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The different magnetic phases of the bcc and fcc forms of Fe, Co, and Ni are studied by analyz-

ing total-energy surfaces in moment-volume parameter space obtained from energy-band calcula-

tions using a local-spin-density approximation. The surfaces, found by calculating total energies

while holding both the magnetic moment and the volume fixed, offer a method for studying phases

that are inaccessible to traditional self-consistent-field methods. %e find that magnetic moments

can change discontinuously with volume and that there are ranges of coexistence for different mag-

netic phases. In the multiphase ranges, these elemental magnetic systems exhibit metamagnetic

behavior. Our results show that bcc Co is ferromagnetic for all volumes studied, that fcc Co can ex-

ist in either a nonmagnetic or a ferromagnetic phase, and that there is a range of volumes where the

two phases can coexist. For Fe, the bcc form exhibits a stable ferromagnetic phase for all volumes

considered, but the fcc form can exist in any of three phases —a nonmagnetic, a low-spin, and a

high-spin phase —all of which can coexist in limited volume ranges. For Ni, the fcc form exhibits a

stable ferromagnetic phase, but the bcc form can exist in both a nonmagnetic and, at expanded

volumes, a ferromagnetic phase. The volume ranges for all magnetic phases are clearly identified

for the bcc and fcc forms of Fe, Co, and Ni.

I. INTRODUCTION

Use of the local-density approximation' (LDA) to ac-
count for exchange and correlation effectively reduces the
many-body quantum-mechanical problem of the behavior
of the electrons associated with a crystalline array of
atoms to the solution of a set of coupled one-electron
equations with periodic boundary conditions. Self-
consistent electronic structure calculations utilizing the
LDA are the basic theoretical tool used to study con-
densed systems. Accurate determinations of the total en-
ergy E as a function of the atomic separation or volume V
yield binding curves which determine the ground state of
a system of atoms. We note that the system is in equili-
brium at zero pressure only at volumes corresponding to
the minima of the energy. At other volumes the system is
under the infiuence of an external pressure. Thus, the ef-
fect of an external applied pressure P (positive or nega-
tive) is simulated by forcing the system to have a given
volume. Systematic studies of the changes in total energy
as a function of volume yield theoretical ground-state
properties such as equilibrium vo1umes, cohesive energies,
and bulk moduli for the cubic metallic elements which are
in essential agreement with experiment.

The local-spin-density approximation (LSDA) is a
spin-polarized form of the LDA which allows the exten-
sion of electronic structure calculations, and the study of
the resulting ground-state properties including magnetic
moments, to the magnetic elements. Previous studies
of the magnetic elements have been based on the analysis
of binding curves (total energy versus volume) obtained

from "standard" spin-polarized calculations. Such calcu-
lations involve the simultaneous determination of both the
total energy and the magnetic moment. The resulting
binding curves therefore contain a hidden variable, name-

ly the magnetic moment. Such curves, particularly for fcc
Fe, ' indicate that a magnetic collapse or a breakdown of
ferromagnetism occurs at certain volumes and implies the
existence of more than one magnetic phase. However, the
actual behavior in the breakdown region or the ranges of
existence and degrees of stability of various phases are not
clear in this earlier work.

In the present work, we study bcc and fcc Fe, Co, and
Ni using a new fixed spin-moment method which yields
the ground state of a constrained system. 6 In this method,
the total energy of a system is determined with a fixed
volume per atom, V, and a fixed magnetic moment per
atom, M, (i.e., M is constrained to have a given value). In
this case, the total-energy function is determined in a pa-
rameter space of M and V, resulting in a binding surface.
True equilibrium corresponds to M and V loci where the
pressure P = —(BE/BV)M and an external applied mag-
netic field H =(BE/BM) v are both zero. Other points on
the binding surface correspond to total energies at finite
applied pressure or magnetic field. Thus, forcing the
magnetic moment to have a given Cnonequilibrium) value
simulates an applied field in the same way that forcing
the system to have a given volume simulates an applied
pressure.

Standard spin-polarized and fixed spin-moment calcula-
tions have interesting similarities and differences. Both
methods involve the determination of total energies for a
fixed volume. Standard spin-polarized calculations yield
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a curue of the total energy as a function of volume with

different points along the curve corresponding to different
moments. The magnetic field H is fixed (usually implicit-

ly assumed to be zero) and the magnetic moment is al-

lowed to float until the energy is minimized. In the fixed
spin-moment method, the magnetic moment is fixed, and
the magnetic field is determined from the moment deriva-
tive of the total energy at constant volume. Fixed spin-
moment calculations yield total energies in moment-
volume space, or a binding surface, where the magnetic
field has the same relation to the magnetic moment that

the pressure has to the. -volume.
Since the fixed spin-moment method surveys an entire

surface it requires many more calculations than standard
spin-polarized calculations. Fixed spin-moment calcula-
tions, however, achieve self-consistency more rapidly than
floating moment calculations and are not plagued by con-
vergence difficulties commonly encountered in standard
calculations for systems which exhibit large changes in
magnetic moment with small changes in total energy. As
a consequence, binding surfaces yield much more detailed
information and give a global view of the different phases
available to the system. We will show that analysis of
binding surfaces yields the conditions required for the sta-
bility of different magnetic phases.

In the following sections, we briefly discuss the method
used, the approximations involved, and the reliability of
the results. We show that the spin-moment method yields
details beyond those of the standard spin-polarized
method and gives a unified view of the different magnetic
phases of bcc and fcc Fe, Co, and Ni. We present binding
surfaces E(M, V) for bcc and fcc Fe, show detailed evi-
dence for the existence of a nonmagnetic, low-spin and
high-spin phase for fcc Fe, and give field contour surfaces
H(M, V) which show the ranges of existence for the dif-
ferent magnetic phases of the magnetic elements and dis-
cuss the expected metamagnetic behavior. Finally, we
make a critical comparison of our results and the results
of previous work.

replace the volume by the Wigner-Seitz radius r~s
( V=4m. rwsl3). Analysis of binding surfaces for Co
(Refs. 11 and 12) shows that in the bcc form and in the
range of rws values studied, Co exists only in the fer-
romagnetic (FM) phase, while in the fcc form it can be
FM or nonmagnetic (NM) with a two-phase volume range
accessible to both phases. The bcc form of Co has been
prepared by Prinz, ' who finds a lattice constant in good
agreement with our calculated equilibrium ( I' =0)
volume. For Ni (Ref. 12) the bcc and fcc forms are inter-
changed with respect to Co. The Ni fcc form shows a
persistent FM phase and the bcc form shows FM and NM
phases with no range of coexistence. In Figs. 1 and 2, we
show the resulting binding surfaces for bcc and fcc Fe
with contour lines at 1-mRy intervals. The surface for
bcc Fe shows a deep FM minimum at a magnetic moment
of 2.15pz and rws ——2.63 a.u. At zero pressure, bcc Fe
would assume this locus, in agreement with experiment
and with the results of previous standard spin-polarized
calculations ' utilizing the same form of the exchange-
correlation potential. Curves of E(M) at constant rws
values yield a minimum at finite M values throughout the

res range studied, hence bcc Fe is magnetic throughout.
The binding surface for fcc Fe (Fig. 2) is in sharp contrast
to the bcc case (Fig. 1) and clearly shows a nonmagnetic

II. ENERGY SURFACES

All work presented here is based on the augmented-
spherical-wave method of Williams, Kubler, and Gelatt,
which assumes a spherical effective potential within each
Wigner-Seitz sphere and uses the LSDA as formulated by
von Barth and Hedin and modified by Janak, to account
for exchange and correlation. The calculations are nonre-
lativistic and are done on a uniform mesh of 570 points
for the fcc and 405 points for the bcc irreducible —,',

wedge of the Brillouin zone. The reliability of the basic
computations is established by the general agreement be-
tween calculated and experimental values for cohesive en-
ergies, equilibrium lattice constants, and bulk moduli for
the 3d and 4d transition metals, ' and, as we shall show,
by finding that bcc Fe and fcc Co and Ni are more stable
than fcc Fe and bcc Co and Ni, respectively, at zero pres-
sure.

The primary information obtained from the energy-
band calculations is the binding surfaces, or surfaces
described by total-energy contours in the M-V plane. %'e

2.5

r (0 u)

FIG. 1. Binding surface for Fe in the bcc structure. Contour
lines are at 1-mRy intervals and are labeled relative to the
minimum energy. The equilibrium point at M =2. 15pq and
r~s ——2.63 a.u. corresponds to {BE/BM)~——0 {zero field) and
{BE/BV)~——0 (zero pressure}. In the bcc structure, Fe is mag-
netic for all volumes considered.
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metamagnetic behavior. At zero field, the system is non-
magnetic. Application of a low field leads to an increase
in moment (with a relatively high susceptibility) until a
positive critical field is reached and the moment jumps
discontinuously to a higher value (with a lower suscepti-
bility). Decreasing the fiel, to zero before reaching the
critical value merely returns the moment to zero; decreas-
ing the field to zero after having reached the critical value
results in a finite moment and behavior similar to the fer-
romagnetic behavior represented in Fig. 4(b). The mo-
ment will persist even with a negative field until a nega-
tive critical field is reached (when the moment will flip to
align with the field and assume either the high FM or the
low NM value depending on the magnitudes of the two
critical fields). The next stage of complexity is represent-
ed in Fig. 4(d) which has no energy minimum at the
M=0 axis, but shows two minima at finite moment
values (LS and HS). The M(H) curve now shows that at
zero field, the system is in the LS phase and that the mo-
ment increases with increasing field until at a critical field
the system jumps to a HS phase and displays a suscepti-
bility similar to an ordinary ferromagnet. The system re-

tains a magnetic moment (HS ar LS) even when the field
is decreased to negative values. Note that in this ease,
three (one positive and two negative) critical fields are in-
volved. In all cases, the dashed portions of the M(H)
curves represent regions that are inaccessible to the sys-
tern.

III. FIELD CONTOURS

Magnetic phase infarmation deduced from calculated
binding surfaces and, especially, from M(H) curves can
be displayed in a number of ways. Field cantour plots,
found by forming (BE/BM)i, are one of the ways of
presenting this informatian. Figure 5 shows the field con-
tours in 1-mRy/}us (2.35-MG) intervals for bcc Fe, de-
rived from the energy surface shown in Fig. 1. The H =0
contour has special significance and carresponds to the
loci of points found by the vertical tangents af the energy
contours af Fig. 1. The resulting curve gives the inagnetic
moments (at H =0) as a function of rws Th.e position la-
beled X represents the zero-pressure point. The loci of

(a) Fe {bcc)

{b)

l

2.5
I

2.6
s{ . .)

2.7

FIG. 4. Typical E-vs-M curves at selected volumes of bind-
ing surfaces hke those of Figs. 1 and 2, along ~ith the corre-
sponding M-vs-8 curves. For the curves in {a) and (b), the NM
and the FM phase is stable, respectively. For {c),both phases
are stable and the system exhibits metamagnetic behavior. In
the case of {d), a LS and HS stable phase exists and the system
can undergo a magnetic-metamagnetic transition.

FIG. 5. Constant field contours for bcc Fe. The H =0 con-
tour gives the moment-vs-r~s curve and shwvs that the FM
phase is stable throughout the range. The intersection of the
contour lines and their vertical tangents defines the moment at
the critical field ~here the susceptibility is infinite, and
separates the accessible from the inaccessible {the region ~ith
dashed contour lines) region of the figure. The zero-pressure
point is labeled &.
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ble in the range between 2.670 and 2.685 a.u. In this
range, behavior similar to that depicted in Fig. 4(d) is
predicted. Figure 7 also shows three distinct ranges of
metamagnetic behavior. The most important is the range
from 2.56 to 2.66 a.u. where the metamagnetic extension
of the HS phase can be reached with the application and
maintenance of a field. Likewise, the range from 2.645 to
2.670 a.u. corresponds to the metamagnetic extension of
the LS phase. In the range from rws ——2.645 to 2.660
a.u. , the metamagnetic extensions of both the HS and the
LS phases are accessible and the M(H) curve displays
four critical fields (all positive}, two for increasing and
two for decreasing H. In this range, the NM phase is the
only stable phase (H=0}. Note that a metamagnetic
transition from the NM to a stable HS phase is not al-
lowed in fcc Fe. The range from the upper terminus
(2.685 a.u.) of the LS phase to rws-2 74 .a.u. is only of
theoretical interest. The M(H) curves in this range
resemble Fig. 4(d} with all three critical fields negative.
The portion representing the metamagnetic extension (to
larger volumes) of the LS phase curve, with negative
dM/d V, is not accessible because the lower critical field is
less negative than the upper critical field. In this range,
the HS phase is the only stable phase. We again note that
all curves specifying the zero-field moments, and the mo-
ments at the critical fields, terminate with infinite
dM/d V.

Binding surfaces have also been determined for bcc Co
(Ref. 11) and fcc Ni (FM at all rws studied) and for bcc
Ni. The phase information for bcc Co and fcc Ni is rela-
tively uninteresting with the H =0 contour showing a
smooth variation of magnetic moment with rws values
and showing no volume range capable of sustaining the
NM phase (similar to bcc Fe shown in Fig. 5). The equili-
briurn point corresponds to res ——2.605 a.u. and
M=1.68pa for bcc Co and to rws ——2.58 a.u. and
M =0.60ps for fcc Ni. Figure 8 gives the phase informa-
tion for bcc Ni and shows that the NM phase is stable
below and that the FM phase is stable above rws-2. 60
a.u. with no significant range capable of supporting both
phases. For Ni, the equilibrium point for the fcc form
(F)NI) is approximately 4 mRy lower in energy than the
equilibrium point for bcc form (NM).

IV. ENERGY VERSUS VOLUME

Another way of displaying pertinent phase information
is to show total energies versus volume (or rws) along
phase lines, or 1ines corresponding to minimum energies
for fixed volumes. Although such a presentation is rem-
iniscent of binding curves, we note significant confusion
in magnetic E versus V curves presented in the literature.
In particular, curves which are labeled nonmagnetic are
usua11y curves obtained by constraining the system to be,
in fact, nonmagnetic. Such curves correspond to E versus
V for the M =0 slice of our binding surfaces, but do not
show where the NM phase ends, i.e., where d E/dM
changes sign. In addition multiple phases are often found
only with difficulty by conventional spin-polarized (fioat-
ing moment) methods. Calculations in such multiphase
ranges have convergence difficulties and the results are
difficult to quantify. In our case the results are unambi-
guous and clear. Figure 9 displays this information for
bcc and fcc Fe (over a pressure range from approximately
—250 to + 1200 kbar), allowing a direct comparison of
the two structural forms. We first note that at I' =0, the
bcc FM phase is slightly more favored than the fcc NM
phase, in agreement with experiment. ' The curve for
NM fcc Fe extends up to rws ——2.685 a.u. At larger rs

40—

IX
E

'E
4J

I

LLI

20—

Ni {bcc)

r~s {a.u.)

2.8

0
2.5

r +s (a.u. )

2.7

FIG. 8. Constant field contours for bcc Ni exhibiting a stable
NM phase below and. a stable FM phase above r~s-2. 60 a.u.
The heavy dashed line specifies the moments at the critical field
values. The zero-pressure point is labeled X.

FIG. 9. Total energy {relative to a common minimum energy)
vs r~s for bcc and fcc Fe. The ferromagnetic I',FM) bcc phase is
slightly more favored than the nonmagnetic fcc phase, in agree-
ment with experiment. The FM bcc phase is stable throughout
the r~s range considered. In the fcc form, the NM phase is
stable for r~s & 2.685 a.u. and a HS phase is stable for
r~& & 2.66 a.u. The dashed portion of the fcc curve corresponds
to the M =0 slice of the binding surface and therefore does not
correspond to a stable phase. The low-spin phase (LS) is not
resolved here but is shown in Fig. 10 where the energy and r~s
scale is expanded.
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Fe (fcc}

lX
E

E
Ld
I

r+s(o.u. )

2,70

FIG. 10. Total energy vs r~s is the coexistence range for fcc
Fe. The high-spin (HS} and low-spin (LS} phases are clearly
resolved, with the LS phase having the higher total energy.

values, this NM phase is not stable and is shown dashed.
This curve corresponds to the M =0 slice of the binding
surface shown in Fig. 2. The HS phase corresponding to
the trough in the binding surface begins at rws ——2.66 a.u.
and extends to the largest res values considered. The LS
phase, shown in Figs. 3 and 7, is barely perceptible on this
curve. However, an enlarged view of this region shown in
Fig. 10 shows the LS phase lying above the HS phase and
extending from 2.670 to 2.685 a.u.

V. DISCUSSION

Our results on fcc Fe can be directly compared with
those of Kiibler' and of Wang, Klein, and Krakauer'
(WKK), who both found evidence of HS and LS phases.
Kiibler shows a LS phase extending from rws=2. 5 to
2.64 a.u. , and a HS phase at larger rws values and finds
that the total energy for the HS phase is everywhere
higher than for the LS phase; his curve labeled NM corre-
sponds to a constrained nonmagnetic calculation so that
the stability limit cannot be deduced. In later work, '

Kubler makes no reference to the LS phase. The WKK
results show the coexistence of a HS and a LS phase be-
tween rws ——2.66 and 2.68 a.u. , in good agreement with
our work, but both Kubler and WKK show a long tail for

the LS phase down to M =0 at r~s ——2.55 a.u. , which is
conspicuously absent in our fixed spin-moment results.
%'e also note that the work of Bagayoko and Callaway
(BC) failed to resolve the different magnetic phases for fcc
Fe, but showed a smooth M( V) curve and a rapid change
in the magnetic moment in the vicinity of rws ——2.7 a.u.
This behavior is indirect evidence for the existence of
multiple phases in this vicinity.

Despite the fact that WKK include non-muffin-tin ef-
fects and a more recent form of the local-density approxi-
mation, it is interesting to note that they find that fcc Fe
is more stable than bcc Fe, in confiict with experiment
and the result of the present work. The WKK fcc
minimum is 6 mRy lower than the bcc minimum and lat-
tice constants and magnetic moments of the bcc phase
disagree with experiment by about 3%. Two possible
ways of accounting for this 6-mRy discrepancy between
WKK and our results are the following. (1) Inadequate
convergence in the k-space integration. When the number
of points in k space is reduced, we find that the bcc
minimum energy rises and that the fcc minimum energy
falls. Hathaway, Jansen, and Freeman ' also find a rise in
the bcc minimum when the number of points in k space is
reduced, amounting to 6 mRy for a decrease from 210 to
30 points (WKK use 40 points). (2) WKK find a lower
moment of 2.08p, ti for bcc Fe compared to our value of
2.15@ii, which corresponds to a smaller magnetic energy
and hence a rise in the bcc energy relative to the nonmag-
netic fcc energy (they use the local-spin-density approxi-
mation of Vosko, Wilk, and Nusair ). These sources of
discrepancy should be examined further.

The major significance of the present study is the clear
resolution of the different ferromagnetic phases of bcc
and fcc Fe, Co, and Ni as shown by the discontinuous
changes in magnetic moment with volume and by the
display of multiphase volume ranges. In the multiphase
regions, the description of these simple elemental magnet-
ic systems is shown to resemble the metamagnetic
behavior of Stoner's collective electron theory, and the
present work essentially provides a first-principles ap-
proach to the theory without the introduction of empirical
parameters. The results demonstrate the utility of the
fixed spin-moment method and, we believe, demonstrate
the validity of both the local-spin-density and the
muffin-tin approximations used in the study. The results
also suggest a variety of experiments on thin films, epitax-
ially "clamped" at selected lattice separations. We note,
in particular, (1) the prediction of a nonmagnetic bcc
phase of Ni which is only 4 mRy less stable than the fer-
roinagnetic fcc phase, and which is expected to become
ferromagnetic at a 1% lattice expansion, (2) the prediction
that fee Fe is only slightly less stable than bcc Fe, and ex-
hibits NM, LS, and HS phases at approximately a 5% lat-
tice expansion, and (3) the prediction of a NM phase for
fcc Co at a 4% lattice compression.
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