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Stability of incomplete explosive crystal growth
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We study a model of explosive crystallization of an amorphous thin film in which the film is not

necessarily crystallized completely. We assume instead that only a fraction of the film crystallizes,
and that this fraction depends on the local temperature at which the transition takes place. Steady
states of the model can be found in the same way as in the case when the transition is assumed to go
to completion. In addition, the linear stability analysis of these steady states is simply related to that
with complete crystallization: A single new parameter appears which measures the sensitivity of the
rate of latent heat release to the temperature at the transition front, and the theoretical parameters
on which the stability depends are rescaled by this new parameter. If the rate of latent heat release

actually decreases as the interface temperature increases, then the steady state is always linearly

stable. Similar results can be obtained for laser-driven growth.

I. INTRODUCTION

Explosive crystallization is a process in which a sample
of amorphous material is transformed into a crystalline
state, with the transition largely, if not totally, activated
by its own latent heat. More specifically, once some ener-

gy has been injected from outside to trigger the transition,
the latent heat released as amorphous material crystallizes
locally can provide the activation energy needed to crys-
tallize nearby amorphous material, thereby driving a
boundary between still-amorphous and now-crystalline re-
gions across the sample. Experiment has shown that ini-
tially uniform amorphous films which are crystallized ex-
plosively often develop undulations in thickness as the
transformation takes place, with the undulations forming
ridges or "rolls" whose long axes are perpendicular to the
direction in which the crystallization front moved. '

The spacing between adjacent rolls is of the order of the
ratio of the thermal diffusion constant of the film to the
average speed of the transition front. ' Thus these undu-
lations have been connected theoretically with a thermal
instabihty in which the local temperature at the transition
front varies periodically in time. These oscillations
have been seen in numerical simulations of explosive crys-
tal growth, and are also predicted by a linear stability
analysis of crystallization with a constant front veloci-
ty.

The usual theoretical model of explosive crystallization,
which was originally proposed by Gilmer and Leamy and
independently by Shklovskii, ' incorporates heat diffusion
in the plane of the film, latent heat release at the
amorphous-crystalline boundary, and interface kinetics
via a nontrivial dependence of the local velocity of the
boundary on its temperature. However, it assumes that
the amount of latent heat released when a portion of the
amorphous film crystallizes is simply proportional to the
area of that portion. This is equivalent to assuming that
the crystallization is complete, or at least that a constant
fraction of the initially amorphous material crystallizes.
On the other hand, there is experimental evidence, both

for self-sustained~ and laser-driven growth, that the frac-
tion of material which crystallizes is not constant, but
rather varies periodically with the same spatial period as
the surface undulations have; in fact, the variation in the
amount of remaining amorphous material is partially the
cause of the surface undulations. Existing theoretical
treatments5 neglect these variations in order to calculate
the temporal period of the thermal oscillations at the tran-
sition front, and then invoke them in order to connect
these oscillations with the production of surface undula-

tions. Zeiger et al. have suggested that the variation in
the crystallized fraction may affect the interface motion,
but they have not explored the possibility.

In this paper we will include in the analysis of the
thermal instability the variation in the fraction of material
which crystallizes. Since the distribution of remaining
amorphous material in a crystallized film is seen to be
periodic, it is reasonable to model this fraction as a func-
tion of local boundary temperature. (In fact, it turns out
to be more convenient to write it as a function of the
boundary velocity, which is itself modeled as a function of
temperature. ) We find that steady states describing an
amorphous-crystalline boundary advancing at a constant
speed can be found by the same method as that used by
van Saarloos and Weeks ' in their analysis of the model
with complete crystallization. Furthermore, the linear
stability analysis of these steady states is almost identical
to that carried out by van Saarloos and Weeks ' for the
one-dimensional problem and by Kurtze, van Saarloos,
and Weekss for the multidimensional problem. A single
new parameter q appears, which is the logarithmic deriva-
tive of vf(v}, where f(v) is the fraction of amorphous
material which crystallizes when the interface is advanc-
ing at velocity U. %e show that the old theoretical param-
eters P and a, which are related to the boundary velocity
and the nonequilibrium growth kinetics, respectively, are
replaced in the stability analysis by Pluri and ari, and the
growth rates and wave numbers of perturbations are mul-

tiphed by ri and g'~i, respectively. Thus unless f ( v) de-
creases more quickly than liu as v increases, so that g is
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negative, there is no qualitative change in the stability;
only the onset of instability is shifted, and the spacing of
the resulting undulations is altered. Furthermore, if ri is
zero or negative, which means that the actual rate at
which latent heat is being released decreases as the front
velocity increases, then we find that the steady state is al-
ways linearly stable. We also obtain similar results for the
case of crystallization driven by a laser slit. '

In the following section we present the model equations
we will analyze, and review how steady-state solutions of
these equations can be found. Section III contains the
linear stability analysis of the steady states, and shows
how the stability equation can be transformed, by a suit-
able rescaling of parameters, into the equation derived and
analyzed for complete crystallization by Kurtze, van Saar-
loos, and Weeks. Finally, in Sec. IV the results are dis-
cussed and related to other types of phase transitions
which can be described by moving boundary problems.

=DU T+V PT T—)—
Bt Bx

+(L/c) V f ( V )5(x —x ) . (2.1)

Here D is the thermal diffusion constant of the film, L is
the latent heat of crystallization, c is the specific heat of
the material, Tu is the ambient temperature, and I' is a
phenomenological damping parameter which models heat
loss to the environment. The position x of the
amorphous-crystalline boundary, and hence its normal
velocity V, can depend on y and t; the most interesting
theoretical part of the problem is to determine what this
dependence is. We can take the average velocity of the
boundary to define the x direction. The function f(u), as
discussed in the introduction, is the fraction of amor-
phous material which crystallizes when the boundary is
moving at a speed u. (There is actually a geometric factor
involving the square of the slope of the boundary which
should appear in the 5-function term in this equation, but
since we will only be concerned with the linear stability of
a straight-line interface, and this term is quadratic in the
interface slope, we will not bother to write it here, even

though it would be necessary for a correct nonlinear
analysis. } The velocity of the amorphous-crystalline
boundary is determined, via nonequilibrium interface ki-
netics, by the local temperature T at the boundary; we
take this effect into account by postulating the existence
of an intrinsic growth-rate relation,

V (y, t)= V ( T (y, t)), (2.2)

which gives the normal velocity of the boundary at any
point along it in terms of the temperature there. Unlike
for crystallization from an undercooled melt, this function

II. MODEL EQUATIONS AND STEADY STATES

%e will consider a boundary between amorphous and
crystalline regions which moves at a local normal velocity
V across a thin, initially amorphous film. Following
Gilmer and Leamy, ' we write a diffusion equation for the
local temperature T(x,y, t) of the film, in a frame of
reference moving with velocity V in the x direction:

V=T +(L/c)P' f(V)exp —— (x+P '
~x ~},

2D

(2.3)

where, following van Saarloos and Weeks, we have de-

fined the parameter

P=P( V) = V'/( V'+4Dr), (2.4)

which is a dimensionless measure of the steady-state

boundary velocity (or of the importance of heat loss)

which always lies between 0 and l. In order for this solu-

tion to exist, we must have chosen the speed V of our
reference frame so that the boundary velocity V = V and

temperature T are consistent with the intrinsic growth-
rate relation (2.2}. The resulting equation can be written

in the form

Tb(V)=T +(L/c)P'i f(V), (2.5)

where we have inverted the relation (2.2) to write the

boundary temperature T as a function of its velocity V~.

In practice, if this relation and the dependence of f(u) on
u are known, then the boundary velocity is found by plot-

ting the two sides of this equation, the growth-rate curve
and the steady-state curve respectively, and looking for in-

tersections of the two. We will find that the stability of
the steady state depends on the relative slopes of the two
curves at their intersection.

III. LINEAR STABILITY ANALYSIS

We now look at the stability of the steady-state solution

(2.3)—(2.5} of the model against infinitesimal perturba-

tions. To do this, it is convenient first to change to di-

mensionless variables, scaling all lengths and times by the
diffusion length 2D/V and diffusion time 2D/V, and

temperature by L /c. We then write the infinitesimal per-
turbation of the steady state in the form

x (y, t)=@exp(iky+tut),

T(x,y, t) = Tss(x)+ T(x)x
(3.1)

insert this into the diffusion equation (2.1), and linearize

in the amplitude e of the perturbation. Three dimension-

less parameters arise naturally in this calculation. One is
the parameter P defined in Eq. (2.4) above. A second,

is generally increasing —typically an Arrhenius func-
tion —for crystallization from the amorphous phase.
These two equations, together with the boundary condi-
tion T =T far from the boundary, complete the specifi-
cation of the moving boundary problem.

A steady-state solution of these equations represents an

amorphous-crystalline boundary which maintains its

shape while advancing in the x direction at a speed V. To
find a simple steady state, we assume that the boundary is

a straight line, which by definition is the y axis. The nor-

mal velocity of the boundary is then identically equal to
V. The diffusion equation reduces to a one-dimensional

problem; its solution is

T(x,y, t) =Tss(x)
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ri=d»[uf(u))/d lnu
~ „ (3.3)

The basic equation which reveals the stability or instabili-
ty « the steady state arises when we calculate the correc-
tion T(0)x to the boundary temperature and relate it via
the growth-rate curve to the shift aux in the boundary
velocity. After a certain amount of algebra (similar to
that presented in Ref. 8), we obtain the equation

(co+a)(1+Pk ~+2Pco)'~ =a(rial+ 1), (3.4)

where we must choose the branch of the square root
which has a positive real part. This equation is very simi-
lar to the stability equation derived by Kurtze, van Saar-
loos, and Weeks for the case of complete crystallization,
for which we would have ri=l. In fact, if we rescale
space and time by setting

(3.5)

and defin the new parameters

(3.6)

ct=[(l./c)P'~'f(P/Q(d& /d'1 )
~ ss,

measures the sensitivity of the growth rate to the local
boundary temperature; for f= 1 it is the same as the pa-
rameter a introduced by van Saarloos and %eeks. The
new parameter which appears measures the sensitivity of
the crystallized fraction to the boundary temperature or
velocity:

the growth rate tu of the instability; at the threshold this is

given by

a)'=ia'[(a' 3)/(a'+1)]'

ol

co =i a[(ai1 3)—/(art+ 1)]'

(3) For a multidimensional system, morphological in-

stabilities, for which the wave number of the marginally
unstable mode is nonzero, occur for P' ~ a'/4 or
P~nri /4 W.hen this occurs, the boundary will not
remain straight, but will acquire a wavy shape which it-
self oscillates as it advances across the sample. At the on-
set of this instability, the wave number of the unstable
perturbation is given by ( k') = (2P' —1)/P' or
k =(2P—ri)/Pri, and its growth rate by

(1m'') =8P'(2P' —1)

or

(1m') =8P(2P —g)/q

The results of the linear stability analysis are radically
different if rt is zero or negative. To see this we first note
that the onset of all instabilities in the a-P plane scale in
the a direction as negative powers of ri. Thus as ri goes to
zero, no instabilities occur for finite a. In fact, this per-
sists for negative ri (provided a is positive), as we will now
show. First, we write the square root in the original sta-
bility equation (3.4) in terms of its real and imaginary
parts,

then the stability equation (3.4) becomes (1+Pk +2Pto)'~ =Q+iR, (3.8)

(cu'+a')[1+P'(k') +2P'ai']'~'=a'(co'+ 1), (3.7)

which is exactly the stability equation in Ref. 8 with a, P,
ai, and k replaced by the rescaled parameters a', P', to',
and k' (and the capillary parameter do and the laser pa-
rameter R set equal to zero). Thus we may carry over to
the present problem the following conclusions reached by
Kurtze, van Saarloos, and Weeks for complete one- or
two-dimensional self-sustained explosive crystallization:

(1) The steady state is linearly unstable with a real
growth rate to for a'~(1 —P') ' or a~(ri —P) '. As in
the case of complete crystallization this means that in or-
der for a steady state to be linearly stable, the slope
du/dT of the steady-state curve must be greater than that
of the intrinsic growth-rate curve at their intersection.
Thus in general if there are two solutions of Eq. (2.5) for
the allowed steady-state boundary velocities, the one hav-
ing the lower velocity will correspond to a steady state
which is linearly unstable.

(2) The steady states having a'&(1 —P') ' are not
necessarily linearly stable. For P' & [(a') —1]/4a' or
P & (a g —1)/4a, there is an oscillatory instability of the
steady state with wave vector k =0. Thus steady states in
this range of parameters will give way to oscillations in
which the boundary can remain a straight line, but its
velocity will vary periodically in time. The angular fre-
quency of this oscillation is given by the imaginary part of

where Q and R are real and Q must be nonnegative. We
are actually interested in locating solutions of (3.4) for
which to is purely imaginary (or zero); in these cases we
have

1+Pk =Q —R

pto=i QR,
(3.9)

and so the stability equation becomes the pair of real
equations

aQ —QR /P=u,

aR+Q R/P= —a
I
i)

I
QR/P .

(3.10)

Since a, P, and Q are all nonnegative (in fact Q must be
at least as large as 1), we see that the second equation in
(3.10) can only be satisfied for R =0. This then leads to
Q =1 from the first equation in (3.10), and k =0 and
co =0 from (3.9). Thus there can be no oscillatory instabil-
ity for nonpositive q. Furthermore, the solution we have
just found with ~=0 is a Goldstone mode, which reflects
the invariance of the physical situation with respect to
changes in the definition of x =0. In order to see whether
there is actually a mode of instability which has a&=0
with k =0, we square the stability equation (3.4) with
k =0 to obtain
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2Ptu +(4aP+1 —a ~i) ~

)cu +2a(aP+I+a ~rt )tu=O.

(3.11)

From this, we see that the Goldstone mode co=0 satisfies
the equation identically. A second solution with ~&0
could only occur if the coefficient of co were to vanish or
become negative, but this coefficient is at least as large as
2a. In general, if the coefficient of to becomes negative,
then there will also be solutions of (3.11) having positive
real part, but these are unimportant, since they lead to
solutions of (3.4) in which the square root has a negatiue
real part. Thus we see that if the rate of latent heat
release decreases with increasing boundary velocity or
temperature, then the instability of the steady state is
suppressed completely.

IV. DISCUSSION

From the calculations above, we see that the effect of
incompleteness of the transition on the stability of explo-
sive crystal growth is merely to rescale the theoretical pa-
rameters in the problem by a parameter rt, defined in (3.3),
whose deviation from unity measures the sensitivity of the
crystallized fraction to the temperature at which the tran-
sition takes place. Since the rate at which latent heat is
being released when the amorphous-crystalline boundary
is advancing at a speed u is (L /c)uf (u), negative rl means
that the amount of latent heat being releasei at the boun-
dary decreases with increasing boundary velocity, while
positive rl means that it increases. If rt is zero or negative,
we find that the steady state is always linearly stable. If rt
is positive, then the stability of the steady state can be ob-
tained from the results of Kurtze, van Saarloos, and
Weekss for complete explosive crystallization by replacing
the wave numbers and linear growth rates of all perturba-
tions by the rescaled values defined in Eq. (3.5) and the
parameters a and P by their rescaled versions given in
(3.6). The rescaling of a and P decreases the value of a
and increases that of P at the stability boundary as rt in-
creases. Thus if rt is increased, then some parameter
values which would correspond to stable steady states for
smaller q now yield unstable steady states. This can be
understood by noting that two effects control the instabili-
ty. First, if a fiuctuation increases the boundary velocity,
then the amount of latent heat being released changes, in-
creasing if rt is positive and decreasing if it is negative. In
the former case this tends to raise the boundary tempera-
ture and hence increase the velocity further. On the other
hand, if the boundary moves faster than it would in
steady state, then it "outruns" the heat that was released
at its previous positions, and so its temperature tends to
decrease, lowering the velocity. For negative q these two
effects cooperate and so stabilize the steady state, while
for positive i1 they compete and can lead to oscillations.
An increase in the fraction of crystallization with increas-
ing boundary velocity (which increases i)) then
strengthens the first, destabilizing effect, and so makes
previously stable steady states unstable. Finally, accord-
ing to (3.5) the oscillation frequencies and transverse wave
numbers of all perturbations decrease as g increases. This
then increases the spacing between undulations left on the

surface of the film when the transition has finished.
The parameter a'=ay admits a simple physical inter-

pretation: From the definitions (3.2) and (3.3) of a and g,
we see that a' is given by

a'=(P' '/V")d[(L/c)& f(& )]/1&
~ ss . (4.1)

Thus a' measures the sensitivity of the rate of latent heat
release to the temperature at the transition front, as rI
measures its sensitivity to the boundary velocity. The re-
sult that negative g stabilizes the steady state is valid only
when the boundary velocity is an increasing function of
temperature (a positive), so that both rt and a' are nega-
tive.

The stability calculation done by Kurtze, van Saarloos,
and Weeks for complete crystallization also allowed for
capillary effects on the interface kinetics and for an exter-
nal line source of heat to drive the boundary at a
prescribed speed. These effects can also be included in the
present calculation, with the same results: the new stabili-

ty equation is identical to the old with the replacements
(3.5) and (3.6). The additional parameters, do, which
measures the effect of the curvature of the boundary on
its velocity, and R, which measures the importance of the
laser, are unchanged [provided the factor L which appears
in the definition of R is replaced by Lf ( V), as it is in the
definition (3.2) of a]. Thus the results of the stability cal-
culation for laser-driven growth can be transcribed to the
more general case just as those for self-sustained growth
can.

Van Saarloos and %eeks analyzed a codimension-2 bi-
furcation of the steady state which occurs at the point
a =3, P= —, , obtaimng the nonlinear behavior of the inter-

face in the vicinity of this point. Kurtze" has also car-
ried out a nonlinear analysis of the one-dimensional oscil-
latory instability of laser-driven growth in a regime in
which self-sustained growth at the laser scan speed is al-
most energetically possible. Little modification is needed
in order to carry these calculations over to the present
problem: apart from the rescalings (3.5) and (3.6), the
coefficients of the nonlinear terms in the resulting equa-
tions are merely changed by terms involving the deriva-
tives off ( u).

There are a number of other possible physical systems
which could be modeled by a moving boundary problem
similar to that stated in Sec. II." For example, thermite
reactions, in which the reagents are initially in intimate
contact and only need an activation energy in order to
react, could be described by essentially the same equa-
tions. Note that in a three-dimensional problem, in which
we are interested in the stability of an advancing planar
boundary, we would set the heat-loss parameter I in the
diffusion equation (2.1) to zero (provided we can ignore
losses due to radiation). According to the definition (2.4),
this then makes the parameter P equal to l. In this case
the full range of behavior of the boundary is still avail-
able, the difference being that now the relevant theoretical
parameters are a' and 1/i) rather than a and P. We may
also generalize the interpretation of our model to cover
physical systems in which the relevant diffusion field is
not heat, but, say, the concentration of some chemical
species. An example of such a system would be the direc-
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tional solidification of certain binary mixtures, in which
the concentration of some impurity or chemical constitu-
ent of the solid may oscillate in a direction perpendicular
to the growth direction. ' "' In this case the loss parame-

ter r is indeed absent, and we must interpret LfV /c as
the rate at which this impurity is being rejected at the
transition front. These studies will be reported in a future
publication.
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