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Evidence of strong electron correlation effects on thermal expansion in transition metals
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The electronic contribution a, to the thermal-expansion coefficient of Fe and Ni is investigated on
the basis of a variational theory. This goes beyond the static approximation to the functional in-
tegral method by including electron correlations. The correlations greatly reduce the spontaneous
volume magnetostriction in Fe and change the sign of the discontinuity of a, at T¢ in Ni: the re-
sults differ qualitatively from those of the static approximation.

There has been considerable progress!~’ in the theory
of magnetovolume effects in transition metals since Janak
and Williams® demonstrated the failure of the Stoner
model for the magnetovolume effect in a-Fe on the basis
of first-principles local spin-density functional theory.
Nevertheless, difficulties remain in explaining the small
magnitude of the spontaneous volume magnetostriction
(ws) in Fe and Ni (i.e., the volume expansion of the fer-
romagnetic state relative to the paramagnetic state).”1°

The essence of recent theories is the inclusion of
thermal spin fluctuations or the persistence of local mo-
ments (LM) above T. A phenomenological theory of the
magnetvolume effect in weak-ferromagnets has been
developed by Moriya and Usami.! They derived a volume
change proportional to the square of the amplitude of LM
({m?)), assuming a small amplitude of spin fluctuations
and a g-independent magnetovolume coupling constant.
Their result is also known as the Shiga-Schlosser expres-
sion.'"!? They estimated w,; to be 0.004 for Fe from
their expression and the experimental forced-volume-
magnetostriction data. The application of the Shiga-
Schlosser expression to Fe and Ni, however, lacks theoret-
ical ??Sis because they are obviously not weak ferromag-
nets.

A microscopic theory was developed first by
Kakehashi.>* He derived general expressions for the elec-
tronic contribution to the thermal-expansion coefficient
(a.) and the forced volume magnetostriction. He adopted
the single-site approximation (SSA) and static approxima-
tion (SA) to the functional integral method in the actual
evaluation of the thermal average in a, and obtained
©;=0.007—0.02 in Fe, depending on s-d charge transfer.
Hasegawa® has developed a single-site theory of the mag-
netovolume effect and obtained w;=0.04 for Fe, which
was considered to be more than 10 times the experimental
value.”!* The overestimation of w, in the SSA was inter-
preted as evidence of large magnetic short-range order in
the paramagnetic state.” The thermal-expansion coeffi-
cient of Ni poses another problem: the SSA and SA to-
gether always give the wrong sign for the jump in the
thermal-expansion coefficient of Ni at T¢.>~*¢ There-
fore, they do not explain the change of sign in Fe-Ni al-
loys with increasing Fe concentration.’

On the other hand, Korenman and Wyman’ have
developed a local-band theory. Starting from the free en-
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ergy in the long-wavelength limit, they claim to find the
right sign for e, in both Fe and Nj, i.e., w; > 0 for Fe and
g <0 for Ni. Their theory, however, neglects the tem-
perature dependence of the amplitude of LM. This as-
sumption should always lead to negative w,, as can be
seen from the general expression for @, *. We have there-
fore checked their parameters and found that w; for Fe
changes sign if we use a more accurate volume
dependence for the d-band width (W), ie, ¥
=—0lnW/dIn¥)=3.8/3 instead of Heine’s law
(y=5/3).1% Thus their theory has to be reconsidered.

In the present work we demonstrate that the inclusion
of local electron correlations removes the main difficulties
encountered in previous calculations’~%® and therefore
show that electron correlation is decisively important in
the present problem.

So far the effect of local electron correlation on the
thermal expansion has not been investigated. The SA
reduces to the Hartree-Fock approximation at T =0.
Therefore, the magnetic energy and the magnetization are
overestimated. To avoid this, one uses an effective
Coulomb interaction U ( < U).!~7 The reduction of U,
however, leads to incorrect results for the correlation
corrections to other physical quantities. The charge fluc-
tuations [((8n)?)] and the bonding energy (—E,) are
overestimated while the amplitude of LM ({m?)!/?) is
underestimated. The local correlation effects mentioned
above persist above T because the resulting energy gain
is much larger than T¢. Therefore, the SA with Uy un-
derestimates the atomic character of d electrons in those
quantities, even if it correctly reproduces the magnetiza-
tion, the Curie temperature, and the susceptibility. In
particular, the electronic contribution to the thermal-
expansion coefficient is proportional to the temperature
derivative of the bonding energy [see Eq. (5)]. Therefore,
the thermal expansion should be treated in a theory which
takes account of electron correlations at finite tempera-
tures. Such a theory has been developed by Kakehashi
and Fulde on the basis of a variational principle.!” We
adopt this theory for the present problem of thermal ex-
pansion.

In variational approach (VA) the free energy Fg
reduces to a Gutzwiller-type ground-state energy at
T=0,""1 instead of the Hartree-Fock energy, and agrees
with that of the SA in the high-temperature limit:'’
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Here we have used the single-band Hubbard model (or,
more precisely, five-fold degenerate unhybridized bands
with no interaction between them) and the SSA.
E(§,5(8)) is the single-site energy functional, in the SA,
of a scalar potential £ and charge potential £(£) in an ef-
fective medium, and H=H — (H )¢. The average { ~ )
is taken with respect to the one-electron state with ex-
change field £ and charge potential £(£). The second term
on the right-hand side of Eq. (2) describes the local elec-
tron correlations adiabatically. The projection operator Q
partially suppresses states with double occupancy on a site
and is of the Gutzwiller form:'%1°

2=([1—n(&0P)~"[1—-n&)0],
where
0=(flr-—<n1 )05)(n1—(n,)o§) .

n, is the electron number operator for spin o on a site.
The best charge potential £(£) and best correlation param-
eter n(£) are determined variationally:
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In the previous calculation,'” Eg in Eq. (3) is replaced by
E,,. However, in the present calculation we solve Eq. (3)
numerically. Other procedures are as before.!” We use
the following parameters: n=7.2/5, W=0.45 Ry, and
U=0.475 for Fe; n=9.0/5, W=0.35 Ry, and U=0.717
Ry for Ni. Here n is the d-electron number, U is the
intra-atomic Coulomb repulsion, and W is the d-band
width as defined in Figs. 1 and 2. This fuller treatment of
the charge potential further reduces the charge fluctua-
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FIG. 1. Magnetization (m ), amplitude of local moment

{m?*)'7?, and charge fluctuation {(8n)?)'/? for Fe as a function
of temperature. Solid line represents the variational approach.
Dotted line represents (m) in the static approximation.
Dashed-dotted lines represent the results in the static approxi-
mation but with Us=0.753U. The inset shows the density of
states.
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FIG. 2. Magnetization, amplitude of local moment, and
charge fluctuation for Ni as a function of temperature. Nota-
tion as in Fig. 1. U, ;=0.685U is used.

tions and further modifies 7. Figures 1 and 2 show the
results for Fe and Ni, respectively.

The electronic contribution to the thermal-expansion
coefficient (V~!13V/dT) is calculated from the expres-
34
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Here we have neglected s-d charge transfer since we are
interested in the d-electron correlation effects. D is the
electron Griineisen parameter, which is derived from the
one-electron d-radial wave function at the Wigner-Seitz
sphere.?’ It is 3.5 for Fe and 4.0 for Ni at the equilibrium
lattice parameter.’! B and V are the bulk modulus and
the volume per atom respectively. We use the experimen-
tal room-temperature values, 3BV=2.79 Ry for Fe and
3BV=2.92 Ry for Ni.2? In Eq. (5), E, is the bonding en-
ergy. For the single-band Hubbard model it is

1Ey=3 ty(aja;,) (6)
L]0
where ¢;; is the transfer integral between sites / and j, and
a;, (a;,) is the electron creation (annihilation) operator for
spin o on site i. The thermal average is expressed by ( ).
The bonding energy E, in Eq. (6) is obtained by parame-
ter differentiation of the free energy (1) (Ref. 3).

It is worth pointing out that, because of its generality,
Eq. (5) includes well-known results as limiting cases. In
the weak and classical limits Eq. (5) reduces to the Shiga-
Schlosser expression if the Fermi-distribution function is
replaced by a step function. [See Eq. (3.10) in Ref. 4.]
Thus,

D _3(sH
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where U is the intra-atomic exchange interaction and S is
the spin-density operator on a site. In the insulator limit
our (5) agrees with a formula for the localized model,?*
d1InJj;
~ 3V
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Here J;; is Anderson’s superexchange integral between
sites i and j.2* We have used the results that D=5 and
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FIG. 3. Temperature variation of the bonding energy

E,(T)—E,(0) for Fe in the variational approach (solid curve)

and in the static approximation with U.;=0.753U (dashed

curve).

Jij & | tij | > V=193 in the insulator limit.?’

Figure 3 shows the temperature dependence of the
bonding energy in Fe. The local electron correlations
strongly reduce the temperature dependence of the bond-
ing energy, and therefore the thermal expansion. This can
be understood from the following argument.

Let us consider ferromagnetic metals with nearly-half-
filled bands and assume that the exchange splittings are
the same on average in the SA with U and in the VA.
The above assumptions are not in fact necessary, but help
to clarify the essential mechanism. The volume contrac-
tion is proportional to the electron-hopping rate a,«t,ajo)
according to Egs. (5) and (6). Even in the SA the hopping
rate for spinup is suppressed because most of the sur-
rounding sites are occupied by spin-up electrons due to
the ferromagnetic exchange field. This effect is, however,
weakened by spin disalignment with increasing tempera-
ture, because the number of empty levels with spinup at
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FIG. 4. Temperature dependence of the electronic contribu-
tion to the thermal-expansion coefficient for Ni and Fe. The
solid (dashed) curves are the results in the variational approach
(the static approximation with U.gy).

TABLE 1. Electronic contribution to the volume change
[V(Tc)—V1(0)]/V(0) for Fe and Ni in various approximations.
The model densities of states in Figs. 1 and 2 are used, and oth-
er parameters are as given in the text. The experimental values
are of [V(T)—¥(0)]/V(0) with T >>T.

Stoner Static U VA Expt.
a-Fe —0.090 —0.035 —0.015 ~ —0.005*
(—0.072)® (—0.040)°
Ni —0.008 0.007 0.007 ~0.004¢
(—0.005)° (0.011)¢

2Ridley and Stuart, Ref. 9.

®Janak and Williams, Ref. 8.

‘Hasegawa, Ref. 6.

dEvaluated by the present authors from Fig. 4 in Ref. 7.

surrounding sites increases. Therefore, we obtain ws >0
in the SA. The small magnitude of the expansion above
Tc in Fig. 3 is due to the suppression of hopping by
temperature-induced local-exchange splittings. Correla-
tions suppress electron hopping since hopping creates
double occupancy on a site. This is suppressed by the
large U. This effect is larger in the paramagnetic state
than in the ferromagnetic state, since in the former more
neighboring sites are occupied by opposite-spin electrons,
so that electron hopping creates more double occupancy.
Therefore, electron correlation effects tend to decrease w;.

Figure 4 shows the temperature dependence of the elec-
tronic contribution to the thermal-expansion coefficient in
Ni and Fe. The electron correlations change the sign of
the jump of a, at T¢ in Ni, and therefore explain the ob-
served behavior of the A type.! The SA with reduced U
overestimates delocalized character. Then the exchange
splitting rises to rapidly with increasing temperature in
the paramagnetic state, which leads to too large an «,
above T in Ni as seen in the figure. In Fe the electron
correlations enhance the dip of a, near T¢ which is also
consistent with experiment.” As seen in Egs. (7) and (8),
a,(T) is determined by the temperature derivative of the
amplitude of LM in weak magnets, which is negative
below T, and by the specific heat in strong magnet,
which is always positive. The behavior in transition met-
als is determined by the competition between the two ef-
fects. Fe is dominated by the former and Ni by the
latter.*

The spontaneous volume magnetostrictions w; in Fe
and Ni are tabulated in Table I. With the present densi-
ties of states (see Figs. 1 and 2) the Stoner model gives
©0;=9.0% in Fe. This value should be compared with
7.2% in a first-principles calculation.! The 20% overes-
timation by the former originates from the neglect of the
spin dependence and the self-consistent change of the ra-
dial wave function in the derivation of Eq. (5). Thermal
spin fluctuations within the static approximation reduce
w, by a factor of 3. The local electron correlations reduce
w; by a further factor of 2 and yield 1.5%. The latter
should be compared with the experimental value ~0.5%.°
Ridley and Stuart’ estimated w, in Fe to be 0.33% by in-
tegration of their magnetic contribution a,, up to 1058 K.
However, this is certainly an underestimate because they
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neglected the contribution between 1058 and 1700 K,
above which the magnetic contribution to the specific heat
vanishes.2® Thus we took, as a better value, the mean of
0.33% and their upper estimate 0.75%. In the case of Ni
the Stoner model gives the wrong sign for w;. The static
approximation gives the right sign for w,, but the wrong
sign for the jump of a, at T (see Fig. 4). The local elec-
tron correlations hardly change w,, but change the sign of
the discontinuity in a,.

The experimental value of w,; in Ni is regarded as
—0.0003 (Ref. 10). This is obtained by the integration of
the magnetic contribution to a, over a small temperature
range of 200 K around T.. However, some short-range
magnetic order persists to 1200 K, or nearly 2T, accord-
ing to a specific-heat analysis.’” Thus the above-
mentioned value underestimates the magnitude of w;. We
estimated w; by smoothly interpolating the paramagnetic
contribution a,(T) to the thermal-expansion coefficient
from 1200 K in Kollie’s data,’® and obtained —0.4%.
This should be compared with the theoretical result
—0.7%. Although our interpolation for a,(T) can cause
an error of £0.002 in w, in Ni, the magnetic contribution
am(T)=a(T)—a,(T) which we estimated frqm Kollie’s
data satisfies the theoretical relation a,, =(D/3BV)C,,
for Ni, valid in the case of temperature-independent LM.*

Here C,, is the magnetic contribution to the specific
heat.”’

In conclusion, we have shown that inclusion of local
electron correlations resolves the main problems encoun-
tered in treatments of the magnetovolume effect by the
SA: too large a spontaneous volume magnetostriction in
Fe and the wrong sign of the jump in the thermal-
expansion coefficient at T in Ni. This means that the
giant magnetic short-range order above T advocated by
Korenman et al.” is not needed to explain the thermal-
expansion data in Fe and Ni.

Our conclusions do not depend sensitively on the densi-
ty of states or other input parameters. For a quantitative
comparison with the data we need to resolve the ambigui-
ty (factor of 2 or 3) in the experimental values of w; due
to uncertainty in the background phonon contribution. In
the theory the effect of s-d charge transfer and five-fold
degeneracy have to be taken into account. In the former,
an s-d charge transfer 6n;=0.01 causes a volume change
8V /V=0.005 in Fe.>* The latter effect involves Hund’s
rule coupling. These effects should be included in future
quantitative work.

The authors would like to thank Professor P. Fulde for
a critical reading of the manuscript.
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