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%e determine the latent heats and volume changes of the phase transitions of He near 300 K by
numerical simulations in the isobaric-isoenthalpic and isothermal-isobaric ensembles. The simula-

tions in these two ensembles which use either the molecular-dynamics or the Monte Carlo method
are shown to be of equal efficiency for the study of solid-solid transitions.

I. INTRODUCTION

A triple point between two solid phases and a liquid

phase has been evidenced recently in the phase diagram of
He at 300 K by high-pressure experiments using the

diamond-anvil-cell technique. ' Theoretical studies have
identified the structure of the new solid phase at high
temperature as being of the bcc type; the low-temperature
solid phase is known to be fcc. In these studies two dif-
ferent approaches have been used. In the first one the free
energies of the liquid and the solid phases are calculated
in order to determine the melting line and the solid-solid
transition line. ' The free energies have been evaluated
by perturbation theory (liquid phase) and lattice dynamics
(solid phase). The second approach resorts to a
molecular-dynamics simulation method, proposed by Par-
rinello and Rahman5 to obtain the regions of the phase di-
agram in which the liquid and solid phases are stable.
Both approaches are complementary. In fact, for the
values of the pressure and density corresponding to the
triple point of "He at 300 K, the validity of the theoretical
approximations used in the calculation of the free energies
of the different phases can only be established by compar-
ison with "exact" simulation results.

The aim of the present article is to give a precise
description of the phase diagram in the vicinity of the tri-
ple point at T-300 K by determining the volume
changes occurring during the transition from the fcc to
the bcc phase and during melting. Both molecular-
dynamics (MD) simulations at constant enthalpy and
Monte Carlo (MC) simulations in the isothermal-isobaric
ensemble have been used to determine these volume
changes. In the former simulation method, where enthal-

py and pressure remain constant during the dynamical
evolution of the system, we investigated, at a given pres-
sure, which phase was stable as a function of enthalpy, the
volume change at the solid-solid transition was then ob-
tained by determining the temperature at which the two
solid phases are in equilibrium. In the MC simulations,
where the pressure and temperature are fixed, we studied,
for a given temperature, the stability of the solid phases as

a function of pressure. In this case, the variation of
volume at the transition was obtained for the pressure at
which the two phases are in equilibrium.

All our calculations have been performed with the po-
tential proposed by Aziz et al. which is known to give
an exceBent description of the interaction between He
atoms.

Our article is organized as follows. In Sec. II we
present the MD results obtained along two isobars and
describe the method used to determine the equilibrium
temperature between the two solid phases. In Sec. III we
discuss the practical realization of a simulation study of a
solid-solid phase change in the isothermal-isobaric ensem-
ble and give the results for the calculations along one iso-
therm. The latter complement those of Sec. II and show
that volume changes in a phase transition are easier ob-
tained by simulations in the isothermal-isobaric ensemble
than in the isobaric-isoenthalpic ensemble.

The conclusions are given in Sec. IV. We briefly dis-
cuss which types of crystal deformations occur in the
fcc-bcc and bcc-fcc transitions.

II. MOLECULAR-DYNAMICS STUDY

The MD method of Parrinello and Rahman5 which we
employed in our study of the solid-solid transition in ~He

at high temperature is described in detail in Refs. 9 and
10. It amounts to calculating the evolution of the posi-
tions of N atoms in a parallelepipedic box with periodic
boundary conditions. The system has variable volume
and shape. In fact the lengths and orientations of the
basis vectors a, b, c defining the MD cell are a function
of the dynamics of the system. The variation of a, b, and
c is essential to allow the system to evolve from one solid
phase to another. Indeed the unit cell of the different lat-
tices must be compatible with the periodic boundary con-
ditions when the atoms form a perfect crystal arrange-
ment.

In the method of Parrinello and Rahman, the equations
of motion of the system follow from the Lagrangian
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components s; of the vector s; are related to those of r;
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b =hi, and c =h3 . The volume V at instant t is

V =det ( h I, h ' denotes the transpose of h, and

G~tt g——„h~„hrtt W. is a parameter and P the thermo-
dynamic pressure of the system.

In fact, the Hamiltonian associated with W is

N
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Taking the average value of the right-hand side of (2) over
time one obtains

0= —, ms' s +-8' r ' +U+PV
i =1

with V=(detIhj), U=(g, „,u(rj)). The tempera-

ture of the system is defined as

N

T= +ms; G*i;+WTrIh'h) (3M+9)ktt,
i=1

(3)

N„(r) V„
g„(r)= z4m.r dr X

(4)

For a system in the liquid state g„(r) is proportional to
the two-body correlation function p' '(r&, rz), and in the

where ks is the Boltzmann constant. For sufficiently

large N the term ( W Tr I
h' h) ) corresponding to a kinet-

ic energy of 9kttT becomes negligible so that H can be
identified with the enthalpy of the system, as V is the
mean volume and I' is the pressure. The average over the
time evolution of the system corresponds, H being con-
served, to an average in the isobaric-isoenthalpic ensemble
to which can be associated a canonical isothermal-isobaric
ensemble. " From the initial conditions [s;(0),s;(0),
h(0), h(0)] the evolution of the system occurs in the
(6%+18)-dimensional space on a surface corresponding
to constant H. The trajectory followed on this surface is
a succession of equiprobable states belonging eventually to
different phases (liquid, fcc, bcc). It is thus essential to be
able to identify these phases. In our work the identifica-
tion of the phase, in which the system is at time t, is
achieved by means of the function g„(r) defmed in the
following way: Over an interval of n time steps of in-
tegration of the equations of motion, one calculates the
mean volume V„and the mean number of atoms N„(r) at
a distance between r and r+dr from an atom; g„(r) is
then given by

FIG. 1. From bottom to top, pair correlation functions g„(r)
for the liquid phase {p*=2.349, T =36), the bcc phase

(p =2.398, T =36.3), and the fcc phase {p =2.394,
T =34.4}. n is equal to 50.

solid state proportional to the average of p' '(r&, r&) over
all orientations of the vector r=rz —ri. Figure 1 shows
the variation of g„(r) for n =50 in the fcc, bcc, and liquid
phases of a system of 432 atoms interacting via the poten-
tial of Aziz et al. at density p'=po -2.4 and tempera-
ture T' =ktt T/e=35 (e/ka ——10.22 K, o =2.552 A). As
the values of p' and T' are very high (respectively, 2.5
and 50 times those of argon near its triple point) the posi-
tions of the different shells of neighbors are not easily
identified in the solid phases, in particular the two first
shells are mingled in the first peak of g„(r) However. ,
there is a marked qualitative difference between the func-
tions g„(r) of the three phases. For the fcc and bcc
phases the numbers of neighbors in the 7 first shells are
12,6,24, 12,24,8,48,6 and 8,6,12,24,8,6,24,24, respectively.
The small number of atoms in the fifth and sixth shells of
the bcc structure gives a pronounced minimum in g„(r) at
a distance —1.8o; the difference of the number of atoms
in the third and fourth shells of the fcc and bcc lattices
manifests itself in the relative heights of the maxima of
g„(r) at r = 1.48o' and 1.56o. The hquid phase is readily
identified by a damped oscillating behavior of g„(r) with
period of about cr. As already shown in Ref. 4 it is thus
easily possible, if a phase change occurs, to follow the
evolution of the system from one phase to another by sim-
ple inspection of g„(r) calculated for n =50.

The passage from one phase to another may be accom-
panied by defects in the atomic arrangements. However,
one can verify that for the densities and temperatures con-
sidered here, defects, if occurring at aB, do not modify no-
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FIG. 2. Comparison between the g(r)'s calculated by MD
simulations at constant energy and fixed volume (solid line) and
at constant enthalpy and fixed pressure {crosses) (top: fcc phase,
bottom: bcc phase). The g(r)'s at fixed volume were computed
from an average over 500 time steps at p =2.409, T =31.9
(bcc) and p =2.414, T =32. 1 (fcc). The g(r)'s at fixed pres-
sure were calculated from an average over 200 time steps after a
phase transition has occurred (see text) at H =986.5,
P =1800 (bcc) and 8 =980.3, P =1800 (fcc). Over this
time period the average values of p and T were p =2.409,
T =32. 1 (bcc) and p =2.414, T =31.4 (fcc).

ticeably the functions g„(r) Figure 2. gives a comparison
between g„(r) calculated by a MD simulation at constant
energy and constant volume for a perfect fcc (bcc) crystal
and g„(r) calculated by MD simulation at constant
enthalpy but variable volume for a fcc (bcc) crystal result-
ing from a phase change of the system initially placed in a
perfect bcc (fcc) structure. There is no appreciable differ-
ence between the functions g„(r) obtained from both
simulation methods if the phase structure, density, and
temperature are the same. This indicates that the crystals

obtained in the phase change are nearly perfect.
The characterization of the evolution of the system by

the g„(r) functions has been completed by analyzing the
modification of the number of atoms in the first few
neighboring shells of a given atom. The number of atoms
in the five first neighboring shells of each atom j of the
system was calculated, as a function of time, in the fol-
lowing way. For a given time t, knowing the density p(t)
of the system, one can calculate the nearest-neighbor dis-
tances d;(t) ( 1&i &5) in the fcc, bcc, and hcp lattices.
Setting do(t):0an—d bd; =(d;+1—d;)/2, an atom is con-
sidered to be in the ith nearest-neighbor shell of atom j, if
its distance to atom j is located between d; —hd; i and

d;+b,d;. One then obtains the number rtj(t) of atoms in

the ith shell surrounding atom j. The atom j is con-
sidered to belong to a fcc, bcc, or hcp crystal inasmuch as
the numbers nj'(t) are sufficiently close to those corre-
sponding to one of the preceding structures. At the very

high densities of solid He at 300 K the differences

d;+~ —d; are of the order of 0.2o, whereas the atomic dis-

placements from their equilibrium positions are of the or-
der of 0.1~r. It can thus happen that, at a given time t, an
atom belonging on the average to the ith nearest-neighbor
shell of atom j is in fact closer to atom j than some atoms
of shell i —1. Despite these ambiguities, due to the in-
stantaneous character of nj(t), we show in Tables I and II,
that during a fcc-bcc or a bcc-fcc transition, the evolution
of the number of atoins belonging to either a fcc or a bcc
crystal corresponds to that of the g„(r) functions given in
Figs. 3 and 4. Tables I and II also show that the vectors
a, b, c, and their relative angles vary in accord with the
g„(r) functions. In addition, we calculated as a function
of time the values of the angles between the vectors join-
ing atom j to its first-nearest neighbors and verified the
appearance (or disappearance) of the angle ir/2 charac-
teristic of the fcc lattice during the bcc-fcc (or fcc-bcc)
transition.

In conclusion, from the g„(r) function it is possible to
follow the evolution of the system between different
phases or, on the contrary, to ascertain the stability of the
initial state. The variations of this function correspond,
for the systems studied in the present work, to transitions
between nearly perfect crystal states or between a perfect
crystal and a fluid state.

The constant-enthalpy —constant-pressure MD simula-
tions have been performed for a system of 432 atoms in-
teracting via the HFDHE2 (Hartree-Fock dispersion) po-
tential of Ref. 7, truncated at a distance r=2.3o, for

TABLE I. Evolution of the lengths and relative angles of the vectors a, 1, c defining the volume of
the system with number of integration time steps during a bcc-fcc transition. The reduced pressure is
P*=1800, the reduced enthalpy 8 =980.3. nb„and nf„denote the number of atoms of "type" bcc
and type fcc as defined in Sec. II. In the initial state the vectors a, 1, c are along the [100] [010],and
[001] directions of the bcc crystal.

Time/ht

1000
1500
2000
2500
3000

294
244
195
200
153

5.63
5.32
5.08
5.03
5.06

5.65
5.46
5.26
5.31
5.30

5.64
6.18
6.63
6.70
6.68

90
90'
89'
89
89

89'
90'
89
90'
89

90'
90'
90'
90'
90
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TABLE IV. Equation of state at P =2200 calculated by MD at constant pressure and enthalpy. The meaning of the symbols is
the same as in Table HI.

1160.0
1154.3
1152.2
1149.8
1144.6
1144.5
1144.3
1143.3
1141.6
1141.6
1141.1
1140.7
1140.5
1139.8
1138.0
1136.5
1136.1

fcc
fcc
fcc
fcc
bcc
fcc
fcc
bcc

fcc
bcc
bcc
fcc
bcc
bcc
bcc
bcc

Time of onset of
fcc-bcc transition

(5000)
(7000)

1800,{4500)
(2500)

(6000)
500

Time of onset of
bcc-fcc transition

{1500),(3200)
5000

(4200)
(6500)
(3300)
(1500)
1900

7700
3500
9500
9500

13000
4100
9300
6500
8500
6100
7400
6500
6700
5700
6800
8900

10000

2.525
2.533
2.534
2.538
2.543
2.544

2.545
2.547
2.547
2.547
2.548

2.549
2.551
2.553
2.553

Tbcc

38.1
(36.7}
35.9

(35.6)
33.7
33.7

33.4
32.8
32.7
32.7
32.6

32.3
31.7
31.2

(31.2)

2.525
2.533
2.535
2.538
2.545
2.545
2.545

2.548

2.549
2.550

2.555

38.8
37.7
36.8
36.3
34.8
34.7
34.7

33,9

33.7
33.5

32.3

2198
2201
2200
2201
2199
2201
2200
2199
2199
2201
2199
2199
2199
2201
2199
2199
2198

H' & 980 at P' =1800). Between the two limits of stabil-
ity, initial fcc or bcc crystal states can give rise to one or
more transitions from one crystal state to the other. The
transitions from the fcc to the bcc crystal states corre-
spond to an increase of temperature -0.8 (in reduced
units) at P'=1800 and -1.0 at P'=2200, i.e., -& and
-10 K, respectively, and occur at quasiconstant density
despite a significant change of the volume shape, as can
be seen readily from the simulation results at H'=977,
998.4 (P'=1800) and H'=1152, 1136.3 (P'=2200). At
constant temperature the enthalpy difference between the
fcc and bcc phases is 2.8 (reduced units) for P'=1800
and 3.9 for P'=2200. The enthalpy difference between
the fluid phase and the bcc phase is 23.8 at P' = 1800.

From the simulation results one can also deduce p' as a
function of H' for each of the three phases and hence p'
as a function of T'. This relation is shown on Fig. 6.
The dependence of p' on T being almost linear one can

estimate the density difference between the phases:
-0.006 between the fcc and bcc phases and -0.04 be-
tween the bcc and liquid at P'=1800, -0.004 betwo:n
the fcc and bcc phases at P'=2200 for the domain of
temperatures considered 30& T' & 39. From these results
one can obtain an estimate of the entropy difference be-
tween the different phases provided that thermodynamic
equilibrium is achieved between these phases for
P'=1800 and 2200 in the temperature domain 30—39.
Indeed, at phase equilibrium, the equality of the chemical
potentials implies that, at constant pressure, the entropy
change is equal to the enthalpy change divided by the
temperature at phase equilibrium.

The location of the temperature at which, at constant
pressure, the phase transition occurs is not easier to obtain
in a constant-enthalpy —constant-pressure simulation than
in the more conventional MD or MC methods. As a
matter of fact, it would be appropriate to calculate the

40

30

1Q.5 &O'H" «.0 10 H"

FIG. 5. Equations of state T vs H at P =1800 (left) and
I' =2200 (right) (dots, fcc phase; crosses, bcc phase; triangles,
Auid phase}.

FICy. 6. Equations of state p vs T at P*=1800 (lower
curves) and P =2200 (upper curves). Symbols as in Fig. 5.
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free energy by integration of the equation of state starting
from a thermodynamic state with known free energy or
else to start from a system with known free energy which
is transformed by progressive modification of the Hamil-
tonian into a system of atoms interacting by the Aziz po-
tential. ' However, one can put forward qualitative argu-
ments allowing an estimate of the transition temperature.
In the case of the fcc-bcc transition the simulation results
show that the bcc phase exists with good stability only in
the temperature domain 30—36 and that for T"=32 and
H' =985 its stability is approximately equal to that of the
fcc phase. So for this value of H'-985 the fcc and bcc
phases appear to be equiprobable in configuration space or
also correspond to similar volumes of configuration space
and, consequently, have approximately similar entropy.
However, since the difference Hb„Hr'„ —is positive, at
constant P', for the phase equilibrium temperature, the
entropy of the bcc phase must be higher than that of the
fcc phase; therefore the temperature of equilibrium be-
tween the bcc and fcc phases of P' =1200 must be higher
than 32. On the other hand, it must be less than 36 as the
bcc phase gets unstable with respect to the fluid phase
above this temperature. A similar argument for
P'=2200 leads to the conjecture that, for this pressure,
equilibrium between the solid phases can be achieved only
for a temperature larger than 34.

Concerning the location of the equilibrium temperature
between the solid and liquid phases we remark that,
whereas a transition from the solid to the liquid phase is
easily obtained, the reverse transition does not seem realiz-
able, at these densities, in simulations of less than 30000
time steps as evidenced by the run at P'=1800 and
H*=995 (cf. Table III). It seems thus not possible to
determine the limit of stability of the fluid with respect to
the solid when the temperature decreases. The only possi-
ble conclusion is that for P = 1800 the solid-liquid equili-
brium temperature is lower than -36, the temperature

corresponding to the limit of stability of the bcc phase.
From the analysis of the MD results at constant H"

and P* one also concludes that the existence of a hcp
phase is very unlikely for the two pressures and the
domain of temperatures considered, with no simulation
showing a tendency for transition towards such a phase.
The new high-temperature solid phase of solid He is thus
bcc as discussed already in Ref. 4.

We finally note that although, as shown by Ray, ' the
average pressure calculated from the virial theorem is not
equal to P' if the dynamics of the system derive from the
Lagrangian [Eq. (1)], the difference seems smaller than
10 in relative value for the densities and temperatures
considered, (cf. Tables III and IV).

III. MONTE CARLO STUDY

In this section we study the solid-solid and solid-fluid
transitions of high-temperature He using the Monte Car-
lo method to sample the isobaric-isothermal ensemble.
With this study we want to test the usefulness of the
isobaric-isothermal ensemble to characterize the solid-
solid transitions, obtain a precise estimate of the volume
change between the phases as a function of pressure at
fixed temperature, and calculate the differences, of order

, between thermodynamic quantities evaluated in dif-
ferent ensembles for systems of finite size.

The extension of the MC method developed by Wood
for simulations in the isobaric-isothermal ensemble to the
case of a Monte Carlo cell of variable size and shape has
already been given by the authors of Ref. 14. The parti-
tion function of the isothermal-isobaric ensemble corre-
sponding to the Hamiltonian (2) can be written down easi-
ly by remarking, with Andersen, " that the isothermal-
isobaric ensemble is related to the isoenthalpic-isobaric en-
semble in the same way as the canonical ensemble is relat-
ed to the microcanonical ensemble:

J P d/i pgdsjpm detIGIds; g (~d/i p)exp —P —,'mgs; G s;+ —,
' W'TrIh' hI

ap=l j=l i=i a, P=1 l =1

X
+P det t h I+ g U(r~/)

i (&j)=1

where C is a constant which makes b, dimensionless. To take account of the fact that the MD simulations with La-
grangian (1) are subject to the condition g,.s; =0 we incorporated the latter condition into the partition function 6 to
avoid a systematic difference of order /i/

' between the thermodynamic properties calculated by the two simulations
methods. Then

~9 3X 3 1V A' 3

CJ gd/i gd ffd';gdli h g'; d IhjS!h o, ,P=1 j=1 i =1 a,P= I i =1

~9 3X 3 X A 3

CI g d/i pads gdi; g d/i pdkexp 'k. gi; detIh) e
X!h a,P=1 j=1 i =1 a,P=1 i=1

(6)

Defining v. =h i and ko=h k one obtains
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~9 3N 3 X X 3

sj v; d p deth +expi 0 v;
N!Ii a,p= 1 j=1 i =1 a,p= 1 i=)

Xexp —P —,'mdiv;+ —,
' WTrIh'hI+PdetIh)+ g U(r; )

i=1 i (&j)=1

i (&j)=1

The integrations on U; and h ~ are easily performed, as well as the integration on ko since the integrand is a Gaussian
function of ko. Finally, the partition function takes the form

'9/2 ' '3N/2 ' 3/2' I'

Nf h2p

The thermodynamic quantities are obtained as their aver-
age value over a sequence of configurations sampled,
starting from an initial configuration of bcc or fcc crystal
or fluid type, according to the algorithm of Metropolis.
For a configuration corresponding to the values s; and
h p of the component of s; and h, the random and a
priori modification of the variables is made in the domain
s,. +M; and h &+Ah~& The v. alues of &; and hh~@
which lead to an acceptance ratio 0.5 of the new configu-
ration are M; -0.02 and aha@-0.04o for the thermo-
dynamic states considered (note that s; is dimensionless
and varies between 0 and 1). The ratio between the at-
tempted moves of s; and the attempted changes of the
volume is taken equal to N in our calculations. As a
matter of fact, for the high densities considered, a more
frequent samphng of the volume appears to be statistically
significant only if the positions of a sufficiently large
number of atoms have changed. With these conditions of
sampling of the volume, a phase transition was obtained
after several hundred trial moves of the volume.

We have calculated by simulation in the ensemble
described above the isotherm T'=32 of a system of
%=432 atoms interacting by the Aziz potential in the
pressure domain 1300—2300. As for the case of the MD
simulations at constant enthalpy and pressure, a function
g„(r) can be evaluated, where, obviously, n denotes no
longer a number of integration time steps, but a set of suc-
cessive configurations generated at constant P' and T' in
configuration space. In the following a value of n corre-
sponds to the configurations generated by n)&X sam-
plings of the variables s; and therefore, as explained
above, to n samplings of the volume. To follow the evo-
lution of the system between different phases we used the
value n =50. When a transition takes place, the volume
changes shape and the density varies. Figure 7 represents,
for P'=1300, the variation of the density p„, with
ii =50, as a function of the number of samplings of the
volume. The initial state of the system is fcc, the final
state is fiuid, the intermediate state is bcc. The figure
shows that the evaluation of the average densities in the
different phases can be obtained with good precision.
From the simulations we obtained the equation of state
given in Table V and represented in Fig. 8. From Table V
it appears that for P*=2300 the initial bcc state evolves
towards a fcc state after a sequence of configurations cor-
responding to n =2800, i.e., after 1.2 &( 10 displacements

of the atoms and 2800 samplings of the volume. At
P'=1500 the fcc crystal transforms into a bcc crystal
after a sequence of configurations of n =5500, at
P' =1300 this transformation occurs after a sequence of
configurations of n -2000. At this pressure P'=1300
the bcc phase transits to a fluid phase after a sequence of
configurations of n =2000 if the initial state was a perfect
bcc crystal. The fluid part of the isotherm was deter-
mined between P'=1200 and 1600; in this domain the
fluid phase is stable over a sequence of configurations of
n -15000.

The simulation results obtained in the isothermal-
isobaric ensemble at T' =32 are in good agreement with
the MD results for identical thermodynamic states. The
density differences between the phases are easily estimated
due to the quasiparallelism of the curves P" as a function
of p'. The volume difference is -0.006 between the solid
phases and -0.04 between the solid and the fluid phases,
values identical to those obtained from the MD simula-
tions. However, if the density differences between the two
solid phases are identical for the two simulation methods,
it appears that for identical values of P' and T', the den-
sities are larger by -0.001 in the isothermal-isobaric en-
semble than in the MD simulations. This density increase
would have been even more important (-0.003) had the

p

~ ~
~ o ~ ~

0 0 ~
~ ~

~A 4.M
~ ~ e

16 ]Q

FIG. 7. Evolution of the p„(n =50, see text) with number of
samphngs of the volume V in an isothermal-isobaric Monte Car-
lo simulation at T*=32 and 8*=1300. The dashed lines indi-
cate the densities of the (metastable) fcc and bcc phases and of
the (stable) liquid phase.
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TABLE V. Equation of state at T =32 calculated by MC in the isothermal-isobaric ensemble. n denotes the total number of con-

figurations generated according to the notations of the text (n samplings of the volume plus N X n samplings of the atomic positions).
Columns 3—5 give the values of n at which the onset of the fcc-bcc, bcc-fcc, or solid-fluid transitions takes place. The meaning of the
parentheses is the same as in Tables III and IV. The precision of the densities is typically +0.001. The virial pressure I'„;„,~ differs
from I' by a term of order N

2300
2200
2200
2150
2000
1950
1800
1780
1750
1720
1680
1650
1600
1600
1500
1500
1560
1400
1400
1300
1300
1200

Initial
state

bcc

fcc
bcc
fcc
bcc
bcc
fcc
fcc
bcc
bcc
fcc
bcc
I.

bcc
fcc
I.

bcc
L

bcc
fcc
I.

(7800),(12000) (7500),(11200)

Pf

sohd-Au&d

4000
2000
2000

16000
2000
4000
2000
4000
2000
1000
2000
4000
2000

11000
2000

10000
11000

2000
4000
6000

16000
2000

2.586
2.553

2.536

2.467
2.412

(2.380)
2.363

2.330

2.28 I
2.288

2.187
2.188

2.591

2.560

2.492

2.411
2.400

2.359

2.295

2.198

2.284

2.243

2, 198
2.149
2.147
2.098

2299
2206
2204
2154
2003
1956
1805
1785
1753
1724
1686
1655
1604
1605
1505
1505
1505
1405
1403
1302
1308
1202

constraint g, i;=0 not been included in the partition
function d. The density difference observed in the two
simulation methods is a consequence of the finite size of
the system. The latter entails differences of order N ' in
the thermodynamic quantities calculated in different en-
sembles. From the only calculations accomplished in this

2. 2 p"
FIG. &. Equation of state P vs p at T =32 calculated

from an isothermal-isobaric MC simulation. Symbols as in Fig.
5.

work for the isotherm T'=32 in the isothermal-isobaric
ensemble it is not possible to locate the transition plateau.
The instability of one solid phase with respect to the other
and with respect to the fluid allows one, by a qualitative
argument similar to the one presented in the preceding
section, to locate the equilibrium between the solid phases
between P'=1400 and 2200 and the liquid-solid equili-
brium at I"~ 1400.

In Ref. 15, Frenkel, using a method proposed recently
by Frenkel and Ladd' to calculate the free energy of a
solid, locates the transition pressure of the isotherm
T'=32 at 15.07 GPa (i.e., 1776m/cri) for the fluid-fcc
transition and at 13.2 GPa (1556m/o3) for the fcc-bcc
transition. As noted in Ref. 15 the results of our calcula-
tions in the isothermal-isobaric ensemble are in excellent
agreement with those of Ref. 15 obtained in the canonical
ensemble. The equilibrium pressures between the phases
calculated by Frenkei' are aho in full accord with the
stability domains determined for these phases in the
isothermal-isobaric ensemble.

On account of the extremely small free-energy differ-
ences between the fcc and bcc solids (-10 3) it seems to
us that finite-size corrections have to be considered in or-
der to make quantitative comparison vnih experimental
results (cf. differences between the densities calculated in
the MD and isothermal-isobaric ensemble).

To summarize briefly this section, we have shown that
the isobaric ensemble defined by the partition function b,

can be used advantageously to study solid-solid transi-
tions. The simulations in this ensemble permit a precise
estimate of the volume differences between the phases.
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The computing times required to give evidence of a phase
transition are identical to those needed when the MD
method at constant enthalpy and pressure is used.

IV. CONCLUSION

The main conclusion of this study of phase transitions
in He at high pressure and T=300 K lies in the identifi-
cation of the experimental triple point as an equilibriuin
between a fluid, a fcc, and a bcc phase. The occurrence of
a hcp phase is excluded by our simulation calculations by
MD and in the isothermal-isobaric ensemble, with no ini-
tial fcc state evolving towards such a phase.

The potential by Aziz et al. does not give a completely
quantitative description of He in the pressure domain
10—20 GPa and temperatures of the order -300 K. Our
simulation results and those of Frenkel' indicate that the
values for the melting pressures and temperatures calcu-
lated with this potential are in excess by 10—15%, the
fluid-fcc-bcc triple point being located at a temperature
higher than 330 K. A modification of the repulsive part
of the potential by Aziz et al. reduces these discrepan-
cies. ' Inclusion of three-body forces in the interaction
potential and of quantum corrections could necessitate a
further readjustment of the parameters to maintain quan-
titative agreement between the theoretical and experimen-
tal equations of state. At the pressures considered the
three-body contributions to the pressure are estimated to
be -0.4 GPa (Ref. 4); and the quantum corrections to the
pressure ——0.3 GPa (Ref. 15).

We finally would like to describe several modes of
transformation of the parallelepiped defined by the vec-
tors a, b, c in the course of the solid-solid transition. In
Table I an example is given of a transformation from a
bcc to a fcc crystal during a molecular-dynamics simula-
tion. Initially the vectors a, b, c are along the [100],
[010], and [001] directions of the bcc crystal and the
lengths ~a~,

~
b~,

~

c
~

correspond to 6 times the distance
between second-nearest-neighbor atoms. In the transfor-
mation the cubic volume containing the 432 atoms of the
system becomes a rectangular parallelepiped with quadra-
tic section in the plane perpendicular to c. The lengths

~

a ~, ~

b ~, and
~

c
~

evolve in a way such that the ratios

of transformation has been observed, for instance, in Refs.
5 and 14 and corresponds to the deformation of the rec-
tangle constituted by an atom and its four-nearest neigh-
bors in the (110) plane of the bcc crystal into a square
constituted by an atom and its four nearest neighbors in a
(100) plane of the fcc crystal. This transformation can be
accomplished by keeping the angles between a, 1, and c
fixed.

Table II corresponds to an example of a transformation

of a fcc crystal into a bcc crystal. Initially the vectors a
and b are along the [110]and [110]directions of the fcc
crystal. During the transition they become the [111)and
[111]directions of the bcc crystal and consequently the
angle between a and b, O,b changes from 90' to
-arccos( ——,

'
) =109'. The c axis initially along the [001]

direction of the fcc crystal becomes the [101]direction of
the bcc crystal and the ratios

~

c
~
/

~

a
~

»d
~

c
~

/
~

b
~

vary from +2 (ratio of the second-nearest-neighbor dis-
tance to the first-nearest-neighbor distance in the fcc crys-
tal) to about 2&(2/3) (ratio of the third-nearest-neighbor
distance to the first-nearest-neighbor distance in the bcc
crystal).

It seems thus possible during a phase transition to fol-
low the evolution of the crystal by analyzing the modifi-
cations of the lengths and relative angles of the vectors a,
b, and c. However, we can remark that nothing opposes
the vectors a, b, c to orient, during the dynamical evolu-
tion of the system, along an arbitrary direction of the
crystal lattice. We give an example for a crystal transiting
from a fcc to a bcc phase and then again to a fcc phase.
In the initial fcc state the vectors a, b, and c were along
the directions [110],[110],and [001] of the crystal having
lengths 4.9, 4.9, and 7.10, respectively. In the bcc phase
the vectors a, b, and c were along the directions [111]„
[111],and [111)with lengths 4.9, 4,9, and 8.1, respective-
ly, in accord with the type of transformation described
above. From this bcc phase the system evolved again to a
fcc phase„ the vectors a, b, c having typically components
(4.93, 2.12, 0.53), ( —0.63, 4.22, —0.53), and (0.64, 0.91,
8.01) corresponding to 8,b-76', 8&-90' and 8„-77'
and moduli 5.39, 4.30, 8.09. The determination of the
crystal directions of a, b, and c is less easy for this case
than for the transitions described in Tables I and II,
indeed the directions of a, b, and c are, respectively,
[530], [110], and [116]. Therefore it is important to re-
mark that for successive transitions with substantial
modifications of the orientations and lengths of the vec-
tors a, b, c the evolution of the system can be followed
only by resorting to correlation functions, of which g„(r)
is an example.
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