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%e study the finite-size effects at a temperature-driven first-order transition by analyzing various

moments of the energy distribution. The distribution function for the energy is approximated by the
superposition of two weighted Gaussian functions yielding quantitative estimates for various quanti-

ties and scaling form for the specific heat. The rounding of the singularities and the shifts in the lo-

cation of the specific-heat maximum are analyzed and the characteristic features of a first-order
transition are identified. The predictions are tested on the ten-state Potts model in two dimensions

by carrying out extensive Monte Carlo calculations. The results are found to be in good agreement

with theory. Comparison is made with the second-order transitions in the two- and three-state Potts
models.

I. INTRODUCTION

It is a well-established fact that the finite size of a sys-
tem introduces systematic deviations from the macroscop-
ic behavior at a second-order transition. ' A knowledge
of the finite-size effects is very useful because one can ob-
tain the various thermodynamic quantities for small sys-
tems (using transfer matrix calculations, computer simu-
lations, etc.) and then extrapolate to the infinite lattice in
a nontrivial manner. However, finite-size effects at first-
order transitions have begun to receive attention compara-
tively recently. ' The difficulties are particularly acute
in simulations where locating the transition point and di-
agnosing the order of the transition have been long-
standing problems. Binder and Landau' (hereafter re-
ferred to as I) studied the case of a field-driven first-order
transition (Ising model below the critical temperature) us-

ing a phenomenological theory and Monte Carlo simula-
tions. This present work is a natural extension of I and
we present here our studies of a temperature-driven first-
order transition.

First-order transitions are characterized by discontinui-
ties in the first derivatives of the free energy, e.g., the
internal energy and the magnetization. This results in 5-
function singularities in the specific heat and susceptibili-
ty at the transition. The system does not anticipate the
transition and the correlation length remains finite when
one approaches the transition, apart from systems where a
continuous symmetry is broken' which are outside of
consideration here. The singularities at a first-order tran-
sition are purely due to phase coexistence and there is no
critical region and no critical exponents. At a second-
order transition, on the other hand, the divergences are in-
timately linked to the divergence of the correlation length.
While the susceptibility diverges, the specific heat may or
may not diverge. (We henceforth confine this discussion
to second-order transitions where the specific heat

diverges with an exponent a. )

In a finite systein the above divergences do not occur.
Instead, t nboth 'types of transitions, one sees finite peaks in
the specific heat and susceptibility near the transition
point. Two effects appear because of finite lattice size: a
"rounding" of the transition region occurs with the peak
heights increasing with lattice size and the location of the
maxima shift in a size-dependent fashion. In a second-
order transition the rounding is due to the correlation
length being limited by the lattice size, L, so that scaling
theory predicts the specific-heat maximum to diverge as
I. r" and the half-width to decrease as I. ' " (Ref. 3).
Note that we consider only systems with linear dimen-
sions I; finite in all spatial directions and of the same or-
der and set I.; =I. for simplicity. At a first-order transi-
tion, I. appears only because of the volume, I." in d di-
mensions; thus, the maxima grow as I." and the 5-
function limit is obtained because the width decreases as
I. d (Refs. 8—13). Note that these specific predictions
are reached only in the limit L ~00,' moreover, there are
usually errors in a Monte Carlo simulation which might
render a more acceptable explanation of the divergences in
terms of apparent exponents. Also, the discontinuities at
a first-order transition are smeared out and there is no to-
tally unambiguous way by which one can detect the order.
The shifts in the locations of the peaks are not fully un-
derstood yet, though one might expect an L " depen-
dence there also. Clearly, more quantitative estimates and
analyses of other properties need to be made.

As a demonstration of the ambiguity which inay be
present we show the temperature dependence of the inter-
nal energy and order parameter for the ten-state Potts
model in Fig. 1. (Details of the calculation will be given
in Sec. III.) Without prior knowledge about this model it
would clearly be quite difficult to locate the transition ac-
curately or even to determine its order. %e emphasize
that these data are from very long Monte Carlo runs and
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thus no hysteresis is seen (even though the transition is

first order). The time dependence of the internal energy
also shows very large fiuctuations over different time
scales and also does not unambiguously identify the order
of the transition. This may be seen from Fig. 2 where the
evolution of the internal energy is presented for both types
of transitions. (Care must be taken in interpreting the fig-
ures for they depict the instantaneous values after every

0.2
I

0& 0.6
f (in I06 MCS)

~(~ P

(

il, ( , il Iti li

-2.0-

0.8 (.0

x x
X X

00

-0.8- (b)

E(t)

~&E&po

-2.0-
~E+

-I.O- 02
! I I I I

Q4 06 0.8
t ( in I06 MCS)

I.Q

-I.5-

F— ~ X TC

-I 75
0.700

0.75-

X
o

I

0.705

kBT

J

(b)

X0 o
x o

l8
x 26

5O

0,7IO

L
o I8
x p6

50

FIG. 2. Time dependence of the internal energy in Monte
Carlo simulations on a 20X20 lattice. The instantaneous values

of E are plotted after every SOOO Monte Carlo steps. {a) Fluc-
tuations at the first-order transition in the ten-state Potts model.

(b) Fluctuations at the second-order transition in the four-state
Potts model.

5000 Monte Carlo steps. Consequently the short-time
fiuctuations have been omitted. }

Our approach to the problem is phenomenological and
utilizes the theory of thermodynamic fiuctuations. ' The
system is considered as a "black box" from which a value
of E, the internal energy per site, is obtained at regular in-
tervals (corresponding to the Monte Carlo passes). These
values of E obey a probability distribution PL(E} and we
assume that Pt(E) is a Gaussian centered about the
infinite-lattice energy Eo, characteristic of the tempera-
ture T, with a width proportional to the infinite lattice-
specific heat C. " It can then be shown that

« —Eo)'L '
PL (E)= exp

C 2kttT C
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FIG. 1. Temperature dependence of the (a) internal energy
and (b} order parameter for the ten-state Potts model. Charac-
teristics of the first-order transition in the infinite lattice are in-

dicated.

where kz is the Boltzmann constant and A is a normali-
zation constant. [The treatment is parallel to that of I ex-
cept that we consider here PL(E) instead of the magneti-
zation distribution PL(s) of I.) We further argue that the
distinctive feature of a first-order transition is phase coex-
istence so that at the transition point, PL (E) is a superpo-
sition of two Gaussians centered at E+ and E . (E+
and E are the internal energies at the transition in the
high- and low-temperature phases, respectively. ) Away
from the transition, the Gaussians are centered at the en-
ergies characteristic of the temperature. The Gaussians
are weighted by the Boltzmann factors of the respective
free energies so that the double-Gaussian behavior persists
in finite lattices over a small temperature range. Once
PL(E) has been explicitly obtained, it is a trivial matter to
calculate the quantities of interest, such as internal energy
and specific heat, from suitable moments of PL (E).
While the Gaussian approximation is justifiable for simu-
lations of a single phase, ' the double Gaussian would
need correction terms for the region between the two
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peaks. There, interface effects between domains of the
various phases will play a major role and significant devi-
ations from Gaussian behavior may appear. We ignore
the (unknown) corrections in order to have a tractable
theory. In Fig. 3 we present some typical distributions
obtained in the course of our simulations and one can see
that the approximations we are making are reasonable.

The rest of the paper is organized as follows. The
theory is presented in detail in Sec. II. En Sec. III the re-
sults of simulations of the two-dimensional ten-state Potts
model are presented and comparison is made with the
theoretical predictions. . Section IV summarizes our con-
clusions.

II. THEORY

In the following treatment all the quantities with the
subscript + refer to the high-temperature phase and
those with the subscript —refer to the low-temperature

phase with T, being the transition temperature. Thus,
F+, U+, and S+ are the free energy, internal energy, and
entropy, respectively (all per spin), in the high-
temperature phase. E+ ——U+(T, ) and E =U (T, ) so
that E+ —E is the latent heat. Since we are considering
the system near T„we can assume that the specific heats,
C+ and C, do not vary with temperature. %e consider
only lattices that are larger than the correlation length of
either phase so that all the quantities are the infinite lat-
tice values. The measured quantities are labeled by the
subscript L (the lattice size}. Thus, (E)i., (E )L, etc. ,
are the moments of the energy distribution PL on a hyper-
cubic lattice of dimension d.

We stated earlier that PL (E) at the transition is a dou-
ble Gaussian. If b, T =T —T„ the Gaussians are centered
at E+ +C+ AT and E +C hT. Denoting
~=F+ F, t—he weights for the Gaussians may be
written in a symmetric form and we have

Q+
PL (E)=/I, exp

)
i /2

[E (E—++C—+AT)] L" a [E (E—+C—b, T))~Ld

2kgT C )i/2 2kgT C

where a+ ——[(C+)'/ ]e', a =[(C )'/ ]qe ", q (equal to
10 in our case) is the number of ordered states coexisting
with the disordered state at T„and x is given by

—LFL"
2k' T 4

&E&
34

(b)
&E&

34

(d is the dimensionality). The question arises —How does
one justify the above approximation? We do this by con-
sidering for the moment the space of the order-parameter
components, which we denote by 10] and recall from
basic statistical mechanics that for L~ oo the probability
distribution becomes

0 ~I I I j f~
0.7 Q9 I.I

j k ~ ~

0 7 09 I. l I.5 l 5 17 19

Pl (4) 0:exp
L'F(e)—
kgT

where F(%) is the free-energy density of the system.
Since the free energies of the disordered and ordered
phases are equal at T„Eq. (3) implies that PL(4) has
q+1 peaks of equal height at T, . If we consider only
small deviations from the peak positions, i.e., relative de-
viations of

l
@

l
from its peak positions of the order of

L "/, one may expand F(%) quadratically around each
of these peaks of PL(4) and thus replace each peak by a
Gaussian. This is schematically illustrated in Fig. 4 for
the simple case of a temperature-driven first-order transi-
tion in a Landau theory with a scalar order parameter 4':

F(%)=F0+ —0 +—0 +—0 +r 2 u 4 U

2 4 6

where Fo r, u, U, . . . , are chosen such that u &0, U &0
(independent of temperature} and r =r'(T —To). At T,
the free energy of the two ordered states (+=+M,~,
where M,„ is the spontaneous magnetization} and the
disordered state (4=0) are equal. If we expand F(%')
quadratically around each of these minima as indicated by
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FIG. 3. Probability distributions of the internal energy at
various temperatures obtained in simulations of the ten-state
Potts model on L &I square lattices. The model has a first-
order transition at k&T/J=0. 7012. The specific-heat maxima
are located at k~T/J =0.7027 for I. =34 and at 0.7018 for
L =50. The average values of the internal energies are also in-
dicated. (a) Results from a single run of 4)(10 Monte Carlo
passes on a 34& 34 lattice at a temperature far from the transi-
tion temperature. {b) Same as (a) except that T is very nearly
equal to the transition temperature for I.=34. {c)Unequal dis-
tributions for a 50&50 lattice slightly a~ay from the transition
temperature. The number of Monte Carlo passes was 5)(10 .
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the dashed curves in Fig. 4, PL(%) becomes a sum of
three Gaussian peaks, which have exactly equal height at
T, since then F(4=0) and F(%'=+M») are exactly
equal. Note that obviously nothing is implied about the
"weights" of the Gaussian peaks (i.e., the area under the
Gaussian distributions), which are controlled both by the
free-energy minima and the curvature there (the curva-
tures at these minima in the case of Fig. 4 are controlled
by the parameters r, u, u, . . . , of the Landau expansion,
and choosing enough terms in this expansion one can give
them any value). Thus the remark made in I that in the
general case the transition occurs when the Gaussian
peaks have equal "weights" (i.e., areas) is in error, but as
we shall see below, this is a valid definition of the effec-
tive transition temperature T,(L) in the finite system.

Since the order-parameter distribution contains (in the
example of Fig. 4) three peaks of equal heights at T„ the
corresponding energy distribution must contain two peaks
around E=E and E=E+, with PL(E )=2PL(E+)
because both peaks PL(%=+M,~) and Pt (4I= —M,~)
contribute to the same state with E=E, when one
chooses the energy rather than the order parameter as the
phase-space coordinate. Of course, this factor of 2 is
specific to the Landau model, Eq. (4), which has a
twofold-degenerate ordered phase; obviously if there is a

q-fold degeneracy we must have

Pr (E )=qPL (E+), T =T, ,

and this is satisfied by Eq. (1) since ~=0 at T, .
Equation (1) is constructed such that it yields the

correct first and second moments of the energy distribu-
tion, as will be shown in detail below; of course, higher-
order reduced cumulants of the energy distribution are no
longer described accurately. This already happens in the
Landau theory: e.g., at T ~~ T, in Fig. 4 there is only one
minimum at O'=0, and in the quadratic expansion this
implies that

UL ——1 —(4 )I /3(%' )1 =0.
In reality, due to the term of order %' in Eq. (4) one must
have a nonzero UL (of order L, cf. Ref. 6). Similarly,
reduced cumulants of the energy distribution also are ex-
pected to have the order L even if there is a single peak
in PL(E). Apart from this failure to correctly describe
the reduced cumulants of higher than second order, Eq.
(1) is also seriously in error for states near the maxima of
F(4) in Fig. 4. Equations (3) and (4) imply that
F,„(4) F;„(4)—is of order unity, and hence

PL '"(E)/Pl '"(E) &x:exp( —constXL ) .

But in reality states near the maxima of F(%) close to the
thermodynamic limit are dominated by two-phase config-
urations [see Fig. 4(c)] which means that F,„(%)

E,„(%) a—t T, is of order 1/L, due to the interface
free-energy cost of the domain in Fig. 4(c). This implies
that

PL '"(E)/PI '"(E)~ exp( —constL ')

-Mgp

disordered

I

Msp

I

+Msp

for T=T, . However, since even states near the central
probability minimum have contributions which are ex-
ponentially smaller, this problem does not affect the low-
order moments of PI (E). Of course, such states are cru-
cial for understanding the dynamics of first-order transi-
tions.

We now discuss the energy and specific heat which fol-
low from the postulate, Eq. (1). First, the constant A is
obtained by the normalization condition,

PI E E=l,
so that

' 1/2

2mkg T2

Then the first and second moments are easily found to be

FIG. 4. Schematic variation of the free energy E(%) as given
by Eq. (4) near a first-order transition occurring at
T, =TO+3u2/(32r'U) in Landau theory (a) and (1), Note that
the actual free energy for values of III in the region between the
minima is not given by Eq. (4) bnt rather is dominated by
mixed-phase configurations as schematically sketched in (c).
Dashed curves in (a) and (b) indicate the quadratic expansion
around the minima which yields a triple-Gaussian approxima-
tion for PL(%') in this case.

a+E++a E (a+C++a C )bT+, (7)
Q++Q Q+ +Q

a+(E++C+bT) +a (E +C hT)E2
Q+ +Q

ksT (a+C++a C )+ g 0 (8)
Q++Q

The fluctuation-dissipation theorem implies for the
specific heat
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ks T'

a+C++a C

a++a
a, a L'[(E, E-)+(C, C—)~T]2

kgT2(a+ ~a )2

(9)

dT

a+C++a C

a+ +a
dx a+a [(E~ E)+—(C+ —C )b T]

+2
dT (a++a )

Of course, alternatively the spe:ific heat can also be ob-
tained as the temperature derivative of the internal energy.
From Eq. (7) we get

If we demand that a+ ——a =a we find

e'"=q(C /C+ )' ' (17)

T, (L) T, —
C

kgT, ln[q(C /C+)' ']
(E+ E)L— (18)

As a result we conclude that there is a shift of T, of order
L

—d

While Eqs. (14)—(18) refer to the limit where L~ co,
we now consider the opposite limit x &g l. %e obtain, up
to O(b T),

The condition a+ ——a, which says that both states con-
tribute to the integrated energy distribution with equal
weight, can thus be taken as an effective T, (L) for the fi-
nite system, where the energy is just the arithmetic mean
of the two states. From the definitions of a+ and a and

Eq. (13) we find

In the absence of external fields, F+ ——U+ —TS+ and
dF+ —— S+dT, and n—oting that F+(T, )=F (T, ), we get

dT

I d

, [(E +C hT) (E +C —hT)]. (11)
ks T'

Using Eq. (11) in Eq. (10) we recover Eq. (9), and hence
we have established the thermodynamic consistency of the
ansatz, Eq. (1). (The generalization to the case when a
magnetic field is present follows by noting that the mag-
netic Hamiltonian then represents the enthalpy and not
the internal energy. ) Note that Eq. (1) is much more gen-
eral than the arguments drawn from Landau theory,
which we have used as an illustration and motivation
only.

We now approximate x in Eq. (2) by expanding F+ and
F about T, up to O(ET). (Note that higher-order
terms would involve the temperature variation of the
specific heats C+ and C . ) Again using F+ ( T, )

=F (T, ), we obtain

(12)

which yields

(E~ E)4TL (E+—E)b,TL~-
2k~ TT, 2k' T,

We now discuss the finite-size effects for the energy and
specific heat which follow from Eqs. (7) and (9). For
gT )0 and L~00, a+ —+rc and a ~0. If b, T &0,
a+ ~0 and a ~(x) in the same limit. Thus the internal
energy behaves as

E++C+AT, L~ 0T0& T, fixed, (14)

E +C bT, L~ o, TO&T, fixed. (15)

E+ E(E—+ E) L —[T—T, (L)](E)L- ', +
4k' T,

~ Tround 2kB Tc

(E+ E)L— (20)

Equations (18) and (20) show that the rounding is the
same order as the shift. Turning our attention to the
specific heat, we see from Eq. (9) that

CL~C+, L~oo, T ~ T, fixed,

CL~C, L~rc, T & T, fixed,

while the maximum value of CL is [cf. also Eq. (19)]

C+ +C (E+ E) L"—
CL

I a.=
2

+
4k' TC

(21)

(23)

This result is found from noting that CL ~,„ is found
from dCL /dT =0, which to leading order is identical to

(a++a ) =(a+ —a ) =0,dx
(24)

which again is solved by a+ =a, i.e., Eq. {&8).
We have also considered the quantity Vl. defined by

VL
——1—

3(E'),' (25)

Although VL does not have any obvious experimental sig-
nificance, it is an extremely useful quantity in simula-
tions' and behaves quite differently at first- and second-
order transitions. We note that from Eq. (1)

This deviation from the infinite lattice behavior manifests
itself in the smoothness of the (E )L versus T curves (Fig.
I). We can obtain an order of magnitude estimate of the
rounding by noting that the width of the transition region
in a finite lattice corresponds to x —1. Thus
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r

kgT C+&E'), = u
0+ +6 Ld

kgT C
+a 3

Ld

6ksT Ci
+ d (E++C+&T) +(E++C+4T)J d

6k~T C+, (E +C ~T)'+(E +C ~T)'
L cf (26}

4U+
L —+ oo, TQTo fixed .

3U
(27)

Equation (27), a trivial limit, is also true if the transition

Although the expansion for VL resulting from Eqs. (8),
(25), and (26) is forbiddingly complicated and thus is not
presented here, it is enough to examine VI at T, (L) and
far away from it. Away from the first-order transition,
PL(E) is described by a single Gaussian so that, in the
thermodynamic limit, the resuitin~ 5-function singularity
yields (E ) =U~ and (E ) =U+ (U+ —E++C—+AT).
Therefore

at T, were second order and holds at T, for the second-
order transition as well [although the probability distribu-
tion Pl (E) is essentially non-Gaussian, its relative width
vanishes at T, and in the thermodynamic limit PL (E) is a
5 function as well]. When PJ(E) is described by two
Gaussians of equal weight, which happens at T, (L), we
obtain a nontrivial limit

2(E4++E" }
VL ~m;„=1—

~ 2, L oo, T=T,(L) . (28a)
3(E++E )

To leading order in L we obtain

2(E+ +E )

3(E' +E' )'
4k~T,' C+E++C E (C++C )(E++E )

(E2 +E2 )2 3(E2 +E2 )3

2(E+C++E C ) 1n[q(C /C+ )'~ ]
3(E+ —E )(E++E' )'

(E++E )(E+C++E C ) ln[q(C /C+ )'~2]

3(E+ E}(E++E— (28b)

In the framework of the double-Gaussian approximation, the temperature TL where this minimum of Vl occurs is iden-
tical to the temperature TL where the specific-heat maximum occurs, and is

driven
by Eq. (18). However, if we consider

higher-order terms Tl and Tz are expected to differ by terms of order L and also VL ~;„has a correction term of
order L . Therefore it follows that a proper extrapolation of VL ~;„to the thermodynamic limit is also performed
linearly in the variable L . We emphasize that since Eq. (25) does not consider a reduced cumulant of the energy dis-
tribution, which would involve the odd moments as well, we are able to obtain the leading terms correctly, as given by
Eqs. (27) and (28), entirely in terms of E+ and E, and the quantity VL is of order unity. The corrections to the Gauss-
ian approximation, which are picked up by the reduced cumulant, appear in Vi as a finite-size correction only.

Finally we consider the case of an asymmetric field-driven transition (see I) where, in the thermodynamic limit at
h =H H, =O, a first-or—der transition occurs with the magnetization M jumping from M+ at h =0+ to M at
h =0 . In terms of the susceptibilities P+ and X at phase coexistence, the probability distribution of the order parame-
ter becomes

A
PL(s) = exp

(2~k, T)'"
[(s —M~ ) 2X+sh]L-

2ka TX~

[(s +M ) —2X sh]L

2k' Tg

normalization constant 3 becomes

h L ' —hM I.
exp+g exp

instead of Eq. (23}of I. Similarly, instead of Eq. (24) the

X+h L hM+L
A =L X+ exp exp

8 8

h I.
(s)1. AL (X+h+M——+)X+ exp exp

hM+L
kgT

+ (X h —M )X exp exp
8

corrects Eq. (25) of I, and finally Eq. (26) of I should be replaced by
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kg Tg+ ]pi X+A L
(s~)L A——L di~ (++5+M+) + d I+ exp exp

hM+L

kgT

+ (X & —~ )+ d 1 exp
kg Tg

Ld exp

The expansions given here again express the principle that
at the transition field H, the peak heights of PL (s) have
to be equal; the effective (shifted) transition field H, (L)
occurs when the peak weights (areas) are effectively equal,
i.e., for

ln(X /X+)ks T
h, =H, (L) H, =—

2(M++M )L

Of course, in the symmetric case (where M+ ——M =M,
I+——X ) there is also no shift of H, =0 in this case as re-
quired by symmetry.

III. RESULTS FROM MONTE CARLO SIMULATIONS

We tested the theory by performing Monte Carlo simu-
lations' of the ten-state Potts model on L )&L square lat-
tices with periodic boundary conditions. In a q-state
Potts model the spin at the ith site, cr;, can take on one of
q different values, say, the numbers 1 to q. (q =10 for
our system. ) The Hamiltonian is given by

Am =1—q —3q —9q —27q
—1 —2 —3 —4 (34)

We see from the above exact results that the q =10 model
has a prominant first-order transition with
Tc =0 701232~ E+ = 0 9682~ E—= 1 6643
=0.8572, and m+ ——0. (It is to be understood henceforth
that the units for the temperature are J/kii and those for
the energy are J. )

The simulations were done using standard Monte Carlo
techniques on lattices of sizes L =18 to 50. The strong
first-order character of the transition introduces pro-
nounced metastabilities with the system spending most of
the time in one of the two phases and very large run times
are required to sample the distribution effectively. For
the larger lattices up to 35 &(10 Monte Carlo steps
(MCS)/site were needed per data point and for the smaller
lattices up to 8X10 MCS were sufficient. The data
points are averages over several different runs of 4 to
6)&106 MCS each and represent different starting config-
urations, random number sequences, etc. The calculations

where 5 is the Kronecker delta, J is the interaction
strength (&0 for the ferromagnetic case) and the sum
runs over all the nearest-neighbor pairs.

The Potts model is a generalization of the Ising model
and has been extensively studied. ' ' The properties of
the model are q dependent and Baxter has shown that in
two dimensions, the model has a second-order transition
for q &4 and a first-order transition for q ~4. Baxter's
results for T, and the latent heat are the following:

ks Tg

J = [ln(1+ v q )]

600-

500-

400-

o l8
~ 20

22
26
50

8
+ 40
x 50

g ao

J =2(1+i/q ) tanh —ff [tanh(n8)]',
n=1

(31)

where 2cosh&=v q. We can obtain E+ and E by us-
ing the above with the results of Kihara et al. : ' 200-

2J v
(32)

l 00-

The order parameter, m, is defined as follows. Let X1 be
the number of spins in state 1, Ni be the number in state
2, etc. , and Xm,„=max(Ni, N2, . . . , X&). Then

q(%,„/N) —1
Pk = (33)

q —1

Kim has given a large-q expansion for the discontinuity,
bm, in two dimensions (confirmed later by Baxter who
has given an exact expression for b m). The result is

0.700 0.705
kBT

J

0.7l 0

FIG. 5. Temperature variation of the specific heat for vari-
ous lattice sizes. Data for some lattice sizes have been omitted
in order to preserve the clarity of the figure.



MURTY S. S. CHALLA„D. P. LANDAU, AND K. BINDER 34

600
lope
0.P.50

400

200
0.50 I

0.00l 0002
-2

0.003

I

l 000
I

2000
L2

I

3000 FKr. 8. Variation of Vt ~;„with L ". The arrow shows the
infinite lattice value obtained from Eq. {28a).

FIG. 6. Variation of the specific-heat rnaxirna ~ith L .

were performed on the CDC Cyber 205 vector processor
at the University of Georgia. Using a memory-to-register
swapping technique suggested by Wansleben et ai. and a
newly-developed "checkerboard" algorithm (for back-
ground see Ref. 25) we obtained a speed of 1.6 )Msec per
update. The speed on the vector processor was about 35
times the speed we obtained on the Cyber 750, a fast sca-
lar machine. The advantage of a super computer is obvi-
ous: the equivalent CPU time on the Cyber 750 would
have been enormous.

The temperature variation of the specific heat for vari-
ous lattice sizes is shown in Fig. 5. As the lattice size in-
creases, the peaks grow while the rounding decreases. The
rounding is already very small for L =18 (half-width,

0.60-

b, Ti~2-0.0077). There is also a definite shift in Tz. The
peak heights are plotted versus volume in Fig. 6 and we
see an excellent straight-line behavior in accordance with
Eq. (23). A least-squares fit yields a slope of 0.250—
within 1.6% of the theoretical value. There are no
theoretical values for the intercept and we estimate
C++C =25.4 from the fit. This should be good
enough for a rough estimate.

The temperature variation of Vt is shown for various
lattice sizes in Fig. 7 and confirms our expectations.
There is a prominent minimum even for L =50 and de-

finite L dependence in Tz. We present in Fig. 8 the vari-
ation of VL ~;„with L "[Eqs. (28a) and (28b)]. VL

~

does increase for the larger lattices though the data be-
comes increasingly inaccurate. The straight line is the
best-fit line passing through the limiting value and the
data for the larger lattices after taking into account the er-
ror bars. However, this extrapolation is questionable be-
cause the slope is larger than the theoretical value [see Eq.
(28b)] by a factor of 4. On one hand it is possible that the
theory is in serious error because the Gaussian approxima-
tion, being completely determined by the first and second
moments, gives wrong numerical values for the fourth
moment. (A more realistic theory would, for example, ac-
count for the variation of C+ and C with temperature.

0 710-

0.700 0.705
kBT

J

0.7IO

0
+ 4Q
x 5O

0.7l5

k TB 1

J

c 7cc
0 0.00 I 0.002

L 2

OQC)4

FIG. 7. Temperature variation of VL for various lattice sizes.
The transition temperature and the trivial ( —, ) and nontrivial

(0.585) limits for VL
~ ~,„are indicated. Data for some of the

Iattice sizes have been omitted in order to preserve the clarity of
&he figure.

FIG. 9. Extrapolation of the characteristic temperatures
versus L . TL is the location of CL

~
~,„and TL is the loca-

tion of Vr ~;„. The arrow shows the infinite lattice value ob-
tained from Eq. {30). The maximum error bars are also indicat-
ed.
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FIG. 10. Extrapolation of the rounding "fields" versus L
The AT]/~ are the half-widths of the specific-heat maxima in

Fig. 5 and the AT~qq are the half-widths of the VL minima in

Fig. 7. The maximum error bars are also indicated.

Note that this would only affect the approach to the limit
and not the limit itself. ) On the other hand, the errors in

VL for L =40 and 50 prevent us from ascertaining the
asymptotic behavior. Thus, while we are satisfied with
the qualitative behavior of Vl, we are at present unable to
say more on the quantitative aspects.

In Fig. 9 we present the variation of TI' with L in
accordance with Eq. (18). There is excellent linear
behavior and T, thus found agrees with the theoretical re-
sult to four significant figures.

Figure 10 presents the variation of the rounding with
L . While there is some scatter in the data most of it is
due to errors in drawing the curves of Figs. 5 and 7. The
slopes of the straight lines ( =2.5) are in rough agreement
with the order of magnitude estimate ( =1.4) of Eq. (20).

We see from Eq. (9) that if C+ ——C we would have a
nice scaling form: CL/L would be a universal function
of b, TL . There would be small corrections due to the
first term in Eq. (9) but we expect these corrections to be
quite small for the lattice sizes in our work. We expect
that E+ Eand C+ —C w—ould be of order unity and
since we are interested in hT of order L ", the term
b, T(C+ —C ) in the numerator of Eq. (9) is only another
small correction to scaling. Scaling was attempted, using
b, T =T —TL and the results are shown in Fig. 11(a). The
scatter in the data is due to problems in sampling the dis-
tributions (even with ~ 10 MCS/site) and we conclude
that scaling storks reasonably well. Note that sampling
the distribution functions accurately is enormously diffi-
cult: Most of the time the system stays close to one of the
peaks, but to get the relative weight of the peaks correctly
one has to pass from one peak to the other very often, go-
ing through the deep rninimurn separating them in the
process. In fact, with runs employing the ordinary statist-
ical effort of a few thousand MCS/site, one would observe
hysteresis and would not be able to meaningfully sample
the distribution PL (E) at all.

The theoretical analysis of Sec. II implies that CL/L

CL/L

0.20-

0.10-

(b)
X

x+ x

x ]8
+ ZQ

22
v 24

26
28
30
34

~ 4Q
o 5Q

0
0

-5 0
[T-Tc{~)]L

FIG. 11. Scaling of the specific-heat data. (a) TL in the
abscissa is the location of the specific-heat maximum for a lat-
tice of size L XL. (b) T,(oo) in the abscissa is the transition

temperature of the infinite lattice. The solid curve results from
Eq. {35).

should also be a scaled function of (T —T, )L, where
T, =T„ is the infinite system critical temperature rather
than the shifted critical temperature as employed in Fig.
11(a). This full scaling description is tested in Fig. 11(b};
the shift of T, in the finite system now shows up as a
displacement of the peak from the origin to
( T —T, }L = 1.5. We see that the data again scale
reasonably well, and moreover, are described by the scal-
ing function which follows from Eq. (9)

CL (E+ E) q(C /C+ )'—
L k&T, [e +e "q(C /C+)'~ j

(35)

which is included in Fig. 11(b) by choosing
C /C+ ——0.70. The systematic deviations at the peak
should be attributed to the additive correction term in Eq.
(9}, while the systematic deviations far out in the wings
are partly due to the term ( C+ —C )hT in Eq. (9) which
also represents a correction to scaling. Note that apart
from the ratio C /C+ which also can be extracted from
the data in Fig. 9 by applying Eq. (18), all other parame-
ters in the above scaling function are known exactly and
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FIG. 12. Specific heat for three I.XL lattices plotted versus temperature, Open circles are the Monte Carlo results while the solid
curves represent Eq. (9) for C /C+ ——0.7 (the other parameters being taken from the exact solution, see Table I).

are not adjustable. Thus the agreement between this func-
tion and the Monte Carlo data confirms the basic assump-
tions of our theoretical analysis. In Fig. 12 we show the
comparison between the specific-heat data for three dif-
ferent lattice sizes and Eq. (9) which includes the lowest-
order corrections to the simplest scaling form using
C /C+ ——0.7. The agreement is quite reasonable but the
statistical fluctuations in the data make it impossible to
accurately extract further corrections. We also find that
comparatively good fits are obtained for other choices of
C /C+ in the range between C /C+ ——0.5 to
C /C+ ——0.9. Combining our "best estimate"
C /C+ ——0.7 with the result for C++C as obtained
from the extrapolation in Fig. 6, we obtain rough esti-
mates for C+ and C individually as shown in Table I.

We remarked earlier [Eqs. (23)—(28)] that the fourth-

order quantity, Vl, has a characteristic behavior at a
first-order transition. This may be contrasted with the
behavior of VL at a second-order transition. Since the or-
der of the transition in the Potts model is q dependent, it
was a simple matter to change the program in order to
study VL at second-order transitions. The results are
shown in Fig. 13 for q =2 and 3. We see that our expec-
tations are borne out well. (The minimum in Vl at a
second-order transition is due to the specific-heat max-
irnum which diverges as L ~". However, this is smaller
than L and the minimum disappears rapidly with in-
creasing lattice size. )

Once the transition temperature is located accurately
from extrapolations such as those shown in Fig. 9, esti-
mates for E+ and E may be obtained by making short
runs at the transition temperature on a very large lattice.

TABLE I. Thermodynamic quantities obtained from simulations on a 500&500 lattice using 10000
MCS. The results are compared with the known values for the infinite lattice.

Quantity
From simulations

on a 500~500 lattice

1.6661+0.0043
—0.9716+0.0027

14+6
15%6
29+8

0.858720.0032
0.0071+0.0023'

From present
extrapolations

0.7012+0.0001
1.64+0.02'
0.94+0.02'

10.5+2.0
14.9+2.0
25.4+0.2'

Exact results

0.701 232. . .
1.6643. . .b

—0.9682. . .

0.8575'
0

'E E follows from the slope of—Fig. 6, while E++E follows from (E)t at T, , see Eq. (16).
b From Eqs. (31) and (32).
From Fig. 6. Note that C++ C can hence be estimated more accurately than C+,C individually.
From Eq. (34).

'The order parameter cannot vanish in a finite system.
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This ensures that the system stays within one state during
the run, and one can use the quantities thus obtained as a
cross check. This procedure is particularly valuable in
cases where no exact solution is available. This has been
done on a 500' SOO lattice using 10000 MCS and the re-
sults are shown in Table I. There is very good agreement
between the energy and magnetization values but only a
rough agreement with the specific-heat values. This is not
surprising since the specific heat is very large and, hence,
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FIG. 14. Variation of the susceptibility maxima with volume

in the ten-state Potts model.
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sampling it very accurately, using short runs, is very diffi-
cult.

The purpose of the present work has been to study the
moments of the energy distribution, and the moments of
the magnetization distribution have been omitted from the
discussion so far. One of the reasons is that the quantity,
UL, , which may be defined in a inanner analogous to Vt,
has its minimum far away from rL and it was not possi-
ble to study it in equal depth. Another reason is that the
magnetization distribution has been analyzed in detail in I
and the only changes appropriate here would be that the
widths of the distribution will depend on the "susceptibili-
ties" instead of the specific heats. Care is needed if one
studies order-parameter variation with temperature and
not field since "mixed susceptibilities" such as
dm/dT ~ (mE ) —(m ) (E), also enter. The characteris-
tic features will not differ; for example, the susceptibility
does diverge as I." (Fig. 14) and the locations of the sus-
ceptibility maxima vary as I. ~ (Fig. 15). For purposes
of illustration, we present in Fig. 16 the temperature vari-
ation of the fourth-order cumulant of the order parame-
ter: UL

——1 —(m )r /3(m )L (not to be confused with
the internal energy).

IV. CONCLUSIONS

0.660-

The phenom enological theory we have presented
predicts that all finite-size effects depend on the volume

L= I6

0.655
l.05

0.705

X
kBTL

J

FIG. 13. Temperature variation of VL for various lattice
sizes at second-order transitions. (a) Data for the q =2 Potts
model using 30000 MCS. The transition temperature shown is
obtained from Eq. (30). The exchange constant, J, is twice that
of the Ising model. (b) Same as (a) for the q =3 Potts model.

0.700
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I

0.00I 0,002
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FIG. 1S. Extrapolation of the location of the susceptibility
maxima in the ten-state Potts model. The maximum error bars
are indicated.
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0-

Uao

-0.5-

-I.0-

- l.5-

I.". This is consistent with other approaches and with the
results of our simulations. The numerical predictions re-
garding the specific heat are in very good agreement with
the results from simulations. The fourth-order quantity,
VL, has proved useful in clarifying the nature of the tran-
sition (however, the theory does not yield reliable numeri-
cal values for the explicit I. dependence of VI ). We have
therefore demonstrated that the present analysis of size ef-
fects at a temperature-driven transition can identify its or-
der and that we can obtain the various quantities of in-
terest in a well-controlled manner. Note that this is a
nontrivial result —standard Monte Carlo simulations of
two-dimensional Potts models using only one moderately
large lattice size (I.=60) and moderate statistics could
not distinguish whether the transition for q =5 and for
q ~ 6 state Potts models is first or higher order. This ap-
proach is particularly useful for the study of models
where the order parameter is not known and, e.g., for lat-
tice gauge models for which it is believed that no order
parameter exists. Similarly in studies of systems with
continuous spatial symmetry, e.g., I.ennard-Jones liquid-
gas and liquid-solid transition models, this approach
should also be useful.

I

0.70
I

k.T' '0,75

J

I

0.80

FIG. 16. Temperature variation of the fourth-order quantity

UL for L =20 in the ten-state Potts model. UL, is the magneti-
zation analog of VL. Note that the temperature scale is 10
times smaller than that used in Fig. 7.
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