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Spin waves in a strong tight-binding itinerant ferromagnet with a (100) surface
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The surface spin-eave problem for a simple-cubic tight-binding ferromagnet is formulated in

terms of a spin-wave Green's function. The effect of the surface is treated as a perturbation to the

bulk problem. The spin-wave Green s function of a semi-infinite ferromagnet satisfies a Dyson
equation with the bulk Green's function as a kernel. Both the bulk spin-wave Green's function and
the surface perturbation are parametrized in terms of Heisenberg-like effective exchange integrals.
The effective exchange integrals are expressed in terms of one-electron Hartree-Fock (HF) propaga-
tors and evaluated. The bulk effective exchange integrals and the surface perturbation for a strong
ferromagnet are shown to be negligible beyond the range of electron hopping. The effect of the sur-

face is separated into a geometric effect and a surface renormalizaton of the bulk exchange integrals

due to the surface core shift, HF corrections, and Friedel oscillations. It is shown that the renormal-

ization of the effective exchange integrals in the first two atomic planes is sufficient for a strong fer-

romagnet. The dependences of the renormalized surface exchange integrals on the occupation of the

surface layer n, are computed. For a neutral (1003 surface {n,=n), the surface exchange integrals
are very close to their bulk values. For n, /n & 0.88, there is a surface mode above the continuum of
bulk spin waves but there are no surface modes for n, /n y 0.88. Acoustic surface modes can exist
for other surfaces, e.g. , (110),

I. INTRODUCTION

There is renewed interest in the magnetic surface prob-
lem stimulated by recent measurements of the surface
magnetization' and by self-consistent band calculations
for surfaces of ferromagnetic transition metals (see, e.g.,
Ref. 2). Although self-consistent band calculations are
very successful in predicting the ground-state properties,
they cannot be easily generalized to finite temperatures.
The functional-integral method for bulk ferromagnetic
metals at finite temperatures was applied recently by
Hasegawa to metal surfaces using a tight-binding model.
However, his calculation is of mean-field type and is
clearly not a good approximation at low temperatures
since it ignores completely the spin waves which dominate
the low-temperature magnetization. Unfortunately, there
are no calculations of the effect of the surface on bulk
spin waves for metals and information on surface spin
waves is very limited. On the other hand, the surface
problem for magnetic insulators is quite well understood.
The Heisenberg model of a magnetic insulator assumes a
localized spin S on each site and the spins on sites ij are
coupled by an exchange interaction ——,

' J,J.S;SJ. VAen a
planar surface is introduced, all the exchange bonds across
the surface are cut and the exchange integrals in the first
few planes may be modified. For nearest-neighbor ex-
change in a simple-cubic ferromagnet the problem was
solved exactly within the random-phase approximation
(RPA) by De Wames and Wolfram. They found that
surface spin waves appear for a (100) surface provided the
exchange integrals coupling nearest neighbors in the first
layer J~~, and in the first and second layers Ji, are dif-
ferent from J "'". Depending on J~~ and Ji, surface spin
waves may appear either below or above the bulk magnon

band. Similar results are obtained in a model which in-
cludes nearest-neighbor and second-nearest-neighbor ex-
change interaction.

However, the measurements made on metallic fer-
romagnets (nickel, iron, or metallic glasses) require inter-
pretation in terms of the itinerant model of ferromagne-
tism. Previous studies of surface spin waves in itinerant
ferromagnets were based directly on the random-phase
approximation (RPA) dynamic susceptibility X(q,co).
Griffin and Gumbs ' calculated X(q, to), neglecting the
Friedel oscillations and Hartree-Fock (HF) corrections to
the surface susceptibility. This approximation leads to a
spurious gap in the spin-wave spectrum and was criticized
in Ref. 8. Localization of spin waves on a plane of im-
purities in an infinite strong ferromagnet was studied in
Ref. 8 using a self-consistent approximation to the suscep-
tibility, but there is no real surface in this model since
electrons are allowed to hop across the impurity plane.
Moreover, none of these calculations was concerned with
the effect of the surface on bulk spin waves.

In this paper we describe a new real-space approach to
the problem of spin waves in a simple-cubic tight-binding
itinerant ferromagnet with a (100) surface. As in the
Heisenberg model, ' we set out to calculate surface
corrections to the bulk spin-wave Green's function in real
space. In Sec. II the bulk spin-wave Green's function of
an itinerant ferromagnet is first cast into a Heisenberg-
like form and the required effective exchange integrals are
evaluated in the tight-binding approximation. Next, the
surface corrections to the bulk effective exchange integrals
are determined and then the whole problem is mapped
onto an equivalent problem of surface in a magnetic insu-
lator. This approach has the great advantage that formu-
lation in terms of effective exchange integrals is physical-
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ly simple and preserves automatically the spin-rotational

symmetry of the surface problem. Also, the surface ex-
change integrals are directly related to the surface elec-
tronic structure which is known from self-consistent band
calculations. Finally, in Sec. III the model is used to dis-
cuss the location and dispersion of surface spin waves.

II. SPIN-WAVE GREEN'S FUNCTION
OF AN ITINERANT FERROMAGNET

As in previous calculations of surface spin waves, 's we
consider a simple-cubic tight-binding ferromagnet
described by the Hubbard Hamiltonian

H g r/j cj~cj~+ Q Ujnj+ni + Q Ejnj~ y (1)

where c;,c~ are the creation and annihilation operators of
electrons in atomic orbitals, U; is the effective intra-
atomic repulsion (Hubbard U), and t j are the hopping in-
tegrals. The parameters U;, t;j, and the total number of
electrons in the band are chosen so that the Hartree-Fock
(HF) ground state is ferromagnetic. The core energies E;
are assumed to be zero in the bulk and Ep in the surface
plane. This allows for adjustments of the surface magnet-
ization which can be either fitted to the results of self-
consistent band calculations or treated as a parameter to
simulate interface effects. All U; are assumed to have the
bulk value Up. Changes in U; at the surface are not con-
sidered since they can be mimicked by core shifts Ep As.
in Ref. 9, the surface is introduced by cutting all the hop-

ping integrals across a cleavage plane.
Consider now the effect of the surface on the transverse

susceptibility X+ whose poles determine the spin-wave
energies. The Fourier transform of the susceptibility ma-
trix in the Wannier representation satisfies a matrix equa-
tion (see Ref. 8)

X,+, (co) =X;,(p~)+ gX;„(pi)UpX+, (co)

which is exact in the random-phase approximation (RPA)
both for bulk and semi-infinite ferromagnets. The kernel

X;j is the transverse unenhanced susceptibility of nonin-
teracting electrons moving in the HF potential

V,.=E, +U, (n, .&.

For a semi-infinite ferromagnet, V~ is inhomogeneous
since both E; and (n; ) vary near the surface. The ker-
nel X is expressed quite generally in terms of the HF one-
particle propagators 6;~~:

EF
X~(pi)= il 'Im I Gj —(E+co)GJ+(E)dE, (4)

where EF is the Fermi energy.
Direct solution of Eq. (2) for a spatially inhomogeneous

system is impossible since the kernel X is an off-diagonal
matrix both in the Bloch and %annier representations.
More promising and physically appealing is to treat the
surface as a perturbation to the bulk problem. Following
Mills and Maradudin, we define the spin-wave Green's
function of an itinerant ferromagnet I by

I =(I—UpX)

where I is a unit matrix. Using Eqs. (2) and (5), it is easy
to show that the spin-wave Green's function of a semi-
infinite ferromagnet I' satisfies the following Dyson
equation:

where I is the bulk spin-wave Green's function and the
surface perturbation 8'is given by

W= Up(X' —X') .

Here, X' and X" are the surface and bulk kernels defined
by Eq. (4). Equation (6) is equivalent to Eq. (2) and has
the same form as for a conventional Heisenberg ferromag-
net (see Ref. 5). This suggests that it should be possible to
map the itinerant surface problem on an effective Heisen-
berg problem.

A. Bulk spin-wave Green's function

Consider first the bulk spin-wave Green's function I
It was shown in Ref. 10 that I in the Wannier represen-
tation is equivalent to the spin-wave Green s function of
an effective Heisenberg Hamiltonian with exchange in-

teg rais

5Jj ——UOAP;j (8)

where s is the spin, b is the exchange splitting, and g,j is
given by Eq. (4) with the bulk one-electron propagators.
This result is exact in RPA for long-wavelength spin
waves. For a strong ferromagnet (b, & EF), Jj decay ex-
ponentially with distance and we shall demonstrate this
analytically in the limit b, /EF » l.

The down-spin propagators in Eq. (4) are real for a
strong ferromagnet and can be expanded in powers of
EF/b:

Gp =N ' g exp(i' )(E E~ —b,)—
'5,(1+E/&) &-'j„+0((EF/&—)')-, (9)

where Ee = —g t~ exp(i' ) is the tight-binding ener-

gy and 5~ p is the Kronecker delta. We recall that Gt~+
is independent of 6 and the factor Uph is proportional to

It follows that the effective exchange integrals within
the range of electron hopping tend to a finite limit for
5/EF »1 and all the other exchange integrals tend to
zero. For a simple-nearest-neighbor hopping s band con-
sidered here, only the nearest neighbor J' is nonzero. It
is given by

sJ' = —(6n) ' f EN (E)dE, (10)

where Np(E) is the bulk electron density of states, n is the
number of carriers per atom.

Another important property that follows from Eqs. (4)
and (10) is that the off-diagonal elements of X and, there-
fore, the exchange integrals JJ are independent of the fre-
quency ~ in the limit 5/E~ ~& 1.

The validity of the nearest-neighbor approximation for
a strong ferroinagnet with finite 6/EF such as nickel can
be easily tested. The most stringent test is to calculate the
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spin-wave stiffness D' from the effective nearest-
neighbor exchange integral defined by Eqs. (8) and (4) and
compare it with the usual band RPA result for a simple-
cubic tight-binding ferromagnet (see, e.g., Ref. 11). We
used in this comparison the values 4/E~ ——2 and n =0.2
to model nickel assuming that three degenerate t2g bands
form the top of nickel d band. The effective stiffness D'
is given by the usual formula D' =sJ' a . We obtain re-

markably good agreement. D' calculated by this method
is 94% of the exact RPA stiffness D. As an additional
check, the second-nearest neighbor J~ was computed
from Eqs. (8) and (4). We find J2 /J' =0.06, i.e., Jq is
very small. These results show that a ferromagnet with
b, /EF =2 such as nickel is very close to the limit
b, /EF »1 and its bulk spin-wave Green's function can be
taken in the nearest-neighbor approximation.

B. Surface corrections to the bulk spin-wave
Green's function

We shall determine in this section the surface perturba-
tion IV. It can be seen from Eq. (7) that W is just the
difference between the surface g' and bulk I kernels.
Both kernels are determined by the one-electron propaga-
tors via Eq. (4). The surface propagators for a simple-
cubic tight-binding band were obtained by Kalkstein and
Soven. To be specific, we consider the (100) surface.
The propagators GJ (q, E) in the mixed Bloch-Wannier
representation neglecting the core shift and HF correc-
tions are given by

6;, (q E)=6'(
~

i —j ~,q, E) G.'(i +j,q,—E), (11)

where 6" are the bulk propagators, i,j label atomic planes
parallel to the surface located at i =1, and q is the com-
ponent of the wave vector parallel to the surface.

The effect of the core shift Eo and of the HF correc-
tions is included by solving the Dyson equation
6'=6 +6VG' for 6', where 6 is given by Eq. (11) and

V =E05 i+((n ) —n "'")

is the HF potential in the mth atomic plane. Since there
are no minority carriers in a strong ferromagnet, G,J+ can
be determined exactly. To obtain G,J, we assume that
(n~+ ) deviates from n~+'" only in the surface plane. The
Dyson equation for 6' can then be also solved analyti-
cally. Since the perturbation matrix W is determined by
6'+ and 6', our model of surface is now well defined
and the rest of the paper revolves about various approxi-
mations to 8' that are required to render the Dyson equa-
tion (6) solvable.

C. Geometric effect of surface

Since the surface propagators 6' have no matrix ele-
ments across the cleavage plane, all such matrix elements
of 7' must also vanish. It follows that 8'~= —Uog;~
across the cleavage plane, which is equivalent in the ter-
minology of Sec. I to cutting all the effective exchange in-
tegrals across the surface. This simple geometric effect of
surface is exactly the same as for the conventional Heisen-

berg ferromagnet. The crudest approximation to W is to
assume that all the matrix elements of g';J. for i,j& 1 are
equal to the elements of the bulk X . This approximation
is equivalent to the classical infinite-barrier model (CIBM)
of Griffin and Gumbs. ' It is clear that CIBM is not a
realistic model for metals since, even if one neglects the
HF corrections, the kernel 7' is determined by the propa-
gators 6 which differ from 6 because of the quantum
interference effect of the surface (Friedel oscillations).
Nevertheless, it is instructive to discuss the consequences
of the geometric effect. The situation in the limit
b, /EF »1 is clear-cut. The approxiination of an effective
nearest-neighbor exchange becomes exact in this limit and
we have the geometric effect for a conventional nearest-
neighbor Heisenberg model discussed in Ref. 5. There are
no surface spin waves for a (100) surface but they exist for
other surfaces, e.g., (110) provided non normal effective
exchange integrals are cut in constructing the surface.

For finite 5/EF, the effect of the second-nearest-
neighbor exchange J2 needs to be considered. For the
model described in Sec. I, J2 is positive (ferromagnetic).
We then have the same problem as for a magnetic insula-
tor with nearest-neighbor and second-nearest-neighbor ex-
change which was solved by Mills and Maradudin. They
showed that there is an acoustic surface mode as long as
J2&0. This is satisfied by J2, and the present model
thus predicts an acoustic surface mode for a (100) surface.
However, since J,' is very small, the surface mode is al-
most indistinguishable from the bulk spin waves. The ef-
fect of Friedel oscillations and HF corrections on 8' will
be discussed next.

D. Friedel oscillations and HF corrections

It can be seen from Eq. (7) that the effect of Friedel os-
cillations and HF corrections can be regarded as a renor-
malization of the bulk effective-exchange integrals near
the surface. The simplest approximation is to include
such renormalization only in the first two atomic planes.
Generalization to a surface perturbation of arbitrary size
is straightforward but it will be seen that a 2X2 matrix
8' gives already results asymptotically exact in the limit
b, /EF »1. For a 2 X 2 W, the Dyson equation (6) is simi-
lar to the Dyson equation for the Green's function of a
conventional Heisenberg ferromagnet with exchange in-
tegrals in the surface plane J~~ and between the surface
and adjacent plane Ji different from J "'". This problem
was solved by DeWames and Wolfram in the mixed
Bloch-Wannier representation and we shall apply the
same method to the itinerant surface problem. As in Ref.
4, we define a kernel I;J.(q, co) by

I;J(q,co)=I ( ~i —j ~,q,~) 1(i j+,q, co—),
where 1 is the bulk spin-wave Green's function (5) in the
mixed Bloch-Wannier representation. It can be easily
shown that the solution of Eq. (6) with the kernel 1 and
with a perturbation matrix 8'» ———UOX&0, 8',J- ——0 for
i&j&0 is the spin-wave Green s function for the
geometric effect of surface. It follows that I ', including
the effects of Friedel oscillations and HF corrections, sat-
isfies a Dyson equation
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=I +I IVI

where W now includes all the surface corrections except
for the geometric eff x:t which is already incorporated in
I. The spin-wave energies are then obtained from the
usual secular equation

det
l
I —I W

l
=0 . (13)

For the exact (infinite) matrix W, the spin-rotational sym-
metry of the problem requires that Eq. (13) has always a
solution co=0, q =0 (the Goldstone mode). This condi-
tion may not be satisfied for a truncated 2X2 matrix W
and has to be imposed on the elements of W. The correct
form of W in the limit co=0 q =0 is clearly that for a
Heisenberg ferromagnet. We shall, therefore, map the
surface perturbation for an itinerant ferromagnet on a
Heisenberg-like matrix 8' and show in the Appendix that
such mapping is exact within RPA for b, /EF »1. The
matrix W for a Heisenberg ferromagnet is given by

Wii ———4A(q)(1 —
e~~)

—(2—ej ),
W)2 ——1 —pq, 8'22 ———5 )~,

(14) 0.8

where e~~=J~~/J, e, =J, /J', andb

A(q)=1 —[cos(q,a)+cos(q~a)]/2 .

We now require only the values of e~~ and e~ for an
itinerant ferromagnet. They are expressed in terms of the
matrix elements of the unenhanced surface susceptibility

FKJ. 1. Dependence of the surface effective-exchange in-

tegrals all ——Jll/J' and e& ——J&/J' on the occupation of the sur-
face layer n, /n. Solid curves are for n =0.2 and 6/EF &pl;
dashed curves are for n =0.2 and 6/EF ——2.

e(~
——hm QX'ii(q, ai)exp(i5q) Quip(q, co)

Qp —+0

Jeff /Jeff
ll

si = llm QXi2(q, c0)
fg)~0
Jeff /Jeff

g Xi2(q, co)
e

(15)

where J' is given by Eq. (8), q is the wave vector in the
surface plane, and 5 is a vector connecting nearest neigh-
bors in the surface plane. Both e~~ and ei can be easily
computed from the surface one-electron propagators. For
given n and b„ they depend only on the core shift Eo or,
equivalently, on the occupation of the surface layer n,
The dependences of e~~ and ej on n, /n are shown in Fig. 1

for the filling of the band n =0.2 appropriate to nickel.
Solid curves are for large exchange splitting b, /EF »1
and dashed curves are for a splitting 6/EF 2, as expect-——
ed in nickel. The range of n, /n corresponds to Eo such
that there are no surface electron states. The qualitative
behavior of the surface exchange integrals for 6/E~ &&1
and 6/Ez ——2 is similar. Most importantly, Jll and J&
for a neutral surface (n, =n) are very close to the bulkJ' . Since n ~ M and n, ~ M„where M and M, are the
bulk and surface magnetizations, it follows from Fig. 1

that a (100) surface can be magnetically "softer"
(e~~, ez & 1) for M, & M and "harder" for M, ~ M.

The secular equation (13) for spin waves can be now
solved as in Ref. 4. However, before it can be apphed to
surface spin waves it needs to be demonstrated that the ef-

fective exchange integrals in Eq. (15) which are taken in
the limit co=0 are good approximations to the frequency-
dependent itinerant IK

This problem is addressed in the Appendix where it is
shown that the mapping on a frequency-independent
Heisenberg W is asymptotically exact for 5/EF »1 pro-
vided M, =M (neutral surface}. When M, deviates from
M (e.g., for interfaces), Wii becomes frequency depen-
dent. This is unimportant for long-wavelength bulk spin
waves since such dependence contributes to the spin-wave
energy only to the order O(q ). However, the frequency-
dependent term in Wi, is essential for surface spin waves
and they are discussed in the next section.

III. SURFACE SPIN W'AVES FOR A (100) SURFACE

Since acoustic surface spin waves deviate from bulk
spin waves only to the order O(q ), the problem of ex-
istence of surface modes in an itinerant ferromagnet is
unusually subtle and any approximation which is not fully
self-consistent is virtually useless. For this reason, we
shall discuss surface spin waves only in the limit
6/EF »1 where the present formulation is asymptotical-
ly exact. The problem is formally equivalent to the sur-
face problem for a Heisenberg ferromagnet solved
by De%'ames and %'olfram. The only difference is
that Wi i acquires a frequency-dependent term
(co/sJ' )(1 n/n, ) for n, &n (see—the Appendix}. Surface
spin waves are solutions of the secular equation (13). As
shown in Ref. 4, Eq. (13) is equivalent to a cubic equation
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where the variable x is defined by

x + 1/x =4A(q)+2 —m/sJ' (17)

In contrast to the conventional Heisenberg ferromagnet,
W» now depends on x via the frequency-dependent term
in Eq. (17). Nevertheless, Eq. (16) remains cubic and can
be easily solvei. The roots of the cubic equation (16)
which correspond to physical solutions must have

(
x

~

&1 (see Ref. 4}. Since e~~ and ei were already
evaluated in Sec. II, all the coefficients in Eq. (16) are
known and depend only on the ratio n, /n =M, /M. It
follows that the existence and location of surface modes is
determined by a single parameter M, /M.

Solving numerically Eq. (16},we find that there is al-

ways a surface mode above the continuum of bulk spin
waves for M, /M &0.88. The dispersion of this surface
mode is illustrated in Fig. 2 for a range of M, /M. Since
e~~&1 and ei & 1 for M, /M &0.88, the situation here is
qualitatively the same as for magnetic insulators with
magnetically "harder" surface (see Ref. 4). For
0.88 & M, /M & 1.09, there are no surface spin waves since
Eq. (16) has no physical roots in this interval.

The remaining case M, /M&1. 09 is very interesting.
~e have e~~ & 1 and ei & 1 in this interval, i.e., magnetical-
ly "softer" surface. For a magnetic insulator, there is a
well-defined acoustic mode in this situation located below
the bulk continuum (see Ref. 4). However, for an
itinerant ferromagnet, this mode is removed by the
frequency-dependent term in W~ i. We recall that the sur-

1, 2
~s

h

I 1.0

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

FIG. 2. Dispersion of the surface mode; A{q) is defined in
the text.

x i+x2( W'i, + W12)+x(2Wi2+ Wii W22 —
Wig )

+ Wi2 ——0, (16)

face acoustic mode for a magnetic insulator deviates from
the bulk continuum only because the element W'» of the
surface perturbation depends on the component q of the
momentum parallel to the surface. ~e find that the con-
tribution of the momentum-dependent term to the secular
equation (16) is exactly compensated by the frequency-
dependent term. This result shows again how sensitive
the acoustic surface spin waves are to any deviation from
self-consistency. Exact compensation is obtained only be-
cause we use 8 ~& which is exact in RPA.

Since there are no optical modes for magnetically
"softer" surface (as for magnetic insulators ), we conclude
that there are no surface spin waves for M, /M & 0.88. In
particular, there are no surface spin waves in this model
for a neutral surface M, =M. This completes the discus-
sion of the surface spin-wave problem in the limit
6/EF »1.

IV. DISCUSSION

The principal result of the paper is the mapping of the
spin-wave problem for a semi-infinite metallic ferromag-
net on an equivalent problem for an insulator. Such map-
ping provides a general recipe for solving the surface
spin-wave problem in the following steps.

(i) The one-electron surface problem is solved in the HF
approximation.

(ii) The bulk effective exchange integrals are computed
from the one-electron HF propagators.

(iii) All bulk exchange integrals are set equal to zero
across the surface (geometric effect of surface).

(iv) Surface renormalization of the effective exchange
integrals is computed from the surface HF one-electron
propagators. This determines the surface perturbation.

(v) The surface perturbation matrix is truncated to a
manageable size and the Dyson equation for the surface
spin-wave Green's function is solved.

All these steps were implemented in the paper for a
(100) surface in a simple-cubic tight-binding strong fer-
romagnet and monitored by going to the limit lL/EF »1
where all the results are exact in RPA. Such calculation
is feasible since both the bulk exchange integrals and the
surface perturbation are negligible beyond the range of
electron hopping. This result is strictly valid only for a
strong ferromagnet but may be a good approximation
even for weak ferromagnets (see Ref. 12). It is clear that
the above formula is also applicable to a multiband tight-
binding band structure. Therefore, the present model cal-
culation can be generalized to any surface for which a re-
liable self-consistent band calculation is available. One
only requires tight-binding parametrizations of both the
bulk and surface ferromagnetic band structures. Such pa-
rametrization was used recently by Edwards and Munitz'
to calculate bulk spin-wave energies in Ni and Fe. They
obtained correct spin-wave energies in Ni using d bands
only and assuming a rigid exchange splitting. In view of
that, it is not unreasonable to model the unoccupied
minority t2~ bands in Ni by a single degenerate band and
the present model calculation can be then applied qualita-
tively to nickel. Self-consistent band calculations for a
(100) Ni surface predict an enhancement of the surface
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magnetization by 8—10%. We can model this by adjust-
ing the core shift Eo to give 1.08~n /n &1.10. It is
rather remarkable that both J~~ and J~ are then almost
exactly equal to the bulk J' (see Fig. 1). We expect this
result to hold more generally for any tight-binding param-
etrization as long as the layer-by-layer count of magnetic
electrons is constant, since the surface exchange integrals
are closely related to the local density of states. The effect
of surface then reduces to the geometric effect, discussed
in Sec. III which is exactly the same as in magnetic insu-
lators. In particular, the result of Mills and Maradudin,
that the surface magnetization follows the T3~2 law with
a prefactor twice as large as for the bulk magnetization,
holds for a neutral surface. This has been observed for
iron by Gradmann using Mossbauer spectroscopy. '4

The situation for interfaces is more interesting since
J~~,Jj deviate from the bulk J' . For example, a Ni
surface coated with a Fe layer should be magnetically
softer since the number of holes in the surface layer is in-
creased (see Fig. 1}. This should lead to a prefactor in the
T3~ law greater than two and the more rapid decrease of
the surface magnetization should be observable by
Mossbauer spectroscopy (see Walker et al. ' and Ref. 14).
Assuming an iron-rich surface due to segregation, such a
mechanism may also explain the more rapid decrease of
the surface magnetization in Ni-Fe glass observed by
Pierce et al. '

Heisenberg W given by Eq. (14). This is done in the fol-
lowing steps. First, the Dyson equation for the HF sur-
face one-electron propagators is solved, treating exactly
the core shift Eo and HF corrections in the surface plane.
Next, the surface propagators are expressed in terms of
the bulk propagators G„~~ and all G„~ are expanded in
powers of EFID, as in Eq. (9). Working consistently to
the order O((E+!5) },it is easy to show that

W)( ——(co/sJ' )(1 n/—n, ) —4A(q)(l —
e~~)

—(2—eg)

with

X exp i k Img~~+ k,E E,
k

(Al)
ez ——1 (n —/n, )(en')

X E+y —Eo IIG)i+,E E,
k

where

y = t g exp—[i (k +q)5],

5 labels nearest neighbors in the surface plane, and t is the
nearest-neighbor hopping integral. Similarly, W'~q exact
to order O{(EF/b ) ) is given by

APPENDIX W)2 ——1 eq(n, /n) —. (A2)

We now show that the surface perturbation matrix 8'
for a strong itinerant ferromagnet with neutral surface
(n, =n) reduces exactly in the limit b/EF peal to the

It is now clear that the matrix 8'reduces exactly to 8'
given by Eq. {14)provided the surface core shift is adjust-
ed to make the surface neutral ( n, = n)
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