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Free-energy analysis of the single-q and double-q magnetic structures of neodymium
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A phenomenological model free energy is used to interpret the magnetic phase diagram of dhcp
neodymium derived from recent neutron diffraction and thermal expansion measurements. First-
order transitions at T~ ——19.9 K and at T2 ——19.1 K are to multidomain single-q and double-q
modulated structures, respectively. The observed magnetic field dependence of these phases is in ac-
cord with the predictions of the model.
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FIG. 1. Magnetic satellites observed around (hkI): (a) for
T. &TgT~, (b) for 8.3 K~T~T2,' (c) at T=14 K, with a
magnetic field of 0.6 T applied in the direction indicated; (d) for
a single domain of the double-q structure, with moment direc-
tions shorn.

A succession of neutron diffraction studies' of the
lanthanide element neodymium has revealed a rich variety
of magnetically ordered phases below the Neel tempera-
ture, TN ——19.9K. However, a detailed understanding of
the magnetic structures exhibited in these phases and of
their magnetic field dependence has proved to be rather
elusive. In this article, we present a phenomenological
model free energy which allows us to comprehend many
aspects of the magnetic phases of Nd.

As originally discovered by Moon et al. ,
z the neutron

diffraction pattern immediately below Ttt is characterized
by a hexagonal array of magnetic satellite reflections at
wave vectors +qi, +q2, and +q& along the three
equivalent b directions ((100) in reciprocal space) around
a general reciprocal point of the dhcp lattice [see Fig.
1(a)]. Alternative interpretations in terms of a multi-
domain single-q state or a single-domain triple-q state
were first considered by Bak and Lebech. i Their
renormalization-group analysis indicated that if the Neel
phase transition were second order, the magnetic structure

would be triple q, rather than single q. The available ex-

perimental evidence was consistent with a continuous
transition and the triple-q model was adopted.

In subsequent neutron diffraction work, ' the satellite
peaks were observed to split transversely, corresponding to
a rotation of the modulation wave vectors q; away from
(100) but within the basal plane [see Fig. 1(b)]. This ro-
tation reaches a maximum of Pe —3' at around 14 K.
While the neutron data' suggest the existence of a
second-phase transition at T2-19.3 K below which the

q; rotate, heat-capacity measurements have, so far, failed
to reveal this transition. In this connection, Forgan' pro-
posed a multidomain double-q structure in which the ro-
tation of q; begins at Ttt.

Recently, the nature of the Neel transition in Nd was

reexamined in high-resolution thermal expansion mea-
surements. The results of Zochowski and McEwen are
particularly significant as they reveal that (i) the Neel
transition is actually first order and (ii) there exists indeed
a second first-order transition at a temperature
T2 ——19.1K. Furthermore, the magnetic field dependence
(for H along [100)) of Ttt and T2 was also determined, as
shown in Fig. 2. Additional phase transitions were mea-
sured, on heating the sample from a base temperature of
4.2 K, at 5.8, 6.3, 7.7, and 8.3 K, but we will not consider
these phases in this article. The phases above 8.3 K (see
Fig. 2) may be identified by reference to a neutron diffrac-
tion study of the magnetic field dependence of the
satellite peaks at 14 K.' In these experiments, a field of
0.6 T applied parallel to [100] resulted in the disappear-
ance of 8 of the 12 satellites of Fig. 1(b), leaving the pat-
tern of Fig. 1(c), ascribed to a single-domain double-q
state. Just above the critical field 0,2(T) of Fig. 2, the
angle Pe was found to be zero and at higher fields, slight
variations of the field direction produced a strong asym-
metry of the satellite intensities. From these results, it
was concluded' that the zero-field state at 14 K is a mul-
tidornain double-q state, and that there are two single-q
domains above H, 2.

%e now interpret these results in terms of a model free
energy. The spin density averaged over a unit cell is writ-
ten
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FIG. 2. Magnetic phase diagram of Nd deduced from
thermal expansion and magnetostriction studies, after Ref. 9.

S(r)= gS;cos(q; r+P;),

representing an n-tple q structure. The following free en-

ergy contains all terms, up to fourth order in S;, which
are invariant with respect to a sixfold rotation about the
hexagonal axis and with respect to time reversal:

F= ga(q;)S;+ai g(q; S;)2

'2
+u QSi +wi

+SEES~'+w2

g(S; S&)' . (2)

The first and second terms have their origins in the isotro-
pic and anisotropic contributions to the exchange interac-
tion, respectively. ~e assume that a (q; ) has its
minimum value (ao) for q; along a (100) direction and
that a i &0. Thus immediately below T~, both q; and S;
will be parallel to a {,'100) direction, in agreement with
observations. ' In this case,

I

F=r QSi+u gS; + wi+ gS;g~,
l I i)J

where r=(ao+aiq ). From this expression, it is clear
that if wi +w2l4=w & 0, the free energy is minimized by
the single-q state {Si+0, S2 ——Ss ——0). If w & 0, however,
the triple-q state with Si ——S2 ——Si has a lower energy
than either the single-q state or a double-q state {given by
Si ——0, S2 ——Si&0).

The region labeled single-q in the phase diagram of Fig.
2 has been unambiguously identified as such by the neu-
tron scattering experiments' in a magnetic field; more-
over, the thermal expansion results show no phase transi-
tion within this region, indicating that the single-q phase
extends to the interval Tz & T & T~ in zero magnetic field.
Thus we choose m ~0 to stabilize the single-q state. A
first-order transition to a single-q state at TN is consistent
with the results of the renormalization-group analysis,
but a first-order transition to a triple-q state would also be
possible. As a final point, we note that for w2 ~0 and
w ~0, no relative orientation of Si, 82, and Si will yield a
free energy [Eq. (2)] of the triple-q state which is lower

than that of the single-q state; therefore the triple-q state
will be excluded from further consideration.

As the temperature is lowered further below T~, the
fourth-order terms in the S; in Eq. (2) become relatively
more significant than the second-order terms. Detailed
analysis shows (and one could perhaps guess this result by
looking at Eq. (2)] that provided wt &0 (w ~0 is still re-

quired) and at sufficiently low temperatures, the double-q
state with Si ——0 but S2 and S»0 [as shown in Fig. 1(d)
for H=O] has a lower energy than the single-q state. The
model can thus account for a first-order single-q to
double-q transition at some temperature T2 & T~. At T2,
P, jumps discontinuously to a nonzero value and increases
with decreasing temperature. Our analysis shows that

P, (T), if extrapolated to temperatures T& Ti, tends to
zero at Tz. The coupling term (q; S;) in the free energy
causes q; to be tilted away from the relevant (100) direc-
tion by the angle 4» ccsin{2$, )." Thus P~(T) is qualita-
tively similar to P, (T). This explains the "splitting" of
the satellites below T2 and the fact that the measured

P~(T), if extrapolated to T ~ Tz, goes to zero at T=Tv.
The 12-fold array of satellites shown in Fig. 1{b) results
from the three coexisting double-q domains.

The phase diagram for Nd in a magnetic field may be
understood by adding to the free energy the contributions

(up to fourth order}:

FH ——m H+ , bm + —,—dm

+cim'QS +egg(m S;)',

where m is the homogeneous magnetization induced by
the external magnetic field H.

Since c2 is positive, as will be shown below, S; tends to
become perpendicular to an applied magnetic field, like
the staggered magnetization of a simple antiferromagnet.
Hence, if H is applied parallel to the [100] direction, the
double-q domain with Si and Si nonzero is stabilized at
the expense of the two other double-q domains since each
of the latter has a spin component almost parallel to the
field [see Fig. 1(d)].

It was noted above that in the relatively low magnetic
field of 0.6 T parallel to [100] the satellite pattern of Fig.
1(c) is produced (corresponding also to the spin directions
of Fig. 1(d}]. The fact that 4, and P~ as defined in these
figures are positive is reliable evidence that the observed
sateihte pattern represents diffraction from a single-
domain double-q structure. If the satellites at qi and q3
represented diffraction from two single-q domains, then
{{},and Pz would be negative since the c2(m.S;} terms in
FH forces S; away from a (100) direction to a direction
sphere 8; is more nearly perpendicular to H. En the
double-q structure, however, the interaction energy
wi(S2 S3) in Eq. {2) is minimized when S2 and S& are
perpendicular, and it is thus this term which produces the
positive P, characteristic of the double-q state.

As the magnetic field is increased in magnitude along a
t,'100) direction in the double-q state the (m S; ) terms in
the free energy become more important than the (S2 S&)
terms. Thus S2 and 83 are driven towards orientations
more nearly perpendicular to the magnetic field and the
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(S2 S3) contribution increases and ultimately destabilizes
the double-q state relative to the single-q state. Our
analysis shows that at the double-q to single-q phase tran-
sition, the angle P, [as defined in Fig. 1(d)] changes
discontinuously from a positive value to a negative value.
The positive P» at low fields and its decrease with increas-
ing field have been observed, ' but higher resolution mea-
surements are required to demonstrate the predicted
discontinuity and change of sign of (()» at the transition
field H, 2.

A calculation of the Neel temperature as a function of
magnetic field yields the following results, in the limit of
weak applied fields:

TN(H) = Tx (0)—m (ci+ —,cz)ao,

for H along (100) and

T~(H)=Tx (0)—m ci lao

for H along (120), where we assume

~(e )+u ie'=~0(T TN —)

(4)

In the first case, the Neel transition is to one of the two
single-q domains for which q; does not lie along the par-
ticular (100) direction selected as the field direction,
whereas in the second case the Neel transition is to the
single-q domain with its q; perpendicular to the magnetic
field direction. Measurements of the Neel temperature
versus magnetic field in a (100) direction (i.e., the upper
phase boundary in Fig. 2) and in a (T20) direction'z show
that in both cases TN decreases with increasing magnetic
field, the decrease being stronger for fields along (100).

Thus c& and cz are both positive.
At sufficiently low temperatures, the sixth-order term

V6S;cos(6 P, ) arising from the crystalline electric field
anisotropy within the basal plane, becomes significant. If
the coefficient V6 &0, this term will tend to realign the
spin components along the (100) directions at the ex-
pense of the w2 g, (S; SJ) term. As P, is reduced, so
we expect P» to decrease: this effect is observed experi-
mentally between 14 and 6.4 K. It is interesting to note
that in alloys of Pr, Ndi „ for compositions where the
average value of V6 is close to zero, P» remains finite

down to the lowest temperatures studied. '

In conclusion, the phenomenological free energy
analysis developed here permits a consistent understand-
ing of the magnetic phases of neodymium above 8 K, and
of their magnetic field dependence, as revealed by recent
neutron scattering and thermal expansion measurements.
To elucidate fully the structure of the phases below 8 K
which have been mapped out by the thermal expansion
and magnetization' studies, further neutron diffraction
experiments are necessary.
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