, considering uncertainties in A and K and the various
coefficients.

It is also worth noting that the widely differing values
of the net hp/p for these alloys are principally determined
by the differing s scattering shown in the first column
(p') of Table I. The s scattering is much more sensitive to
the specific impurity than the d scattering because s states
are much broader than d states, and so, the impurity 5

states invariably overlap the Fermi surface while impurity
d states do not. Now since p"=p~ is large, most current
flows through the lower resistivity up-spin channel.
Hence the first term in Eq. (2) dominates, giving

bp/p=(+'/p')(p'/p') .

With roughly constant b p'/p' and p", one obtains

A further point is that the Al, Si, and Sn impurities of
Table I have more p states than do the transition-metal
impurities. This suggests the possibility that they could
be contributing to bp/p according to Table VII. Since
these states are even broader than the d states, one might
expect Smit spin-mixing contributions, which have the
same sign as for the d states and thus should enhance the
bp's. There is indeed some evidence for such an enhance-
ment if one compares hp' for transition-metal and non-
transition-metal groups in Table I. However Ap' does not
show an effect. Of course, one complication is that the p
states are so much less localized than the d states that
they themselves may contribute to conduction. Further-
more they are likely to be less exchange split than the d
states. A more precise theory of such an effect has not
been developed.

C. Weak ferromagnetism in Ni-Fe

For more concentrated alloys, the considerations of the
last section change. For the specific case of iron in nickel,
as mentioned earlier, the Fermi level lies in a down-spin
predominantly iron d band above 20% iron, and above
50%, weak ferromagnetism appears [Fig. 2(b)]. Now the
scattering is due to iron d states rather than nickel holes.
To predict Ap/p one must consider that the iron band is
relatively broad, and therefore, using the same arguments
as in the previous section, an average over terms like those
in Table VI should be expected. Furthermore, to account
for weak ferromagnetism, contributions from both up-
and down-spin d-state scattering should be included.
Therefore the relevant formula is Eq. (9), with y taken to
be approximately proportional to (A/E), and again IC

should be interpreted as proportional to the iron band-
width.

Crucial now are two effects characteristic of the con-
centrated alloy case' and differing from the dilute impur-
ity limit discussed before. First is the fact that the iron
bandwidth changes as a function of composition. To a
first approximation, this change is linear in the concen-
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trated region, though in the dilute region it breaks away to
a constant value determined by iron-nickel rather than
iron-iron interactions. Therefore y in Eq. (9) will change
as g/(1 —xi;, ), where g is a constant. Second is the fact
that in the concentrated alloy limit, as first pointed out by
Mott, d scattering is roughly proportional to the d den-

sity of states, which is in turn proportional to the d part
of the known' electronic specific heat yH

..

pg+pg (7 H )»)C (21)

Here c is a constant proportional to the square of a
scattering matrix element, assumed not to be composition
dependent, and y, is the sp-electron specific heat of ap-
proximately 1 mJ/mol K .

These results, coupled with known' data on the total
resistivity p:

(p +pt)
—1+( + L) —i (22)

allow calculation of bpip provided p, is known as a func-
tion of concentration and the constants c and g are deter-
mined. The Nordheim rule and a rough flt to p in the
nickel-rich end where p, dominates, gives p, =22x (1—x ).
c is determined in terms of g by normahzing hpjp at
XNj —0»7»

Figure 1 shows as solid lines the resulting concentration
dependence for two choices of g, corresponding to y
values of 0.005 and 0.01 at xN; ——0.7. The dependence is
seen to be insensitive to the choice of y. The results are in
excellent agreement with experimental data, the overesti-
mate at 0.75 arising from the rollover to a more constant
bandwidth in the dilute iron limit as discussed earlier. On
the other hand, if one ignores the pd term in Eq. (9),
which comes from magnetic weakness, and if one neglects
the bandwidth concentration dependence, one obtains the
dotted curves in Fig. 1 for the two choices of y. While
still showing a decrease, which comes principally from the
increasing p„ these earlier predictions' are clearly inade-
quate to account for the sharpness of the falloff in bp jp
with increasing x„, in the weak-ferromagnetic region.

The predicted pd corresponding to the full calculation
of Fig. 1 is roughly constant at 60—70 p, Qcm for
y=0.01, while pd increases from essentially zero above
xN; ——0.55 to 10 pQ cm at xN; ——0.45. It is not surprising
that these results differ from those of Muth and Chris-
toph, " and of Campbell, who deduced the subband resis-
tivities from a very different and most likely incorrect
choice of y's as discussed in Sec. II. In summary, the Fe-
Ni Invar example illustrates again the importance of ac-
counting for band structure in the treatment of anisotro-
pic magnetoresistance.

D. VBS impurities in nicke1

The treatment for VBS impurities in nickel must again
differ from the previous cases because of differences in
the band structure. In these cases the VBS levels at the
up-spin Fermi level are expected to be sharp. For exam-
ple, the width of the 3d levels is less than 0.1 eV; it in-
creases to =0.5 eV for the 5d levels. If in the cubic an-
isotropy paradigm K remains proportional to the band-
width, it will also be small. Then the +33 /4E terms

for the up-spin doublet and triplet in Table VI will be
large compared to the +3A /4(H+E) terms. Here the
situation is reversed from the non-VBS alloys, where the
relevant limit was E greater than H. As already pointed
out by Jaoul et a1.," A also increases from the 3d to 4d to
5d series, and contributions of order (A/$V) or (3/E)
are in the right range to explain the size of bp"/p' in
Table I.

But now interesting differences appear with the previ-
ous interpretation of Jaoul et al. States of doublet char-
acter will tend to lie highest because their orbitals are non-
bonding in the fcc environment. This tendency can also
be seen in the k =0 splittings of fcc transition-metal band
structures. Consider now a series of 3d impurities,
whose d states rise in energy moving to the left in the
Periodic Table. Thus the first states to intercept the Fer-
mi surface will be doubletlike states. The triplet states, ly-
ing lower in energy, will tend to hybridize with the nickel
host band. Interesting evidence supporting this hy-
pothesis comes from recent impurity calculations of
Dederichs et al. They show a large weight of impurity
states lying opposite the host d band, while only approxi-
mately two states per atom lie in the sharp VBS peak near
the Fermi energy (e.g., see results for Cr, V, and Ti impur-
ities in Fig. 5 of Ref. 23).

If the sharp VBS's are actually primarily of up-spin
doublet character, they should give a predominantly posi-
tive contribution according to Table VI. The up-spin trip-
let states presumably then lie primarily in the broad band
opposite the host nickel states, and their negative contri-
bution should not appear. This accords nicely with exper-
iment on the 3d and 41 VBS alloys which show a roughly
constant positive value for hp'/p' as one shifts across the
Periodic Table (see Table I). By contrast Jaoul et al.
predicted a negative-positive-negative pattern, for which
there is no experimental evidence in these series.

The fact that the up-spin doublet terms are predom-
inantly positive for the 3d and 4d series does not prevent
the net hpjp from being negative, as found experimental-
ly for many of these systems. The negative values can be
traced to the additional spin-mixing contributions from
primarily down-spin nickel hole states. Since the d
scattering of the virtual bound states is so strong, p'
exceeds p', and most current flows through the down-spin
channel. Thus the negative dp' contribution of the nickel
holes is weighted most heavily in Eq. (2).

One must still ask why positive spin-mixing contribu-
tions of order 3A /4H are not observed in dy'/p'.
These should be at least 2% for the 3d VBS series and
larger for the 41 and 5d series. Table VI suggests a possi-
ble answer: Such terms are absent for the up-spin doublet
and only present in the up-spin triplet. In other words,
Eq. (11) rather than (13) applies, with 3P given by the up-
spin doublet entry of Table VI. This answer is not entire-
ly satisfactory, however, because the absence of these
terms is surely a special result of the [100]orientations for
the currents in the calculation of Table VI. The experi-
mental measurements, on the other hand, are usually done
on polycrystalline samples with random orientations. A
more complete answer on this point awaits a generaliza-
tion of Table VI to arbitrary orientations.
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A further question concerns the appearance of negative
bp" for Ir in the 5d series, which seems to contradict the
interpretation given above. Table VI suggests a natural
explanation. Since the bandwidth and therefore the effec-
tive E of the 5d series is larger than for the 31 and 4d
series, I(. may now approach or exceed H, and therefore
the negative 3A /4(H IC)—term for the up-spin doublet
in Table VI can dominate. To explain why Pt or Re are
still positive, one must argue that the prominence of this
negative term is very sensitive to the precise values of H
and E.

The most serious problem with this interpretation is
that if indeed the VBS density of states consists of a doub-
let while the triplet impurity states are spread at lower en-

ergy opposite the nickel d states, then the size of the cubic
splitting E is ambiguous: Is it proportional to the width
of the sharp VBS feature, as assumed above, or is it relat-
ed to the much larger energy difference between the
centers of the nickel and doublet VBS bands? If the
latter, then I( would be much larger than 0 and the inter-
pretation would fail. The cubic-anisotropy paradigm, of
course, cannot in itself clarify this more detailed band-
structure effect. So pending a more detailed treatment,
the above intepretation must be viewed as a hypothesis
which nevertheless accounts for the experimental trends
better than previous work.

VI. CONCLUSIONS

This has been a rather elaborate treatment of a wide
range of experimental data and theory on anisotropic
magnetoresistance. Concepts have been synthesized from

a number of authors: the spin-mixing effect of Smit and
Campbell et al. , the I.,S, effect of Jaoul et al. , the role
of band splittings by Berger and Potter, and the
phenomenological generalization of Muth and Chris-
toph. " Added to this group is the notion of the weak-
ferromagnetism catastrophe, the role of p states, the band
averaging over local d states, and, most important, the ef-
fect of cubic anisotropy, which had never been presented
before with a correct treatment of symmetry, matrix ele-
ments, and second-order normalization effects.

The qualitative success in understanding so many dif-
ferent systems based on ferromagnetic mckel shows the
usefulness of the cubic-anisotropy calculation as a new
paradigm for understanding anisotropic magnetoresis-
tance. Clearly each system must be considered on its own
merits, with different Muth-Christoph phenomenological
parameters applying in each case. This has led to new
phenomenological formulas, like Eqs. (6), (9), and (13), for
the special cases of (1) non-VBS strong, (2) weak, and (3)
VBS alloys. This work clearly calls for a more detailed
band-structure treatment of anisotropic magnetoresis-
tance. Nevertheless it gives confidence in a framework
which is apparently taking the most relevant phenomena
into account.

ACKNOWLEDGMENTS

The author thanks I. A. Campbell and L. Berger for
key discussions on the anisotropic magnetoresistance
theory, A. R. Williams and J. Tersoff for essential input
on the possibility of doublet structure in the virtual bound
states, and T. R. McGuire and P. Freitas for insights into
the experimental data.

'T. R. McGuire and R. I. Potter, IEEE Trans. Magn. 11, 1018
(1975).

2J. Smit, Physica (Utrecht) 17, 612 (1951).
3I. A. Campbell, A. Pert, and O. Jaoul, J. Phys. C 3, S95 (1970).
40. Jaoul, I. A. Campbell, and A. Fert, J. Magn. Magn. Mater.

5, 23 (1977). Note that in their Fig. 9, the phase is offset by
m f2.

5L. Berger, Physica (Utrecht) 30, 1141 (1964).
6L. Berger and S A. Friedberg, Phys. Rev. 165, 670 (1968).
7R. I. Potter, Phys. Rev. B 10, 4626 (1974). Table II of the

present paper corrects Table II of this reference.
8J. %'. F. Dorleijn, Philips Res. Rep. 31, 287 (1976).
9I. A. Campbell, J. Phys. F 4, L181 (1974).
'oN. F. Mott, Proc. R. Soc. London, Ser. A 153, 699 (1936).

P. Muth and V. Christoph, J. Phys. F 11, 2119 (1981).
2A. P. Malozempff, Phys. Rev. 8 32„6080 (1985).

' A. Fert and I. A. Campbell, Phys. Rev. Lett. 21, 1190(1968).
' L. Berger, Magnetism and Magnetic Materials —)976 (Joint

MMM Intermag Confer-ence, Pittsburgh), Partial Proceedings

of the First Joint MMM-Intermag Conference, AIP Conf.
Proc. 34, edited by J. J. Becker and G. H. Lander (AIP, New
York, 1976), p. 355.

'5Y. Nakamura, in Physics and Applications of Invar Alloys,
edited by H. Saito (Maruzen, Tokyo, 1978), p. 123.

' J. Friedel, in Metallic Soh'd Solutions, edited by J. Friedel and
A. Guinier (Benjamin, New York, 1963), p. XIX-1.

i7L. I. Schiff, Quantum Mechanics (McGraw-Hill, New York,
1955), p. 154.

~8V. A. Marsocci, Phys. Rev. 137, A1842 (1965).
9G. Thomas, V. A. Marsocci, and P. K. Lin, Physica (Utrecht)

45, 407 (1969).
~ V. Moruzzi, J. F. Janak, and A. R. %illiams, Calculated Elec-

tronic Properties ofMetals (Pergamon, New York, 1978).
2'D. E. Eastman, F. J. Himpsel, and J. A. Knapp, Phys. Rev.

Lett. 40, 1514 (1978).
22N. F. Mott, Philos. Mag. 26, 1249 (1972).
~3P. H. Dederichs, R. Zeller, H. Akai, S. Bluegel, and A.

Oswald, Philos. Mag. B 51, 137 (1985).


