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Power-law behavior in the viscosity of supercooled liquids
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%'e present experimental results on the viscosity of supercooled aqueous solutions of lithium
chloride. The viscosity scales as (T —Tog with p= —2.08 over a large temperature range. Data on
other systems show that both the power-law behavior and the approximate value of the exponent p
are typical for a wide variety of fluids. The region of power-law behavior occurs at much higher
temperatures and lower viscosities than are normally associated with the glass transition. The re-
sults are discussed in the context of several recent theories of structural relaxation in glassy liquids.

INTRODUCTION

As a liquid is cooled into the metastable state below its
melting point, the viscosity increases until it crystalizes or
vitrifles. The manner in which the viscosity approaches
its value in the solid state provides important information
about the mechanism of atomic mobility in the fluid and
the nature of the glass transition. The temperature depen-
dence of the viscosity of fluids is often described using the
Arrhenius form il-exp(E/T) or the Vogel-Fulcher (VF)
form r-lex p[ E/( T—To)]. The theoretical interpretation
of the Arrhenius form relies on a picture of single-particle
hopping over potential barriers of uniform height; this
picture is not supported by computer simulations which
suggest that particle motion in viscous flow is cooperative
with a broad distribution of barrier heights. ' The VF
equation has been justified by considering the liquid free
volume required for fiow. At a characteristic tempera-
ture To which is related to the calorimetrically defined
glass transition temperature Tg, the free volume vanishes
and the viscosity is predicted to diverge. In the Arrhenius
form, however, the only significant temperature is T =0.
Although both of these forms have been used with partial
success in describing experimental data, neither one is
considered the basis of a fundamental theory of the tem-
perature dependence of fluid viscosity. Recently, a num-
ber of investigations of the dynamics of supercooled fluids
which attempt to include the cooperative nature of the
flow on a microscopic scale have been presented. These
calculations, based on a hard-sphere model, ' an Ising
spin model, ' and a general hydrodynamic descrip-
tion, ' suggest the existence of a transition at which the
viscosity diverges as ( T —Tg y' with p —= —1.8. In the ex-
periments reported here, we have used an oscillating-cup
viscometer to make high-precision measurements of the
viscosity of aqueous solutions of lithium chloride. This
system provides the opportunity of studying the viscous
behavior of supercooled fluids, which range from very dif-
ficult to vitrify (pure water) to excellent glass formers (15
mo1% LiC1—H20) by varying the salt concentration.
The results show that over a broad temperature range the
viscosity g scales as (T —TOY' with p= —2. Although
To is not a sharp transition point and does not coincide
with the glass transition temperature Tg, it appears to be

a significant point which marks the boundary between
two types of viscous behavior: power law for T p To and
approximately Arrhenius rl-exp(E/T) for T & To. We
have also found that the power law ( T —To)l' describes
the temperature dependence of the viscosity of a surpris-
ing variety of fluid systems in the high-temperature re-
gime better than the Arrhenius or Vogel-Fulcher forms
commonly used to parametrize viscosity data. The ex-
ponent p is not universal, but lies in the range between
—1.5 and —2.3.

EXPERIMENT

The viscometer used in these measurements consists of
an aluminum cup 7 mm in diameter and 13 mm high
mounted on an aluminum torsion rod which forms part of
a high-g oscillator operating at co=1950 Hz. The max-
imum angular displacement is 3X10 rad. Details of
the experimental apparatus are discussed elsewhere. " The
frequency and amplitude of the oscillator are monitored
as a function of temperature as the sample is cooled at a
rate of 10 K/h. The amount of fluid which is dragged
along by the walls of the cup is characterized by the
viscous penetration depth 5 which is given by (2rllpco)'
In the limit where 5 is much smaller than the size of the
cup and the background damping is negligible, the ampli-
tude of oscillation is proportional to 1/5. The solutions
were prepared from reagent-grade LiC1 and high-purity
water which was passed through a 0.2-pm filter before be-

ing sealed into the viscometer. The addition of LiCl to
water inhibits nucleation and allows the liquid to be su-
percooled. Although the viscosity at room temperature is
similar to pure water, the LiCl-water system is a typical
example of a good glass former' with Tg —140 K.

Since the oscillator amplitude is proportional to g
plots of rl

'~ as a function of temperature occurred
naturally in the process of taking our data and also proved
helpful in understanding it. Figure 1 sho~s such a plot
for several LiCl-H20 solutions. For concentrations less
than 15 mol% LiC1, the measurement range is limited by
nucleation of the solid; at nucleation, the fluid is typically
supercooled by 10'C. The 15-mo1% solution can be
cooled continuously into the glass phase without freezing.
Above 230 K, the data can be approximately described by
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FIG. 1. q
' as a function of temperature for a series of

solutions of LiCl in water. From top to bottom the concentra-
tions are 0.0-; 3-, 6-, 9-, and 1S-mol% LiCl. A dashed line
which extrapolates the high-temperature behavior of the 1S%
solution, representing power-law behavior with p= —2, is in-
cluded as a guide to the eye.

DISCUSSION

It is natural to inquire whether the viscous behavior il-
lustrated in Fig. 1 is a special property of our experimen-
tal system, or if it is in fact typical of many dense liquids.
In order to answer this question, we have carefully
analyzed viscosity data for a number of diverse systems
taken from literature sources. ' For most simple liquids,
a plot of q

' versus T shows an approximately linear

a family of straight lines which extrapolate to infinite
viscosity in the vicinity of 210 K. The 15-mo1% solution
shows a linear portion from 300 to 230 K, a sharp bend
centered around 200 K and a transition to a different kind
of behavior in the low-temperature high-viscosity regime.
The linearity of these plots above 230 K immediately indi-
cates that g=(T —TD)4' with p= —2; a careful least-
squares analysis for the 15-mol % solution yields
p= —2.08, To ——207 K. It is important to note that a
best fit using the Arrhenius form shows pronounced cur-
vature on a similar plot and is obviously an inferior way
of parametrizing the data. The VF form can fit the data
slightly better than the Arrhenius form, but it is still sig-
nificantly worse than the simple power law. The viscosity
in the transition regime centered around To is only 100
times higher than the viscosity at room temperature, and
is many orders of magnitude lower than the 10'2 P usually
associated with the glass transition. Since the viscosity is
so low, the characteristic relaxation times are still very
short compared to the time scale of the measurement, and
the sample is certainly in internal equilibrium. It is also
apparent from Fig. 1 that To is not a real singularity since
the viscosity remains finite as the sample is cooled to To
and below. For T & To the viscosity is approximately Ar-
rhenius as described in Ref. 12.

segment, but no sharp bend or transition to a different
low-temperature regime. This is a consequence of the fact
that almost all of the available viscosity data has been ob-
tained for temperatures above the melting temperature,
while To is always considerably below the melting tern-
perature. By analogy with Fig. 1, one would expect that
the high-temperature data could be described by a power
law. We have found that fits to the form A (T/To —1)"
are indeed better than fits to the Arrhenius or VF forms
customarily used for viscosity data. Figure 2 shows
power-law fits of the temperature dependence of the
viscosity of some typical non-glass-forming liquids. Al-
though the viscosity of these liquids varies by approxi-
mately an order of magnitude from the melting tempera-
ture to the boiling point, the power law describes the tem-
perature variation of the viscosity in this region very well.
The plots also suggest that if these fiuids could be strong-
ly supercooled, the temperature dependence of the viscosi-
ty would change character in the vicinity of To. Table I
shows the parameters we have obtained for several
liquids' as well as the ratio, R, of the X of the power-law
fit to the VF fit to the same data; R is large if the power
law is a superior fit.

In addition to these real laboratory liquids, we have ex-
amined data for molecular-dynamics simulations of super-
cooled Lennard-Jones argonlike liquids. ' Although the
simulation data is much noiser than laboratory data, the
results are nevertheless consistent with power-law
behavior. It is important to note, however, that just as in
the real liquids, the viscosity at To is only —10 P. We
have also analyzed data for several pure compounds such
as isopropylbenzene and tri-a-napthylbenzene which can
be cooled into the glassy state. ' ' These materials exhib-
it behavior completely analogous to Fig. 1, i.e, a power-
law regime, a transition region around To, and Arrenhius
behavior at lower temperatures. As illustrated in Fig. 1,
the region of power-law behavior for glass formers can be
clearly identified from a plot of i)'~ versus T. For the
fitting procedure we have selected the temperature range
by computing X as a function of the low-temperature
cutoff and choosing the value at which g reaches twice
its asymptotic high-temperature value. In order to show
that the identification of To is not dependent on the de-
tails of our plotting procedure, we have included in Figs.
3 and 4 the more conventional plot of log, o(il ) versus 1/T
for comparison. The linear portion of Figs. 3(a) and 4(a)
show that the viscous behavior in the low-temperature
high-viscosity regime can be described accurately with an
Arrhenius form, but the description breaks down at the
same To obtained from the power-law fit. In contrast, the
viscous behavior is smooth and regular in the vicinity of
the glass-transition temperature. In fact, Tg cannot be
identified from measurements of the temperature depen-
dence of the viscosity without recourse to calorimetric
data.

Figures 1—4 and Table I reinforce our viewpoint that
for most liquids there exists a temperature To above
which the viscosity has power-law behavior. For simple
liquids, measureinents in the vicinity of To are difficult or
impossible because the lifetiine of the metastable liquid is
typically very short because of the high probability of
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FIG. 2. g '~ as a function of temperature. (a) Pure water; (b) propane at 3.4 atm pressure; (c) gallium chloride; (d) methanol. The
arrows indicate the melting and boiling points. The solid curves are power-law fits with parameters from Table I. Data are taken
from Ref. 13.

TABLE I. Best-fit parameters for the power-law form g= A (T/To —1)". See Eq. (1) for the definition of y.

Name

Water (pure)
Methanol
Carbon tetrachloride
Acetic acid
Propane
Benzene
Aniline
Toluene
n-heptane
Isopropyl benzene
gallium chloride
n-dodecane
n-tetrakosan
tri-a. -napthylbenzene
Lennard- Jones argon
Argon
Hydrogen

A (cP)

0.139
0.838
0.705
0.714
0.981
0.684
0.284
0.602
0.423
0.485
0.430
0.399
0.730
0.355
0.169
0.864
1.02

1.64
2.27
1.99
1.99
1.69
2.13
1.71
2.02
1.65
2.02
1.50
1.76
2.09
2.17
1.87
1.82
1.58

To {K)

225
135
158
166
69

145
243
148
145
163
254
199
233

38
30

1.2

0.006 86
0.0156
0.0163
0.0174
0.0195
0.0138
0.0161
0.0134
0.0197
0.0119

0.0218

0.0178
0.0111

Temperature
range (K)

250—370
170—330
260—455
305—385
90—270

280—500
270—460
150—440
180—375
175—330
340—520
260—380
320—580
460—580

45—90
85—125
14—28

2.5
3.1

1.4
1.6
1.7
2.5
1.1

1.0
12.0
2.3
1.6
1.0
5.0
1.0
1.1
1.0
1.0

Ref.

13,14
13
13
13
13
13
13
13
13
13
13
13
13
17
16
13
13
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FIG. 3. Viscosity of tri-o;-napthylbenzene. (a) Arrhenius plot
logio(q) vs T . Arrows indicate the calorimetric glass transi-
tion temperature T and the power-law singularity temperature
To. (b) g

' ' as a function of temperature for the same data as
in (a). Straight line shows region of power-law behavior and
identifies To. Data are taken from Ref. 17.

homogeneous nucleation. In glass-forming liquids, how-
ever, samples can be cooled below To into a regime with a
qualitatively different temperature dependence of the
viscosity. Although the VF equation provides a con-
venient interpolation formula which approximately de-
scribes the high-temperature and transition regions, ' it
typically fails at low temperatures' and, in our view, ob-
scures the fundamental difference between the low- and
high-viscosity regimes. We feel that the temperature To
defined by the region of power-law behavior as in Table I
is of more significance for classifying the flow properties
of viscous and glass-forming liquids than the singularity
temperature of the VF equation or the calorimetrically de-
fined glass transition temperature Tg, since the tempera-
ture dependence of the viscosity has no singular charac-
teristics in the vicinity of these temperatures.

A striking feature of Table I is that the exponent p, lies
within a narrow range between —1.5 and —2.3. The pre-
factor A, however, is not constant and shows systematic
dependence on the properties of the fluid. This depen-
dence can be accounted for using the principle of corre-
sponding states. On dimensional grounds, the viscosity of
a fluid at the critical point is proportional to
il=(MT )'~2V, ~ where M is the molecular weight, T,
is the critical temperature, and V, is the critical molar
volume. In order that the power-law behavior be con-
sistent with this estimate of the critical viscosity, we must
have
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FIG. 4. Viscosity of salol. (a) Arrhenius plot log&o(g) vs
T . Arrows indicate the calorimetric glass transition tempera-
ture Tg and the power-law singularity temperature To. (b)

as a function of temperature for the same data as in (a).
Straight line shows region of power-law behavior and identifies
To. Data is taken from Ref. 17.

where y is a constant independent of fluid properties.
The fact that the variations in the computed values of y
shown in Table I are small demonstrates that this rela-
tionship is a useful universal representation of the viscosi-
ty of fluids in the low-viscosity regime. The only class of
liquids which we have found which does not display the
qualitative behavior illustrated in Fig. 1 are the liquid
metals. The viscosity of these liquids asymptotically ap-
proaches a constant at high temperatures, and if the
viscosity is fit to a power law, the exponent is typically
less than 1.0, and the fit is not very good. See Fig. 5. If,
however, we take the high-temperature behavior into ac-
count and analyze the divergence at low temperatures as a
power law plus a constant we obtain a good fit with ex-
ponents of —1.20, —1.75, and —1.96 for Ga, Sn, and Pb,
respectively.

The similarity of the behavior of the various fluids in
Table I strongly suggests that the microscopic mechanism
which is responsible for producing the power-law
behavior is common to all of these fluids and depends
only weakly on chemical details. Several recent
theories ' have analyzed the consequences of including
nonlinear terms in the equations of motion that describe
relaxation in various model systems. In each case, the
analysis, which is based on a self-consistent perturbation
theory, yields a transition point ~here the relaxation times
diverge and the system behaves in some respects like a
glass. Despite the distinction between To and Tg, it is
tempting to identify the To of Table I with the transition
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of water, but rather is a property shared by almost all
liquids, and its explanation probably depends on features
more general than the high degree of bonding in liquid
water.

CONCLUSION
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FIG. 5. g
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solid curve is a fit to a power law plus a constant.

point found in these theories. The version of Das et al.
certainly satisfies the criterion of general validity, since it
is applicable to any fluid described by the Navier-Stokes
equations. The exponent which governs the viscosity is
predicted to be nonuniversal but less than —1.5, which is
in accordance with the data and analysis presented here. '

There are, however, some important differences between
the experimentally observed behavior and the theoretical
predictions. In particular, the experiments show that the
viscosity does not actually diverge at To, but smoothly
crosses over to an Arrhenius-like regime. The theory
predicts the correct behavior far from To but breaks down
in the vicinity of To and below. It is perhaps not too
surprising that flrst-order perturbation theory can
describe the effects of nonlinear cooperative interactions
in the region where the effects are small, but fails when
these effects become large.

Another possible explanation for the power-law
behavior we observe is related to correlated site percola-
tion theory, which has been invoked in several previous
theories of fluid viscosity. We wish to point out the
analogy between the flow of current in a random resistor
network and fluid flow in the network of solid and liquid-
like cells which are hypothesized in the free-volume
theories of liquids. In simple bond percolation in three di-
mensions, the resistance diverges with an exponent of
——2 which is similar to the viscosity exponent observed
here for many liquids. A percolation theory of the
hydrogen-bond network in water has been constructed to
explain the thermodynamic and transport properties of
supercooled water, including the power-law divergence of

%e have presented evidence which suggests that a typi-
cal fluid has two regimes of viscous behavior in which the
mechanism of flow is probably quite different. These re-
gimes are separated by a transition region characterized
by a temperature To and a range of viscosities of 10—10'
P. For T & To and iI~10 P, most fluids have approxi-
mately Arrhenius behavior. For T ~ To, we have shown
that the temperature dependence of the viscosity of many
liquids can be described more accurately by a power law
than by any other commonly used functional form. The
extrapolated singularity temperature To lies in the super-
cooled metastable liquid regime, but the behavior around
the singularity appears to control the temperature depen-
dence of the viscosity even at high temperatures. For
non-glass-forming liquids, the power law describes the
temperature variation of the viscosity throughout the re-
gion of existence of the liquid state which typically in-
volves variations of the viscosity by 1 to 2 orders of mag-
nitude.

We have also found that To (and in particular, not Tg )

is the only temperature at which the temperature depen-
dence of the viscosity of a typical fiuid changes in a signi-
ficant way. Since there is no temperature at which the
viscosity of real liquids diverges, it seems that the recent
mode-coupling theories ' either do not describe the
physics which controls the temperature dependence of the
viscosity, or have relied on some mathematical approxi-
mation which is not physically justifiable. It is therefore
not possible to compare directly the theoretical predic-
tions with the experimental data. The evidence which we
have presented here suggests that these theories cannot
describe liquids in the vicinity of Tg, but may provide a
qualitative description of the behavior for T & To. Al-
though the power-law exponents which we observe in this
restricted range are consistent with the theoretical esti-
mates, the theories do not prepare us to expect a transition
for viscosities between 10 and 1000 P, which we find is
typical behavior for glass formers. A more complete
thm)ry, which explains the significance of this range of
viscosities, would be required before To could be associat-
ed with a mode-coupling "transition. " Irrespective of any
particular theoretical interpretation, the success of the
power-law correlation for a wide variety of liquids sug-
gests that To has a real physical significance which has
not been previously appreciated.
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