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Specific-heat spectroscopy of glycerol and propylene glycol near the glass transition
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%'e have measured the frequency-dependent specific heat of glycerol and propylene glycol near
the glass transition. The measurements, covering a frequency range of five decades, probe the linear

response of these supercooled liquids to small perturbations from equilibrium. The specific heat of
these two liquids contains a contribution which relaxes increasingly slowly as the temperature is

lowered. The relaxation time measured by specific-heat spectroscopy has the same temperature

dependence as that measured by other techniques. This suggests that a single mechanism is respon-
sible for all of the observed phenomena associated with the glass transition in these materials.

I. INTRODUCTION

When a liquid is supercooled sufficiently far below its
equilibrium freezing temperature without crystallizing, it
inevitably undergoes a glass transition into a state with
thermodynamic and elastic properties appropriate to a
solid. The most obvious thermodynamic signature of the
transition is the drop in the measured specific heat which
occurs over a narrow range of temperature. The transi-
tion also has a strong dynamical signature, as is seen in
measurements of viscosity, ultrasonics, or dielectric relax-
ation. These measurements show that the characteristic
relaxation times of the liquid increase rapidly as the glass
transition is approached from above. The thermodynamic
and dynamic signatures of the glass transition are closely
related: As the relaxation times of the liquid increase, one
must wait an ever longer time for any thermodynamic
quantity to attain its equilibrium value. (The word equili-
brium in this paper will refer to ergodicity in the liquid
region of phase space, excluding the stable crystalline
phase. ) If one cools a liquid without waiting sufficiently
long at each temperature for complete equilibration to
occur, then a measurement of a thermodynamic quantity
such as specific heat will not properly reflect the contribu-
tion of the unequilibrated degrees of freedom. One gen-
erally accepted view of the transition is that ".. . the ma-
jor phenomena observed. . . are no more than the conse-
quences of the system under observation falling out of
complete thermodynamic equilibrium at some point in the
experiment. "

The traditional measurements of the specific heat c~ in-
volve cooling or heating the sample at a constant rate.
The temperature T~ at which ez changes abruptly, signal-
ing the crossover from equilibrium to nonequilibrium
behavior (or vice versa), depends on the cooling or heating
rate of the experiment. When the system is cooled more
slowly, Tz is lower because the system has more time to
equilibrate at each temperature. One might ask if the
glass transition can be avoided altogether simply by cool-
ing the liquid slowly enough so that it always remains in
equilibrium. Kauzmann showed that most liquids cannot
be cooled indefinitely due to the following thermodynamic
argument. The specific heat of the supercooled liquid is

greater than that of the crystal. If this were to remain
true as the liquid is cooled, then its entropy would eventu-
ally become less than that of the crystalline phase. In all
known cases the glass transition intervenes, ez drops to a
value close to that of the crystal, and this entropy catas-
trophe is avoided. It is not at all clear why the existence
of a stable crystalline phase far away from the liquid in
phase space should have any influence on the dynamics of
the liquid phase. Nevertheless, the Kauzmann paradox
indicates that some sort of transition from liquid to glass
must occur in order to prevent the entropy from becoming
negative at T=O.

The problem with studying static thermodynamic quan-
tities such as c~ is that their significance changes at the
temperature Tz where the system falls out of equilibrium.
How does one interpret a quantity such as c& in a none-
quilibrium situation? Clearly, the dynamics of how one
performs the measurement enters into the measured value.
If we want to study well-defined, equilibriuin quantities in
the liquid state and still learn something about the glass
transition, then we must look explicitly at their dynamical
behavior. For example, Moynihan and coworkers have
measured the enthalpy response as a function of time to a
single temperature step. These measurements, however,
were not in the linear-response regime, so that nonlinear
and nonequilibrium behavior could get intertwined.

We have developed a new technique that allows us to
measure the frequency dependence of the specific heat in
the linear-response regime, over a wide range of frequen-
cy, on a system in thermal equilibrium. The first mea-
surements using this "specific-hest spectroscopy" were
made on glycerol near the glass transition. We em-
phasize that we are measuring the dynamics of the liquid,
not of the glass. One of the aims of this experiment is to
show that the thermodynamic, as well as the relaxationai,
properties of the glass transition are apparent in the
equilibrium liquid state. %'e would also like to test
whether the relaxation times probed by specific-heat spec-
troscopy are the same as those probed by other tech-
niques, such as dielectric spectroscopy or ultrasonics. Of
course, if we want to obtain thermodynamic information
then we must extrapolate our measurements to zero fre-
quency. Although one can never be sure that the results
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of such an extrapolation are accurate, we feel that it
makes more sense to extrapolate an equilibrium dynami-
cal quantity to zero frequency than it does to extrapolate a
series of nonequilibrium measurements to zero cooling
rate.

In this paper we give a thorough discussion of the ex-
perirnent and its interpretation, and we present measure-
ments on a second sample, propylene glycol„over a fre-
quency range of five decades, 0.035 Hz —3.5 kHz. The or-
ganization of the paper is as follows: Section II contains a
brief review of the concept of frequency-dependent specif-
ic heat c~(co) and its relation to linear response theory. In
Sec. III we describe the experimental technique that we
use to measure c~(co), and we derive the results concerning
thermal diffusion that are needed to analyze our data. In
Sec. IV we present the experimental data and discuss its
interpretation in relation to the glass transition. In Sec. V
we present data from a second experiment designed to test
whether the thermal conductivity of the sample is also
frequency dependent. In Sec. VI we present our con-
clusions.

0 fort(0,
Icp +(cpo c~„)[1—4(t)]ID—T for t &0 . (2)

Here, cz„ includes all the degrees of freedom that equili-
brate very quickly, and c&0 is the equilibrium specific
heat. In this notation the relaxation function 4(t) de-
scribes the time dependence only of the slow degrees of
freedom. It is norinalized so that 4(t=0)= 1 and
4(t~+ oo }=0. The quantity in curly brackets is some-
times called the time-dependent specific heat.

If the temperature is an arbitrary function of time, we
can determine q(t) by using Eq. (2) and the principle of
linear superposition. If T(t) always stays close to the

II. FREQUENCY-DEPENDENT SPECIFIC HEAT

While the specific heat c~ is traditionally thought of as
a static or equilibrium quantity, we can define a dynamic
susceptibility cz(co) in the same way that we do for other
linear susceptibilities such as the dielectric constant or the
compressibility. The specific heat of a system tells us
how much heat per unit volume the system will absorb
from its surroundings q if we change its temperature by a
small amount, b, T. If the system is kept at constant pres-
sure, then q is equal to the change in enthalpy per unit
volume, h,

q =h =c~ AT at constant pressure .

Equation (1) is an equilibrium thermodynamic expres-
sion and says nothing about how long it takes the system
to reach equilibrium after the temperature step. In this
section we will assume that the system in question has
negligible spatial extent so that we may ignore the time in-
volved in thermal diffusion, which will be treated in the
next section. In general, the heat absorbed by this system
will be a function of time after we change the tempera-
ture. This will be particularly apparent if the system con-
tains come degrees of freedom that relax slowly to equili-
brium. If we step the temperature at t= 0, we can write

same nominal value, then e&0 and cz„will be constants,
and 4(t) will have a fixed functional form. Then we ean

write

(3)

where T(t') is the derivative with respect to time of T(t')
As with any other linear susceptibility, the specific heat

can be measured in the frequency domain as weB as in the
time domain. If we integrate Eq. (3) by parts, and then
take its Fourier transform, we obtain

q (co)=cz(t0)T(to), (4)

cz = V/ktt T ( [h (t) h] ) at c—onstant pressure, (6)

where the angular brackets can be thought of either as an
ensemble average or as a time average, h is the average
value of h (t), and the factor of volume V reflects the fact
that squared fluctuations of an intensive variable are pro-
portional to the inverse of the size of the system. The
fiuctuation-dissipation theorem also tells us how to gen-
eralize this result to the dynamical susceptibility. The
theorem says that the dynamics which govern how a sys-
tem responds to an external perturbation are the same as
those which govern how spontaneous fluctuations decay.
The complete description of the time dependence, where
both slow and fast modes are explicitly included in 4(t),
1s

+(t)=([h(t) —h][h(0) —h])/([h(t) —h]') . (7)

where cz(to) is the frequency-dependent specific heat
given by

c~(a)) =c~„+(c~p cp„) — W t)e—'"'dt . (5)
0

The static specific heat is then c~(to=0) =c&0. We see im-
mediately that if the system has some slowly relaxing de-

grees of freedom, i.e., c~o —cz„&0, then cz(co) must be a
complex susceptibility. This simply reflects the fact that
the heat oscillations lag in phase behind the temperature
oscillations whenever the inverse of the measurement fre-
quency is comparable to the characteristic relaxation time
of the slow modes. The real and imaginary parts of
c~(co}, cz and c~", must obey the Kramers-Kronig rela-
tions, as a result of causality and linearity, which are ex-
plicit in Eqs. (2) and (3). Usually, one associates the
imaginary part of a linear susceptibility with the absorp-
tion of energy by the sample from the applied field, but
during a complete cycle of a frequency-domain specific-
heat experiment there is no net exchange of energy be-
tween the sample and the surrounding heat bath. Howev-
er, the entropy of the bath does change during a complete
cycle, by an amount proportional to c&'. The second law
of thermodynamics therefore ensures that cz' & 0.

We can relate c~(co) to an equilibrium time-dependent
correlation function in the usual way. The static specific
heat is related to the equilibrium fiuctuations of the entro-
py. If the pressure is kept constant, then these are propor-
tional to the fluctuations of the enthalpy. The relation-
ship is
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The correlation function is averaged over initial times.

This function has a piece which decays rapidly, and some-

tirnes a second piece which decays slowly. The
frequency-dependent specific heat is then

c~(co)=( V/kz T ) I ——([h(t) It—][A (0)—Ii])e'"'dt.

This follows from Eqs. (5)—(7), where we have set
c,„=a.

Two real physical systems have a frequency-dependent
(or, equivalently, a time-dependent} specific heat. At low
temperatures, the specific heat of glasses has a large com-
ponent due to tunneling levels, or two-level systems. If
the tunneling barrier is large, then the time it takes a tun-
neling system to equilibrate can be very long. The ex-
istence of a time-dependent specific heat in such systems
has been predicted ' and observed experimentally. "

The second case, the subje:t of this paper, is that of su-
percooled liquids near the glass transition. ' We will
show that the specific heat of a supercooled liquid can be
divided into two parts, one which equilibrates quickly,
and another which equilibrates more and more slowly as
the glass transition is approached.

III. EXPERIMENT

heat flux sinusoidal in time, and which is immersed in a
bath of the liquid sample to be studied. If the heater has
a simple geometry, such as a plane or a wire, then the

temperature oscillations at the heater itself will be simply
related to the thermal properties of the surrounding
liquid. We exploit this geometry by using the same metal
resistor element as both a heater and as a thermometer.
With this technique there is no need to make an extremely
thin sample cell, as the high-frequency limit is determined
by the thickness of the heater-thermometer itself.

The measurement is made as follows: We pass a
current of frequency to/2 through the heater,

P(t) =(IOR/2)[1+cos(tot)] . (12)

The dc component simply produces a constant tempera-
ture gradient in the cell. The ac component produces dif-
fusive thermal waves. (We will solve the heat-diffusion
equation in the appropriate geometries later. ) The tem-
perature of the heater oscillates at the frequency to of the
heat oscillations,

(13)

I(t) =Ioeos(tot/2) .

The power dissipated in the heater has two components,
a dc component and a component oscillating at frequency

A. Method

The traditional adiabatic method of measuring specific
heat consists of first applying a short heat pulse to a sam-
ple that is well isolated thermally from its surroundings
and then measuring the temperature increase after the
heat has diffused throughout the sample. Alternatively,
one can make adiabatic specifi-heat measurements in the
frequency domain' by applying a sinusoidal heat current
at frequency to=2ttf and measuring the amplitude of the
temperature oscillations at that frequency. In either case
the measurement time, or inverse frequency, must be long
compared to the thermal-diffusion time rD of the sample.
If the heat must traverse a distance d, then we have

tD =cpd /K ~ (9)

VD g(1/6) ((T „, . (10)

The thermal diffusivities of organic glass forming liquids
are typically very low (x/c~ =10 cm /sec), and so even
if the sample is only 0.1 mrn thick, the measurement fre-
quency will be limited to below about 1 Hz. If c~ is in-
dependent of frequency, then one need only satisfy the
constraints ('10) over a narrow operating frequency range,
and this method can be used successfully. '

However, our aim is to cover as wide a frequency range
as possible, so we have developed a new nonadiabatic
technique to measure cz(co). Our technique is based on
heat diffusion from a thin heater which is producing a

However, the measurement time must also be short com-
pared to the time r,„, it takes the sample temperature to
decay back to the temperature of the surrounding heat
bath. Thus we have the two constraints:

To, is the average temperature of the heater and T„ is the
amplitude of the oscillations. The phase lag y depends
both on the geometry of the heater and on the thermal
properties of the medium. Since the resistance of the met-
al heater depends on temperature, it has a small com-
ponent that oscillates at the frequency co of the tempera-
ture oscillations,

R =R o, +R icos(tot —g ),
E. =aR~, T

(14)

where a is the temperature coefficient of resistance of the
heater. The voltage across the heater is the product of the
current passing through it, which is at frequency co/2, and
its resistance, which has a small component at frequency

The inixing of these two frequencies gives rise to a
small signal at frequency 3to/2, as well as at to/2,

V (t) =I (t)R (t) = V„g2cos(tot /2 g')—
+ V3„q2cos(3tot /2 p}, —

V~&2 is equal to IOR&, plus a small contribution from the
mixing of Io and R„. V3 ~2, on the other hand, is exactly
equal to —,'IoR„, which is proportional to T, the tem-
perature oscillation of the heater.

In order to measure the small voltage V3 &2 in the pres-
ence of the much larger voltage V„&2, we put the heater
into one arm of a Wheatstone bridge. If we balance the
bridge and measure the differential voltage across it, then
we effectively isolate V3 q2. We then measure the ampli-
tude and phase of V3 &z with a lock-in amplifier refer-
enced to 3 times the driving frequency. Since the bridge-
balance condition does not depend on frequency, any
spurious 3'/2 component in the driving oscillator will not
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affect the signal. Only the 3c0/2 signal produced in one

arm of the bridge from the heating of the sample will be
measured. We have covered over five decades of frequen-

cy with this technique, 0.01 Hz &f&6 kHz, using com-
mercial lock-in amplifiers for the upper frequency range
and a computer-controlled digital lock-in technique for
the low frequencies. A detailed discussion of the electron-
ics and software will be presented in a separate publica-
tion.

liquid surrounding it fills all space for x&0, while the
substrate fills the region x&0. The heat flux from the
heater, equal to the power per unit area dissipated in the
heater, is sinusoidal in time, j»(t)=Refjoe '"'I. The
steady-state solution to Eq. (21) consistent with the boun-

dary conditions T~Td, as x~+ao is

ReIT(x =O, co)e e ' 'I for x)0,
T(x,t)= Td, +

ReIT(x =O, co)e '"' e '"'I for x (0.
B. Thermal diffusion

Before we solve the heat-diffusion equation in the
geometries appropriate for our experiment, we should ask
if this equation is valid when applied to a system with a
frequency-dependent specific heat. To answer this, let us
look at the derivation of the heat equation. Again, we
will use the variable q to represent the heat density (or en-

tropy density times temperature) following the notation of
Ref. 6. The associated heat current is j». The heat-
diffusion equation comes from two equations. The first is
a version of energy conservation (combined with particle
conservation). It is microscopically rigorous:

q+V j»=0. (17)

j» = icV T, — (18)

where tc is the thermal conductivity. These two equations
combine to give

The second equation is a phenomenological constitutive
relation:

where c~ and tc are the thermal parameters of the liquid,
which may be complex and frequency dependent. The
wave vector k,„b has the same form as (23), except it con-
tains the thermal parameters of the substrate, c,„b and
tc,„b, which are always real and frequency independent.
To find T(x =0, co), we use the boundary condition at
x=O relating the heat fiux to the temperature gradient.
From Eq. (18) we have

aT "dT—K =j»(t),
Bx 0+

tCsub
~x x a-

(24)

where the two derivatives are evaluated on opposite sides
of the heater. If we insert (22) into (24), we obtain the
solution

T(x =O, co) is the complex amplitude of the temperature
oscillations at the heater. In the notation of Eq. (13),
T(x =O, co) =T„e'»' The. thermal wave vector k is com-
plex, because it describes diffusive waves. It is equal to

k =(Q)c IK) e =(doc IZK) (1—t),

q=zV T . (19) T(x =0, co)=j ol(~k+tc, „bk,„b)

Normally, we replace q by c~T to obtain the heat-
diffusion equation in standard form. However, if c& is
time or frequency dependent, then, in general, we must
use Eq. (3) to express q as an integral over the tempera-
ture at all previous times. We can simplify the situation
considerably by going into the frequency domain. If T
and q both have a sinusoidal time dependence with fre-

quency co, then we can write

q = —t coq (co)= —icoc&(co)T(co),

so that (19) becomes

(20)

inc~(co)T(co) =tcV—T(co) . (21)

Operating in the frequency domain gives us two simplifi-
cations: The heat-diffusion equation retains its simple
form even when the specific heat is frequency dependent,
and what was formerly a partial differential equation is
now an ordinary differential equation, which is easy to
solve.

The simplest experimental geometry is that of a plane
heater. %'e have physically realized this geometry by eva-

porating a thin nickel film onto a thick substrate of win-

dow glass. Nickel is chosen because of its high tempera-
ture coefficient of resistance. In order to simplify the
algebra we will assume that the heater lies in the plane
x=0, and that it has infinite area and zero thickness. The

=joe Il(~epic) + (cocsubs'sub) (25)

In order to extract c~lc from the data, we must first make
a measurement with an empty sample cell to determine
the substrate contribution c,„bx,„b over the whole tem-
perature range of the experiment. We can then subtract
this from the data with the full sample cell to find chic of
the sample. %e have used window glass as a substrate be-
cause it has a low value of c,„b~,„b.

The approximations used in deriving the solution (25)
are valid if the thermal wavelengths k

~

' and

~
k,„b ~

' are much longer than the thickness of the
heater, d, and much shorter than the shortest lateral di-
mension of the heater, Li, and the distance from the
heater to the walls of the sample cell, L2. Thus we have
the two constraints

d ((( K IQ)C& ) ((L ],L2

The same constraints apply for
~
k,„b ~

'. The thickness
of the metal film is less than 10 ' cm. If L, and L2 are
on the order of 1 cm, then we can satisfy the constraints
(26) over a wide frequency range.

We see from (25) that if cz and ~ are real and frequency
independent, as they are in a normal liquid far from the
glass transition, then the amplitude of the temperature os-
cillations will be proportional to co ', and their phase
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lag with respect to the heat oscillations mill be ~/4 rad or
45 . %e use these two criteria to monitor the performance
of the plane heaters. As the sample approaches the glass-
transition region, cz~ becomes complex and frequency
dependent. y, the phase lag in Eqs. (13) and (16) which is
measured in our experiment, deviates from m/4 in this
temperature range due to the complex specific heat. Also,
the amplitude of the oscillations no longer varies as

—1 /2

Note that with this geometry we measure the product
c&K, rather than just cz, as do the adiabatic measurements.
We suspect that any unusual behavior of this product near
the glass transition will be dominated by the behavior of
cz, since static measurements of ~ show little change from
above to belo~ T. ' However, the possibility still exists
that there is some interesting frequency dependence to ~
as well as to cz. %e have attempted to explore this possi-
bility by utilizing a second heater geometry. If the
heater-thermometer is a thin wire rather than a plane,
then we measure a different combination of c~ and a.. In
principle, the two experiments together should allow us to
extract cz and a independently even if both quantities are
frequency dependent. We will discuss this experiment in
detail in Sec. V.

There is an alternative way to view heat diffusion
through a slowly relaxing system, due to Oxtoby. ' Al-
though Oxtoby prefers not to use the term "frequency-
dependent specific heat, " he shows how the behavior dis-
cussed above can arise out of a rigorous hydrodynamic
treatment of a liquid with a set of slow modes put in by
hand. (Oxtoby's theory is a phenomenological treatment
of a liquid near the glass transition and as such it does not
attempt to explain the origin of the slow modes. ) In his
formalism the frequency dependence is carried by a
frequency- and wave-vector-dependent thermal conduc-
tivity. To solve the model for observable quantities in a
given experimental geometry, one must integrate over
wave vector. In several different geometries (including
those in our experiments), one obtains the result that the
wave-vector dependence integrates out in such a way so as
to reproduce the standard solutions to the heat-diffusion
equation (21) with a frequency-dependent specific heat
and a bare, frequency-independent thermal conductivity.
Oxtoby's work is thus consistent with our analysis in
terms of a frequency-dependent specific heat. Presum-
ably, one could obtain a different result by assuming a
more complicated form of coupling between the slow
modes and the other hydrodynamic variables. From this
point of view, the aim of the wire experiment is to deter-
mine the validity of Oxtoby's original assumptions.

IV. PLANE-EXPERIMENT RESULTS

%e have studied both glycerol and propylene glycol
(1,2-propanediol) near the glass transition. Their glass-
transition temperatures are about 193 and 172 K, respec-
tively, ' as determined by differential-scanning-
calorimetry measurements at a cooling rate of 10 K/min.
Both of these materials are good glass formers. Glycerol
can crystallize if kept sufficiently long in the temperature
range 230—260 K, but it can easily be supercooled past
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that range. Propylene glycol does not crystallize at all be-
cause it has two incompatible stereoisomers that do not fit
into each other's crystal lattices, '

In Fig. 1 we reproduce data from Ref. 4, showing col~
versus temperature for glycerol at three different frequen-
cies. Near Ts, the real part of c~~ drops by about a factor
of 2, which is what we expect from measurements of c~
alone. The temperature where c&K drops depends strongly
on the measurement frequency, indicating that the relaxa-
tion times in the liquid increase as T is lowered. Since
there is dispersion in the real part of c~~, there must be an
imaginary part as required by the Kramers-Kronig rela-
tions. Our technique gives a direct measurement of this
quantity, which we also show in Fig. 1. The imaginary
part of czar has a peak at the same temperature where the
real part drops. In Fig. 2 we show measurements of czar
for propylene glycol, at four different frequencies. Except
for the shift in temperature scale reflecting the lower
glass-transition temperature, the data look very similar to
those for glycerol.

At first glance, the real part of c&K looks very similar to
scanning-calorimetry data. However, there is an impor-
tant difference: Figures 1 and 2 show an equilibrium,
linear susceptibility as a function of frequency and tem-
perature. The curves in these figures are reversible, i.e.,
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FIG. 3. The real and imaginary parts of e~x (units of
J2/cm sec K ) for propylene glycol as a function of frequency.
The temperatures are T=180.5 K (4, ), T=188 K (0), and
T=195.5 K (). The solid lines are fits to the data with a
Kohlrausch-Williams-Watts function with P=0.61.

there is no difference between the data taken while cooling
and those taken while heating the sample. Scanning-
calorimetry data show hysteresis between cooling and
heating which reflects the fact that the sample falls out
of equilibrium during the experiment. In a typical run we
keep the sample at a fixed temperature for —1 h while we
scan frequency and then step the temperature down by 1

K over 15 min. (The data are identical if instead we cool
the sample steadily, at the same average rate as above. )

At a cooling rate of —1 K/h we expect to see the onset of
nonequilibrium behavior at T-184 K in glycerol and
T-163 K in propylene glycol, i.e., at the lower end of the
temperature ranges shown in Figs. 1 and 2, respectively.
The amplitude of the temperature oscillations in these
runs never exceeds 0.1 K, and is considerably lower ( —1

mK) at the high frequencies. We have checked that the
measurements stay within the linear-response regime.

To obtain spectroscopic information froin these mea-
surements, we plot czar as a function of frequency at fixed
temperature. In Fig. 3 we show the real and imaginary
parts of c~a. versus logiof for propylene glycol. In this
form the data clearly show the characteristic form of all
relaxation processes, discussed in Sec. II. The low-
frequency limit of czar. includes the contribution of all the
degrees of freedom of the liquid sample. This is the ther-
modynamic, or static, value of the susceptibility. The
high-frequency limit reflects only the contribution of the
fast modes. The difference between the low- and high-
frequency limits of czar. at a single temperature,
(cpK)o —(cp&)„, is about equal to the difference between
c~s. of the liquid and that of the glass. Thus the fast
modes in the liquid are precisely the modes that survive
the glass transition. The slow modes, corresponding to
liquid rearrangements, are completely frozen out in the
glass. The nature of the two types of degrees of freedom
near Tg has been known for a long time, but this experi-
ment clearly demonstrates that the distinction persists in
the equilibrium liquid well above Tg.

We have fitted the data in Fig. 3 with several of the
empirical relaxation functions used to fit dielectric data.
The peaks in the imaginary part are wider than Debye
peaks, and slightly asymmetric. The two functions that
give good fits to both the glycerol data and the propylene
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FIG. 4. The peak frequency, on a log scale, versus inverse
temperature for glycerol (S) and for propylene glycol (g). The
solid lines in both cases are two indistinguishable fits to the data
with a Vogei-Fulcher-Tammann law and with a scaling law.
The parameters for the fits are given in Table II.

glycol data are the Davidson-Cole form, described by the
frequency-domain response function 4(co)=(1 —ivor)
and the Kohlrausch-Williams-Watts form, described by
the time-domain response 4(t)=exp[ (—t/r)~] B. oth of
these functions were originally proposed as phenomeno-
logical functions to fit relaxation data, although there
have been several attempts in recent years to derive the
second form. ' The fits to the real and imaginary parts of
ez~ are not independent, but must be Kramers-Kronig
transforms of each other. When we flt the imaginary part
alone, we obtain the three parameters: (i) the area under
the peak, (c~a. )o—(c~a.)„, (ii) the logarithm of the peak
frequency, log&of~i„and (iii) the width of the peak,
given either by the exponent P or 8. Using those parame-
ters we then flt the real part, where the only free parame-
ter left is the value of (c~a)„. In Fig. 3 we show the
Kohlrausch-Williams-Watts fits to the data with
P=0.61+0.04. The quality of the fits shows that the data
are consistent with the Kramers-Kronig relations. For
the Davidson-Cole form, the best fits are obtained with
the exponent 8=0.44+0.04.

Glycerol and propylene glycol have both been mea-
sured' ' using dielectric spectroscopy. It is interesting to
compare the results of the specific-heat and dielectric
spectroscopies, to see if the shapes of the relaxation func-
tions and the temperature dependence of the peak fre-
quencies is the same in the two cases. In Table I we sum-
marize the parameters used to fit the specific-heat data
and dielectric data. In all cases the widths of the relaxa-
tion spectra are nearly temperature independent over the
range of measurement frequencies; however, the specific-
heat spectra have consistently wider peaks than the dielec-
tric data for both materials. A recent study of ultrasound
in glycerol ' found that the shapes determined by a num-
ber of different experimental probes excluding dielectric
response are consistent with each other. The dielectric
peaks are narrower than any of the others. Unfortunately,
there is no microscopic theory for the shape of non-Debye
relaxation functions (other than the general theories in
Ref. 19), but we speculate that the dielectric peaks are
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TABLE I. Width exponents P for the Kohlrausch-Williams-Watts (KWW) fits,
4(t)=exp[ (—tlat)]~, and 8 for the Davidson-Cole (DC) fits, 4(co)=(1 —it07) s, both for our specific-
heat data, and for the dielectric data of Refs. 16 and 33.

Specific heat

Dielectric

Glycerol
Propylene gylcol

Glycerol'
Propylene glycolb

KWW width P

0.65+0.03
0.61+0.04

0.80+0.02'
0.75'

DC width 8
0.51+0.03
0.44+0.04

0 58+0 03
0.66+0.01"

"The width is weakly temperature dependent. The value shown corresponds to the temperature range of
our experiment.
The value taken from Ref. 33 is not consistent with the observation of Ref. 16 that g1ycerol has a nar-

rower dielectric width than propylene glycol.
'Reference 16.
Reference 33.

narrower because the slow modes only contribute to the
dielectric response in proportion to their dipole moment,
while they contribute to the specific heat in proportion to
their entropy content. One can imagine the existence of
modes in liquids that carry entropy but have a very small
dipole moment. One must be cautious, however, in inter-
preting non-Debye relaxations as a superposition of dis-
tinct modes. If one chooses this interpretation then one
must explain why the superposition of modes maintains
the same shape over a broad temperature range while the
mean relaxation time is changing by many decades.

We plot the peak frequency versus inverse temperature
for both samples in Fig. 4. In both cases we can fit the
data with two very different functional forms. The first is
the Vogel-Fulcher-Tamman equation, f =foexp[ —A/
(T —To)], which has been used to fit a wide range of
glass-transition data. The parameters of the fits are given
in Table II. For glycerol, the temperature To where the
relaxation time diverges is very close to the Kauzmann
temperature T~, where the entropy of the supercooled
liquid extrapolates to that of the crystal. Tx =135+3 K
for glycerol. '

( Tx has not been determined for propylene
glycol because of its inability to crystallize. ) In Table II
we also compare our Fulcher fits to those obtained from
dielectric data. Although the fitting parameters differ

slightly, the peak frequencies found by the specific-heat
and dielectric spectroscopies agree closely in the tempera-
ture range of the experiments. This suggests that one re-
laxation mechanism governs all of the observed phenome-
na in these materials. This is not the case in all glass
formers. '

The second function we have used to fit the peak fre-
quencies as a function of temperature is a scaling law,

f=fo[(T—To)/To], predicted by several recent
theories of the glass transition. 2 Some of these
theories22 can be derived from nonlinear hydrodynamics,
and therefore should be generally applicable to a wide
variety of hquids. The theories first predicted the ex-
istence of a purely dynamical glass transition and a diver-
gence of liquid relaxation times with a scaling-law power
a =2. However, further investigations of the hydro-
dynamic theories have shown that higher-order correc-
tions cut off the divergence. One should therefore only
expect to see power-law behavior with a=2 in the low-
viscosity (or short-relaxation-time) regime, but not in the
high-viscosity regime probed by our experiment. The
fits to the data using a scaling law give anomalously large
exponents, a-15. The fitting parameters are given in
Table II.

The temperature To, where the scaling law diverges, is

TABLE II. Parameters for the Vogel-Fulcher-Tammann (VTF) fits, f =f0exp[ —A/{ T —T0)], and
for the scaling-law fits, f=f0[(T—T0)/T0], to our specific-heat data. We also show the VTF fits to
the dielectric data of Ref. 16.

Vogel-Fulcher- Tammann fit
)ogiofo T(}

Specific heat

Dielectric

Glycerol
Propylene glycol

Glycerol
Propylene glycol

14.6+0.9
13.8+0.4

13.8
12.4

128+5
114+7

1372 10
122+ 11

2500+300
2020+ 130

1740
1650

Specific heat Glycerol
Propylene glycol

log 10f0

10.6+0. 1

10.3+0. 1

Scaling-law fit
TQ

169+1

148+ 1

15.0+0.6
14.6+0.6
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considerably higher than the To obtained from the Fulch-
er fits. The large difference between the values of To us-

ing different functional forms to fit the same data demon-
strates the uncertainty inherent in extrapolating finite-
frequency measurements to zero frequency. However, we
suspect that the Fulcher fits are more appropriate than
the scaling fits for the following reason. The parameters
to the Fulcher equation have some theoretical justifica-
tion, either through the free-volume theories or the en-

tropy theories of the glass transition. In particular,
the relation between excess entropy and relaxation times
predicted by the Adam-Gibbs theory appears to describe
well the behavior of a series of polyalcohols, ' including
the materials studied here, glycerol and propylene glycol.
In contrast, the theoretical models that predict a scaling
law predict exponents much smaller than those we ob-
serve, and the scaling law is only expected to describe the
behavior of the relaxation times at much higher tempera-
tures.

The frequency-dependent specific heat of glycerol has
also been measured recently by Christensen. He used
the standard adiabatic method discussed at the beginning
of Sec. III and hence could only cover a very limited fre-
quency range, 2.4—35 mHz. The difficulty with analyz-
ing data over such a narro~ range is that one must as-
sume that the spectral shape of the relaxation is tempera-
ture independent. With that assumption one can then
slide the various curves on a log-frequency plot until they
superpose to estimate the time-temperature relation. The
Arrhenius relation which Christensen obtains matches our
Fulcher law for glycerol at T= 195 K, but is not as steep
as the extrapolation of our Fulcher law into the tempera-
ture range of his experiment, 176—191 K. Qualitatively,
his data look very similar to ours. However, we find from
our analysis over a much wider range of frequency that
the specific heat falls off more quickly at high frequency
than he claims. When possible, it is better to have the en-
tire peak in one's experimental frequency window than to
rely on the temperature-shift procedure to obtain the
shape of the relaxation. The shift procedure is particular-
ly problematic in the tails of the structure.

V. WIRE EXPERIMENT

The purpose of carrying out a second experiment, using
a thin wire instead of a plane as the heater-thermometer,
is to find whether the dispersion in the real and imaginary
parts of the product czlc near the glass transition is due to
the behavior of cr alone, or whether a also has a non-
negligible frequency dependence. The wire experiment
measures a different combination of cr and x than is mea-
sured by the plane experiment, so we hope to distinguish
between the behavior of cz and of ~ by comparing the
data from the two experiments.

The solution to the heat-diffusion equation (21) in the
wire geometry proceeds in a manner analogous to the
solution in the p1ane geometry. Again we will assume at
first that the wire is infinitely long, and that its radius a is
very small compared to the thermal wavelength

~

k
~

where k is given in Eq. (23). We assume that the tem-
perature is uniform within the wire, because it is made of

metal and has a much higher thermal conductivity than
the surrounding liquid. The steady-state solution to Eq.
(21) in this geometry is

T(r, t)= Td, +Ret T(r =a, co)[KO(kr)/Ko(ka)]e ' 'I

for r ~ a, (27)

where Ko is the modified Bessel function of zero order,
and r is the radial coordinate in the cylindrical coordinate
system determined by the wire. The Bessel function Ko
satisfies the boundary condition Ko(kr)~0 as r~ ao. To
find the amphtude of the tetnperature oseillations at the
wire, T(r =a, co), we use the boundary condition at r =a
that is analogous to Eq. (24). This time we will also in-

clude a term that accounts for the heat capacity of the
wire itself. The boundary condition is

=p(t)/2tra (a/2)c„;—„,T(r =a, t),

where p (t) =Re Ipoe '"'I is the power per unit length be-

ing dissipated in the wire, and the factor a/2 in the last
term is the ratio of volume to surface area of the wire.
When we insert (27) into (28), we find

T(r =a, ai) =(po/277K)KO(ka)

)& [—kaKO(ka)

(itic„;„a /—2x)KO(ka)] (29)

At very low frequencies we can ignore the second term in
the denoininator of (29). If we expand the Bessel func-
tions to lowest order in the argument ka, we obtain

T(a, t)=Re[(poe ' '/2m. tt)

X ( —y —ln
~

ka /2 i argk)—I, (30)

where y=0. 5772. . . is Euler's constant, and argk is the
phase of k in the complex plane. The solution (30) looks
rather complicated at first, but it has some rather attrac-
tive features. If c~ and a are real and frequency indepen-
dent, as they are in a normal liquid, then argk = ir/4—
according to Eq. (23), and

~
ka/2~ -t0 'r . This means

that the component of T(a, t) that is 90' out of phase with
respect to the heat oscillation is independent of frequency,
and only depends on the thermal conductivity ~ of the
liquid surrounding the wire, but not on its specific heat.
The component of T(a, t) that is in phase with the heat
oscillations depends on cz and co through the logarithm in
(30). One can therefore use the wire technique to measure
both x and cz independently if they are both real. This
same principle is used in hot-wi. re experiments to measure
K and cp for normal 1iquids. '

In order to test our experimental method, we have mea-
sured x and c~ of ethanol over the temperature range
180—300 K and over the frequency range 0.1—10 Hz. %'e
find that both cr and a are independent of frequency over
this entire range, and the values we obtain are within a
few percent of published values. The upper frequency
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range is limited by the radius of the platinum wire used;
in our case a=13.0 Izm. We expanded the Bessel func-
tions in Eq. (29) to fourth order in ka in order to analyze
the data up to a frequency of 10 Hz. We can measure to
frequencies as low as 0.01 Hz, but at very low frequency
there are small corrections to Eq. (30) due to the finite
length of the wire, which is 9 cm in our experiment.

In Fig. 5 we show the in-phase and out-of-phase com-
ponents of the temperature oscillations of the wire with
respect to the heat oscillations at two frequencies when
the wire is surrounded by glycerol. At high temperature
glycerol acts like a normal liquid, i.e., e~ and x are real
and frequency independent in the frequency range of the
experiment. [The difference in the out-of-phase com-
ponents between the two frequencies is due to higher-
order terms in (29) not included in the asymptotic expres-
sion (30).] The most sahent features of the data are the
sharp rise in the in-phase component and the large dip in
the out-of-phase component that occur at the same tem-
perature, where the real part of c~a drops and the imagi-
nary part peaks, as measured by the plane experiment (see
Fig. 1). These two features are qualitatively consistent
with the interpretation that the frequency dependence is
mostly in c~. We can see this by examining Eq. (30).
Both the in-phase and out-of-phase components of the
wire signal are proportional to 1/a. If there were a
change in the magnitude or in the complex phase of ~,
then the corresponding change in the wire signal would be
proportional to the amplitude of that signal. The data in

Fig. 5 show that the salient features in both components
of the wire signal are approximately independent of fre-
quency, and hence independent of the amplitude of the
signal. Therefore these features are not due primarily to
the behavior of lr. However, these features can be ex-
plained if we assume that they are due to the behavior of
c~(co). The data in Fig. 1 show that the real part of c~
drops. This drop causes the magnitude of the thermal
wave vector k, defined in Eq. (23), to decrease. The in-
phase component of the wire signal therefore increases
due to the term —ln

~
ka/2

~

in Eq. (30). (Remember that
~

ka/2~ &1, so that ln
~

ka/2
~

&0. ) This increase,
which is independent of frequency, is shown by the data
of Fig. 5(a). The data in Fig. 1 also show us that the
imaginary part of cz peaks. This causes the complex
phase of k to deviate positively from its nominal value of

rr/4. H—ence the out-of-phase component of the wire
signal dips, as shown by the data of Fig. 5(b).

In Fig. 6 we show wire data for propylene glycol. The
two frequencies shown are the same as the lowest two fre-
quencies in Fig. 2. As we saw with the glycerol data, the
primary features in the wire experiment are consistent
with the plane experiment, given that the dispersion and
imaginary part in the product czar are due to the behavior
of c~. The peak in c~" occurs at T-181 K for f=4 Hz
and at T-174 K for f=0.11 Hz. The dips in Fig. 6(b)
occur at these same temperatures.

We are now in a position to understand the anomalous
behavior seen by Sandberg, Andersson, and Backstrom'
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FIG. 5. Temperature oscillation of wire versus nominal tem-
perature for glycerol. {a)The in-phase component of the oscilla-
tion and {1) the out-of-phase component. The frequencies are

f=0.62 Hz (~ ) and f=8 Hz (j). The magnitude of the oscil-
lation is normalized to the power per unit length dissipated in
the wire, so it has units of v ', i.e., K cm sec/J. See Eq. (29).

FIG. 6. Temperature oscillation of wire versus nominal tem-
perature for propylene glycol. {a) The in-phase component of
the oscillation and {b) the out-of-phase component. The fre-
quencies are f=0.11 Hz (~ ) and f=4 Hz (4). The units are
the same as in Fig. 5.
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in a hot-wire experiment on glycerol. These authors used
the traditional hot-wire technique to study both the
thermal conductivity and the spe:ific heat of glycerol over
a wide temperature range covering both the liquid and
glass states. The measurement consists of passing a step-
function current through the wire and then measuring its
resistance (and hence its temperature) as a function of
time after the step. One can obtain c~ and a from a plot
of temperature versus log time if both quantities are real
and frequency independent. The authors found that, as
the sample passed through the glass-transition region, the
measured value of a had a large peak and c~ dropped sud-
denly with a large overshoot. They speculated that this
behavior might be an artifact of the analysis, given that
the system relaxes slowly near Tg. %e can understand
this behavior if we analyze our data according to Eq. (29)
while assuming that both c& and ~ are real quantities.
This type of analysis is appropriate in the normal liquid
regime, but produces spurious results near the glass transi-
tion where c~ has an imaginary part. Figure 7 shows the
results of such an analysis performed on the glycerol data
from Fig. 5. At high temperatures both c~ and a are fre-
quency independent, so the analysis is valid. However, as
we pass through the dispersion region, we see a peak in x
and an overshoot in the drop in c~. These two features
are very similar to those seen in Ref. 16, and they are due
entirely to the nonzero imaginary part of cz which has
been neglected in the analysis. Below the dispersion re-
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FIG. 7. Analysis of wire data for glycerol using real values of
c~ and a. (a) c~ (in J/cm ) and (b) a (in J/cmsecK). The fre-
quencies are the same as in Fig. 5: f=0.62 Hz (~ ) and f=8 Hz
(4, ). This type of analysis is not valid when c~ is complex.
This is the reason for the spurious peak in ~ and overshoot in c~
as is discussed in the text.

gion, c~ and a are again frequency independent. This ex-
ample demonstrates the strength of our frequency-domain
technique. As we have shown in Sec. III, the heat-
diffusion equation cannot be analyzed in the usual manner
in a time-domain experiment if the specific heat is time or
frequency dependent. On the other hand, this equation
does maintain the same form in the frequency domain
even when cz is frequency dependent and complex. With
our technique we are able not only to measure the imagi-
nary part of cz, but also to see explicitly its frequency
dependence over a wide range of frequency.

There are two features in Figs. 5—7 which are difficult
to interpret. The first is the appearance of some frequen-
cy dependence in the response at a temperature about
20—25 K higher than the peak in ez' just discussed. This
is most easily seen in the out-of-phase component in Figs.
5 and 6, or in either cz or ~ in Fig. 7. As we cool glycerol
from room temperature, the out-of-phase component mea-
sured at f=8 Hz has a sudden change in its temperature
coefficient at T-231 K [see Fig. 5(b)]. The same quanti-
ty measured at f=0.6 Hz has a similar kink at T-219
K. Propylene glycol shows similar behavior at T-202 K
for f=4 Hz and at T-191 K for f=0.11 Hz [see Fig.
6(b)]. In each case the kink appears at a temperature
above that where the plane experiment shows dispersion
in czar. . Since this new feature has the same frequency
dependence as a relaxational process, i.e., it moves to
lower temperature with lower frequency, one is at first
tempted to identify it as a second liquid relaxation that
has not been seen before because it is overshadowed by the
primary relaxation already discussed. However, if that
were the case, then one would expect to see some signature
of this relaxation in the plane experiment also. The data
in Fig. 1 show no frequency dependence except that due
to the primary relaxation discussed in Sec. IV and above.
Although we do not have a satisfactory explanation of
this behavior, we do know that it is associated with the
glass transition, or with the high viscosity of the liquid
sample as it approaches the transition. Measurements of
the normal liquids ethanol and toluene show no
anomalous behavior over the temperature range shown in
Figs. 5 and 6. The behavior in propylene glycol and gly-
cerol are very similar, except the temperature of the
anomalous behavior differs in the two cases due to the
difference in the glass-transition temperatures.

The second peculiar feature in Figs. 5—7 is the increase
in thermal conductivity which seems to have occurred
over the temperature range where cz is complex and fre-
quency dependent. This is most easily seen in Fig. 7(b).
Remember that the particular analysis leading to the
quantities shown in Fig. 7 is not valid when c& or ~ is
complex. However, the analysis should be valid both
above and below the dispersion region. Figure 7(b) shows
that a for glycerol has a small negative temperature coef-
ficient between room temperature and the dispersion re-
gion. This result agrees with Ref. 16. However, the value
of ~ below the dispersion region is —15% higher than it
is just above that region, and it has a large negative tern-
perature coefficient. Andersson et al. obtained the result
that x in the glass has a value very close to that in the
liquid, except that its temperature coefficient reverses
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sign. Unfortunately, we cannot easily extend our mea-
surements to lower temperature because the 'sample will
fall out of equilibrium and we will lose thermal contact
between the wire and the sample. (The authors of Ref. 16
circumvented the latter problem by making measurements
at high pressure. ) If a does increase through the disper-
sion region, then we might expect this increase to have the
same frequency dependence as the drop in c~. This would
explain why the plane experiment only shows one feature
at each frequency. While the behavior of x in question
could have a small quantitative effect on the drop in c~a
seen in the plane experiment, it does not affect qualitative-
ly the interpretation of our experiments.

VI. SUMMARY AND CONCLUSIONS

We have developed a technique to measure the
frequency-dependent specific heat of a supercooled liquid
over a frequency range exceeding five decades. The tech-
nique enables us to measure the linear response of the
sample to a small perturbation from equilibrium. Our ex-

perimental technique measures the product cz~ rather
than just cz. %e have made measurements using a wire-
heater geometry in order to see whether a has any fre-
quency dependence, or whether all of the observed disper-

sion is due to the behavior of cz alone. The data are con-
sistent with the hypothesis that most of the frequency
dependence is in cz', however, there are some features of
the data which remain unexplained, and which may indi-
cate some frequency dependence to ~.

We have used our technique to study the relaxations
near the glass transition i.n glycerol and in propylene
glycol. These two materials behave similarly in several
ways:

(i) The specific-heat data show a non-Debye relaxation
which moves to lower frequency as the temperature is
lowered. This relaxation is responsible for the glass tran-
sition that occurs when one cools the sample to the point
where it falls out of equilibrium.

(ii) The mean relaxation time in the specific heat is the
same as that found by other probes of relaxation, such as
dielectric or ultrasonics. This suggests that all of the ob-
served phenomena associated with the glass transition in
these materials are governed by a single relaxation mecha-
msm.

(iii) The mean relaxation time as a function of tempera-
ture can be fitted either by a Fulcher law or a power law,
although in the latter case the exponent is anomalously
large, a-15. In the former case the temperature To,
~here the relaxation time diverges, is close to the
Kauzmann temperature, T~, where the liquid entropy ex-

trapolates to that of the crystal.
By extrapolating our data to zero frequency we can

conceptualize the transition into the "ideal glass" state,
i.e., the state obtained in the limit of cooling the liquid in-
finitely slowly so that it stays in equilibrium until it
reaches To. This extrapolation indicates that the specific
heat would have a step discontinuity at To. At this point
the glass state formed would have a minimum of excess
entropy over the crystal. A theoretical framework for this
idea has been provided by Adam and Gibbs. Their
model directly relates the relaxation time of a liquid to its
excess entropy.

However, not all glass formers behave in the same way
as glycerol and propylene glycol. ' Many liquids have
viscosities which obey a Fulcher law over a wide range of
temperature, but then depart from that law at low tem-
peratures, and instead show Arrhenius behavior. Since
an Arrhenius law stays finite until T=O, one immediately
asks what happens to the specific heat in such systems.
Such liquids will undergo an entropy catastrophe if the
equilibrium specific heat remains high and the relaxation
time does not diverge above the Kauzmann temperature.
Such a catastrophe could be avoided in several ways. For
example, the relaxation time for specific heat could
diverge even though the time associated with the viscosity
does not. Also, the equilibrium specific heat of the liquid
may drop to a value close to that of the crystal due to
thermodynamic effects (as opposed to dynamic ones). We
expect that a study of the frequency-dependent specific
heat will indicate in which way these systems manage to
avoid violating thermodynamics.
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