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Correlation functions of the antiferromagnetic Heisenberg model
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Using a modified Lanczos algorithm, we study the correlation functions in the ground state of the
one-dimensional antiferromagnetic Heisenberg model. %'e obtain numerical results for rings up to
24 sites. There are no indications of the anomalous behavior of these correlation functions recently
observed in chains with 16 sites. %'e also present a pedagogical description of the hashing technique
which is an efficient algorithm for searching and storage purposes.

I. INTRODUCTION

Finite-size scaling techniques have been applied to the
study of phase diagrams in statistical mechanics' and
quantum-field theory on a lattice. In these methods it is
necessary to diagonalize the Hamiltonian (H) for finite
lattices of increasing size. An efficient technique for the
diagonalization of large matrices is the Lanczos
method' i in which a tridiagonal representation of H is
constructed. The bulk limit results are estimated by
means of extrapolation algorithms.

The purpose of this paper is twofold. On the one hand,
we apply a new modified Lanczos method to the analysis
of a one-dimensional interacting spinless fermion model
whose dynamics is described by the following Hamiltoni-
an:

H= tg(C C )+C' —iC)

H(p)= —2t $ (S;"S+i+SfSr~, —pS'S +i), (2)

where p=G/2t and S are spin —,
'

operators. The proper-
ties of this Hamiltonian can be deduced from the antifer-
romagnetic model studied in Refs. 10 and 11 using the re-
lation

expectation values). At G/2t= 1 the model presents an
essential singularity. If G/2t &1 there is long-range or-
der, the mass gap is different from zero and (n; ) =0 for
even sites while (n; ) =1 for odd sites (or vice versa).
When the number of sites is finite there is no phase transi-
tion (for example the mass gap is always nonzero) but we
can obtain information about the bulk critical behavior
from the analysis of systems of increasing size.

Using the Jordan-Wigner transformation the model Eq.
(1) can be transformed into the anisotropic Heisenberg
model, up to boundary terms,

N

+ G $ (n; ——,
'

)(n;+ i
——,),

UH(p) U '= H( —p), —

where

(3a)

where C; and C; are the creation and annihilation opera-
tors for a fermion on the ith lattice site. They satisfy the
usual anticommutation relations. n; is the number opera-
tor. This model is a lattice version of the massless Thir-
ring model. We work on a lattice with N (even) sites and
N/2 fermions (half-filled band). We consider periodic
(antiperiodic) boundary conditions for an odd (even) num-
ber of fermions. This model has been previously analyzed
by Monte Carlo ' and real-space renormalization-group
methods. %e compare our results with them.

The Hamiltoman Eq. (1) has a nontrivial phase struc-
ture in the thermodynamic limit. When 0&G/2t&1
there is no long-range order, the mass gap is zero and
(n; ) =—,

'
(where the angular brackets denote ground-state

U=exp iver g jSJ' (3b)

m2
rn (p) -exp

2&2(p —1)
(4)

In this paper we study the behavior of the correlation
function in the isotropic case ( G/2t =1) defined as

cot(X) =—g (S S +t ), (5)
i=i

where we use the relation S =n; ——,'. From Ref. 12 we

Finally we also know" that the mass gap of our model
vanishes at p= 1 like
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expect the behavior

( —1)'
11111 N i (N ) =Cgi ( oo ) =A

I

when 1~~1 (A is an unknown constant). So 1 ~coi(oo)
~

should be a constant for large enough values of 1. Howev-
er it has been recently remarked' as an unexpected
feature that 1 ~oui(ao)

~
goes through a maximum at

1=4—8. These results have been obtained using chains
(open ends) with N &16. The correlation functions for
rings (periodic boundary conditions) do not show this
behavior but the authors of Ref. 13 argued that their rings
were small and N-22 —24 are needed. Using our method
we obtain the results for these values of N.

Another unexpected result presented in Ref. 13 corre-
sponds to the behavior of the structure factor

Hfo —(H )go

((H') —(H)')' ' ' (9)

s) ——(H)+ba,
while the improved wave function Po is

(10a)

f& has norm one and it is orthogonal to go. In Eq. (9) we
use the notation (H") =(Po

~

H"
~
Po). In the standard

Lanczos approach it is necessary to construct another
state orthogonal to Po and g, and so on, in such a way
that the matrix H is tridiagonal. The method presented
here has the following modification: in the basis go, f& we
have a (2X2) representation of H which is easily diago-
nalized. Its lowest eigenvalue (ei) and the corresponding
eigenvector (po) are better approximations to Eo and 4Q
than (H) and fo

The improved energy is

S~(k)=—g e'"'((n, n, +i) —(n, )(n, +, ))X)
at k =m.. From Eq. (6) we expect it to diverge as

where

Po+a4i
(1+ 2)l/2

(10b)

SN(ir)= —lnN as N~ao
2

(8)

II. THE METHOD

In this section we describe our modified Lanczos algo-
rithm. Although this method has been previously
analyzed by two of the authors in Ref. 16 in the context
of lattice gauge theories, we believe that it is worthwhile
to present it here for readers mainly interested in statisti-
cal mechanics problems.

As in the standard Lanczos method, the technique that
we propose requires the selection of an initial trial vector
fo (normalized to one). If 1(Q has a nonzero projection
over the true ground state 4o of the Hamiltonian
(H@o——EQC o), the method gives a good approximation to
the ground-state properties of H. Otherwise it will con-
verge to an excited state.

Applying H over go, we define a state i'& as follows:

for a periodic ring. However, a slight deviation from Eq.
(8) was found' suggesting that finite-size corrections may
affect the divergence of S~(m).

We obtain col(N) and Sz(k) for N & 24 using the modi-
fied Lanczos algorithm. Our results do not support the
speculations of Ref. 13. For 1-4—8 we observe a mono-
tonic increase of 1

~
coi( oo)

~

while Sz(n. ) follows Eq. (8)
very closely.

The other purpose of this article is the description of
the "hashing" technique'" which seems to be an appropri-
ate method for the numerical implementation of the
Lanczos approach (in standard or modified versions). Re-
cently the hashing technique was successfully applied to
the analysis of the Ashkin-Teller model and to the
Blume-Emery-Griffiths model. '

The organization of the paper is as follows. In Sec. II
we describe the modified Lanczos algorithm. In Sec. III
we present the results. Final comments are included in
Sec. IV. The appendix is devoted to a detailed description
of the hashing technique.

and

b =((H') —(H)')' ',
(H') —3(H ) (H') +2(H )'

2((H') —(H )')'"

a=f (f'+1)' '—.

(10c)

(10d)

(10e)

The method can be iterated by considering go as a new in-
itial trial vector and repeating the steps Eqs. (9) and (10).
In each iteration we obtain an improved estimation of the
wave function and the energy of the ground state of H.

We want to stress that although usually the initial state
go is selected as the ground state of an unperturbed Ham-
iltonian Ho (where H =Ho+ V), any other starting vector
is acceptable in principle. The choice of the starting vec-
tor will only affect the convergence rate. For example it
has been shown in Ref. 16 (and also in the model analyzed
below) that sometimes it is useful to begin the calculation
with a variational trial function whose free parameters are
selected such that the variational energy is minimized.

An advantage of the modified Lanczos method is that
we may obtain a good approximation to 4O without much
effort. In each iteration we only need to store three vec-
tors (say Qo H1//Q and H po) expanded in the basis of
eigenstates of Ho. If the size of the Hilbert subspace
where we work is M, we must store 3M coefficients. In
the usual Lanczos approach it is also possible to calculate
eigenvectors: first evaluate the eigenvector in the tridiag-
onal basis and then repeat the tridiagonalization technique
accumulating the basis vectors with their corresponding
weights. In our approach, the eigenvectors are calculated
without repeating the process.

Once we have obtained a good approximation to 4O
then it is possible to evaluate the ground-state expectation
value of any operator. For example we show below that
we can calculate correlation functions with high accuracy.
We test the method in the quantum one-dimensional
model described in the Introduction. Working with lat-
tices up to N =24 we obtain the wave functions and the



energy of the ground and first excited states as well as the
correlation functions with great accuracy. Previous re-
sults presented in the literature for the correlation func-
tions of the Heisenberg model in the isotropic case have
been obtained with X =16 as maximum. ' ' This fact il-
lustrates the power of the modified Lanczos approach
(supplemented by the hashing technique described in the
Appendix).

TABLE II. The correlation functions col(X) [Eq. (5)] and the
structure factor Sz(k} [Eq. (7)j at k =n ( 6/Zt = I).
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III. RESULTS

In Table I we show the results for the ground-state en-
ergy per unit site (ejv) obtained with the modified Lanc-
zos approach at G/2t =1 [where the Hamiltonian Eq. (1)
can be transformed into the isotropic Heisenberg model).
Fitting these results with a polynomial e~ ——e„+a/N
we obtained e„=—0.8862+0.0001. Note the good agree-
ment with the exact value in the thermodynamic limit"
e= —0.886294. The ground-state eigenvector and eigen-
value at X = 18 (20, 22, and 24) have been obtained using
20 min, (95 min, 7 h, and 30 h) of CPU (central process-
ing unit) time in a Vaxl 1/780 computer with an accuracy
of 10 . The results for N &16 have been evaluated in
only a few minutes of CPU time. As an initial trial func-
tion we choose the alternate state

~

1010 10), i.e., the
ground state of the interaction term. In this calculation
we have also exploited the spin inversion symmetry (in the
Heisenberg model language) which reduces the number of
representatives (r) by a factor of about 2. r is approxi-
mately given by the number of states in the half-filled
band subspace divided by the number of terms of each
representative, i.e.,

S(m ) 1.110709 1.147 123 I.178 659 1.209 431

We have also evaluated the mass gap defined as the
difference between the ground-state energy in the sub-
space with (X/2)+ I fermions and the lowest energy in
the half-filled band sector. Our results are consistent with
Eq. (4).

In Table II, we give the results obtained with our
method (G/Zt =1; N =18—24) for the correlation func-
tions Eq. (5). Table II can be easily evaluated once we get
an accurate approximation to the ground-state wave func-
tion of 0, i.e., in a single run of our programs we ob-
tained ez (Table I) and rot (N). We have also evaluated the
correlation functions for %&16. They are coincident
with the values given in Refs. 13 and 17. cot(N) for
X =18—24 have not appeared previously in the literature
on the Heisenberg model. In Table II we also show the
structure factor S~(k) at k =m.

In Fig. 1 we show our results for S(k) (G/2t =1,
N =20) compared with the Monte Carlo results of Ref. 7
for a 40-site lattice. Both methods give results in close

%e remark that the numbers presented in Table II are
coincident with the results of Ref. 17 (where the Bethe an-
satz was used with %&16), Ref. 18 (where a method
similar in spirit to our technique was employed), and Ref.
19 (where the standard Lanczos scheme was used for
%&18). We prove that the approach of Ref. 18 con-
verges slower than our method.

—=IG

2t
l.2—

TABLE I. Ground-state energy per unit site c~ obtained with
the modified Lanczos approach at G/2t =1. E is the number
of sites. %e work in the half-filled-band case.
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0.889 167

0.4—
O

0
0

00
0

~ 4

0 0.8
I

l.6 2.4 3.2

FIG. 1. The structure factor S(k) ( G f2t = 1}. The solid cir-
cles {0)denote Monte Carlo results from Ref. 7 using 40 sites
while open circles (0) are results from our modified Lanczos
technique with X =20.
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agreement showing that a good estimation of S(k) can be
obtained from the modified Lanczos method.

Now we analyze the behavior of cot(N) in the limit
N mao—to test the hypothesis of Ref. 13. For 1 fixed we
assume

I
nit(N)

I
=

I
~I( ~ )

I +rxi/N, (12)

and using our numerical results for N =22 and 24 we ob-
tain the results shown in Fig. 2. Note the different
behavior for I even and odd (this detail was remarked pre-
viously in many papers' ). Between 1 =4 and 8 we do not
observe a maximum for 1

~
rot(oo)

~

. Our results suggest
that the relation Eq. (6) is valid with A around 0.6 and
0.7. Note that the results for 1=9,10 would suggest the
existence of a broad maximum for 1=8. We prefer to at-
tribute this behavior to the uncertainty in the extrapola-
tion N~ ac. In fact, it is clear that for 1 around N/2 the
errors in this extrapolation are appreciable.

Another evidence supporting our conclusions can be ob-
tained from 1 ~rot(N)

~
for N fixed, say N =24. There are

no indications of a maximum. We also remark that a ftt
of our data using a polynomial with a term Pt/N also
agrees with our conclusions. Summarizing, we obtain no
evidence for the existence of a maximum in 1

~
rot(ao) ~.

Of course it may be possible that due to errors in our ex-
trapolations we are not able to observe a broad maximum
around 1 =8. Numerical results for N =26—30 are need-
ed to check without ambiguities whether there is a strange
behavior of 1

~
cot( ao )

~

or not.
Finally we study SN(rr) as a function of InN (see Fig.

3). The results for N-18—24 suggest a straight line
behavior with slope around 0.33—0.35. This is consistent
with Eq. (8) using our estimation for A quoted above, i.e.,

S~(n')-(0. 3—0.35)lnN .

So if finite-size corrections affect the logarithmic diver-
gence of Sz(n ), they are very small.

07—

0.8—

0.6
I

FIG. 3. The structure factor S&(m) as a function of in%.

IV. CONCLUSIONS

In this paper we have analyzed the Heisenberg model
using a modified Lanczos method (supplemented by the
hashing technique). We obtain accurate results for rings
with N &24 using a VAX11/780 computer. As far as we
know there are only two previous papers ' ' where
N =20 was studied for this model.

Regarding the specific physical problem that we
analyze in this paper, i.e., the behavior of 1

~
col( oo ) ~, we

conclude that there is no evidence of an anomalous
behavior of this magnitude for rings with N & 24.

In Fig. 1 we show that the modified Lanczos technique
can be used for the analysis of the structure factor giving
results as accurate as those provided by the Monte Carlo
method of Ref. 7. Since this tie:hnique has been recently
criticized' ' it is worthwhile to develop alternative
methods.

The approach analyzed in this paper can be further im-

proved as follows.
(i) To speed up the programs we may write the hashing

subroutine in assembly language. This would reduce the
computing time by a factor of about 2 (see Ref. 2).

(ii) The number of states may be reduced by using
valence-bond diagrams. '

(iii) If enough storage facilities are available it may be
possible to diagonalize matrices 3X3 or 4&(4 in each
iteration instead of 2X2 steps described here. This modi-
fication would speed up the convergence of the method.

Finally we remark that we may improve our numerical
method using initial variational trial functions [l1o in Eq.
(9)] with free parameters chosen such that the energy is a
minimum. We test this idea using functions recently pro-
posed in lattice gauge theories. %'e observe that the use
of this modification is worthwhile only when a few itera-
tions can be performed or when great accuracy is unneces-
sary. In general, selecting go as the ground state of an un-
perturbed Hamiltonian Ho is a good starting point. Simi-
lar conclusions have been obtained in Ref. 25.

FIG. 2. Extrapolated correlation function /
~

cog(ao )
~

as a
function of l. To guide the eye we connect the even-/ points us-
ing a continuous line (the same for odd l).
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APPENDIX: HASHING TECHNIQUE

In this appendix we describe some programming tech-
niques which we believe are useful in practice when the
standard or modified Lanczos approach is used. Some
methods are well known but we also describe them here
for completeness.

Due to the boundary conditions used in our Hamiltoni-
an Eq. (1), we may work with translationally invariant
states. For example in N =4 one of these states is

(~ 1100&+ I
o11o&+ I

0011&+
~

I(MI&),
4

but has not been widely used in the context of finite-size
scaling calculations, appears.

The main idea of the hashing technique is that we may
construct a function i =h(k) ("hash function") which
gives a correspondence between the representatives [K}
and a position i in the vectors I and C. If the correspon-
dence is one-to-one the problem of searching is solved be-
cause when a state is generated we only need to evaluate
h (k) in order to know where it has been stored. However
it is almost impossible to construct such a one-to-one
function (furthermore the integers [K} are unknown
a priori). In general it may occur that different states
Ki,Kz, . . . , have the same index, i.e., h (Ki )
= h (Kz) . In this case we say that there will be "col-
lisions" and we need an algorithm to deal with this prob-
lem. A good hash function minimizes the number of col-
lisions.

It has been shown' in many examples that the function

(Al) h (K)= [K (modM)]+ 1 (A3)

where ~1100& means CiCz ~0& (if we order the sites
from left to right) and

~
0& is the state of zero fermions.

~
P& is stored as follows. We select one of the terms of

~ P& as a "representative" following an arbitrary conven-
tion. Then we write it as an integer because the combina-
tion of ones and zeros which denote a state can be thought
of as a binary number. The advantage of this method is
that we can store one state in a single word and the action
of the quantum operators on the states can be implement-
ed by logical functions.

Now we describe the hashing technique which is an ef-
ficient algorithm for searching and storage purposes.
Suppose that we want to apply the Hamiltonian H on the
state $0. The state is usually given as a linear combina-
tion of representatives (we denote them by [ ~

n & } ) which
are eigenstates of Ho

q, =pc„~n&.

When the potential term V acts on
~

n & many other
representatives are generated. Let us consider one of
them, say

~

rn &. It may have appeared previously so we
need to search for it in the storage place (described below)
and change its coefficient. If

~

rn & has not appeared be-
fore we must put it in an unoccupied place. These are the
basic operations which must be efficiently implemented.

A naive method to store the representatives is by using
two vectors of length M. In one of them, denoted by I(i )

(1&i &M), we put the integers [K} which indicate the
representatives. In the other vector, say C(i), we store the
corresponding coefficients. When a state is generated in
an iteration me have to search for it in the vector I(i}be-

ginning at i = 1. If the state is present we change its coef-
ficient. Otherwise we put it in the first empty place. Of
course this technique is not the most appropriate one
when M is a large number [e.g. , when N =20 in the Ham-
iltonian Eq. (1), M-5000], because in this process the
number of tested numbers grows linearly with M. It is
necessary to use a more elaborate method to deal with this
situation. Here, the hashing algorithm, which is a well-
known method for specialists in programming techniques

works very well in practice (in this case, in order to mini-
mize the collisions, it is convenient to choose I, a prime
number). We use this hash function in the treatment of
the Hamiltonian Eq. (1).

Now we describe the algorithm which deals with the
problem of collisions. We need a new vector L (i) of size
M. By convention if L(i)= —1 the position i is empty.
We also need an auxiliary variable R which is used to help
find empty places.

Suppose that a representative K has been generated and
we want to store it.

(a) First we evaluate the position index i corresponding
to the state K by means of the hash function Eq. (A3).

(b) If L (i)= —1 the position is empty and we can store
the state K here. We proceed as in step (f). Otherwise the
position is occupied and we must continue the algorithm.

(c) If I(i)=K, then in position i we have just stored the
integer K in a previous step. The algorithm finishes suc-
cessfully. If I (i)&K we continue the search.

(d) If L (i) ~ 0 set i =L (i) and go back to step (c) [i.e.,
we continue the search using the position indicated in
L (i)].

(e) If L (i) =0, the state K has not appeared previously.
We must store it in an empty place as follows: decrease R
by one unit. If L (R)= —1 then we store K here. Other-
wise decrease R another unit until an empty place is
found (of course if R becomes zero the table is full and we
must begin again by increasing the size M). Set L (i)=R
In such a may on the next occasion that E appears it will
be localized in steps (c) and (d). Then set i =R and go to
step (f).

(f) Change L (i)=0 and I(i)=K

In Table III we show a simple example of the hashing
technique where we consider X =6, M =5, and as initial
state the representative

~

101010&. Note that in order to
evaluate scalar products care should be takeo with the
possible degeneracy of the representatives. For example
the representatives

~

101010& and
~

110100& are
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TABLE III. An example of the hashing technique. In the vectors L, I, @nd C we store the initial

vector $0, while in I.',I', C' (L",I",C") the vector Hgo (H'llo) is stored. We consider G/2t = l.

QCl

0
—1

—1

0
42
0
0

0
0
0.2357
0
0

50
0

42
0

52

—0.7071
0

—0.7071
0

—0.7071

0
0
5

—1

0

50
56
42

52

4.2426
1.4142
3.5355
0
4.2426

(A4)

+1100»0&+1010011)+
~
101001) . (AS)

~

101010)=3
~

101010)+3
~

010101&,

1110100&= 1110100&+
I
o1 1010&+ 1001101&

The norm of state Eq. (A4) is 18 but the norm of state Eq.
(AS) is 6. This fact does not represent a problem because
the degeneracy of a given state is easily evaluated.

Finally we want to remark that in order to save com-
puter time it is convenient to apply first the unperturbed
Hamiltonian Ho and then the potential term V.
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