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Effect of an arbitrary dissipative circuit on the quantum energy levels
and tunneling of a Josephson junction
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The complex energy shifts of the energy levels of a macroscopic system subject to dissipation are
calculated as a function of the phenomenological damping parameters describing the classical
motion of the system. These results are applied to the energy levels of the zero-voltage state of a
current-biased Josephson junction in parallel with an arbitrary dissipative circuit. Following the ap-
proach of Leggett, the influence of the same dissipative circuit on the tunneling rate out of the
zero-voltage state is also calculated. The dependences of both phenomena, quantization of energy
levels, and quantum tunnehng, on the admittance of the circuit are compared.

I. INTRODUCTION

It has been recently observed that a macroscopic
system —a current-biased Joseph son junction —exhibits
well-defined atomlike absorption resonances correspond-
ing to transitions between quantized energy levels. ' The
Josephson junction is governed by a single macroscopic
variable, which is the phase difference across the junction
and which has already been shown experimentally2 to
display macroscopic quantum tunneling, in agreement
with theoretical predictions.

In contrast with quantum tunneling, which has no clas-
sical analog and for which the effect of friction was not
really understood before the work of Caldeira and Leg-
gett, the phenomenon of absorption can be transposed in
the correspondence limit. One thus expects dissipation to
give a finite lifetime to the quantized levels and eventually
to induce a shift in their energies. One purpose of this pa-
per is to calculate this lifetime and shift for the experi-
mental situation of Ref. 1.

Whereas dissipation in an atom is fixed once and for all
by the interaction between an electron and the radiation
field and cannot be predicted from measurements in a
classical regime, dissipation in a macroscopic system such
as a Josephson junction can be varied externally and mea-
sured classically. 'i Thus, as already stressed by Leggett in
the case of tunneling, 's one is not faced with a first-
principles microscopic calculation as in the Lamb-shift
problem, but rather with the establishment of a correspon-
dence between the classical and quantum absorption of
power by the junction in the presence of an arbitrary dissi-
pative circuit.

Because it is possible to measure the modification of
tunneling rates and, simultaneously, the absorption line
position and width in the presence of dissipation, another
problem arises: How would the two results be related? In
particular, is it possible that the same circuit could strong-
ly affect absorption lines and weakly affect tunneling or
vice versa'? The second purpose of this paper is to answer
this question.

The paper is organized as follows. We first calculate,

II. CALCULATION OP ENERGY SHIFTS
OF THE QUANTIZED LEVELS

OF A MACROSCOPIC VARIABLE

We consider a single degree of freedom X with poten-

tial energy V(x) and kinetic energy —,'X subject to fric-
tion through its coupling to the many degrees of freedom
of a large energy reservoir. In the classical regime, the
coordinate X obeys a phenomenological equation of the
type

X+EIX(t) j = — V(X), (2.1)

where K is a linear operator subject to causality require-
ments. Its Fourier transform E(to) is analytical in the
lower half of the complex plane. Another requirement on

E is that E(0)=0, which simply states that the equilibri-
um value of X is not affected by friction. In this article,
X is a macroscopic degree of freedom and E can therefore
be obtained experimentally by direct observation of the
classical behavior of X.

in Sec. II, the complex energy shifts of the discrete quan-
tum levels of a general macroscopic variable coupled to its
environment in terms of the damping response function
appearing in the phenomenological equation which this
variable obeys classically. We then apply these results, in
Sec. III, to a current-biased Josephson junction in parallel
with a linear dissipating circuit of admittance Y(ta) that
can be treated as a perturbation. We evaluate numerically
the importance of the effect in the particular example of
Ref. 1. In Sec. IV, we apply Leggett's theory of the influ-
ence of a frequency-dependent dissipation mechanism'
on quantum tunneling to the circuit treated in Sec. III.
We investigate in detail the simple cases where the influ-
ence of the admittance on tunneling can be exactly calcu-
lated. Finally, in Sec. IV, we discuss the differences in the
dependence of both qu;mtum tunneling rates and absorp-
tion widths and positions on the temporal response of the
admittance.
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Z 2 ~J
H~ —g i pj +oij xj — i X

QPJ

(2.3)

The coordinates I' and pj are the conjugate momenta of X
and xj, respectively. The symbols coj and cj refer, respec-
tively, to the frequency and coupling strength of the jth
oscillator.

The spectral density J(co) of the set of oscillators is de-
fined by

2

J(co)=—g 5(ro —coj),
2 ~ 69)

and is chosen according to the following relation:

(2.4)

A. The Hamiltonian description of friction

Following IA:ggett, ' the Hamiltonian H which de-
scribes this system can be taken as the sum of a bare
Hamiltonian Ho and the Hamiltonian H, of a set of oscil-
lators of coordinates xj coupled to the macroscopic degree
of freedom X,

Ho ———,
' P'+ V(X),

Using the definition (2.4) of J(co) and causality require-
ments on exp( —iHt), we can write

Because J(co) is a continuous function of co in the limit of
an infinite number of reservoir oscillators, ~&„ is, in gen-
eral, complex. We can write

QE —g jw' +i gQ" (2.11)

b,E„=L„+G„,
L„= g M„K (co„),

(2.12}

(2.13)

The real part &8„' is the energy displacement proper of
level n T.he imaginary part ~&„"has to be interpreted as

i r„—', where r„ is the lifetime of level n

We can remove the poles appearing in (2.10) for
co=co„by treating separately the contributions due to
states with energies respectively higher and lower than
E„, and by use of relations (2.S) and (2.6). We obtain,
after performing some algebra, a well behaved expression
for &E„,apart from an eventual divergence when co~ oo,

K(eo) = lim K(z),
Ims~0-

(2.S)

K(z) =—
where K(z), given by

2z' y" J(co')dao'
(2.6)

co'[(0') —z ]
is such that K(z)lz is the analytical continuation of
iJ(co)/co in the lower half of the complex plane.

It follows that

EE„' =Re(L„)+G„,
LE„"=Im(L„) .

~am
y

~ dcoImlV(co)

m o cu(la)„ I+ )
(2.14}

(2.1S)

(2.16)

This Hamiltonian is similar to the Hamiltonian of an
atom coupled to the radiation field except that the cou-
pling here involves the position coordinate X and an extra
potential term which is quadratic in X.

Using standard perturbation theory up to second order
in the coupling constants c;, one obtains

2

(2 8)
CJ~E.—g~~~nm g

Nl j ~j(oinm ~j)

M„= /(n JXfni) fi, (2.9)

and where ~„~=E„—E~. %e take, in this section,
rads as the energy unit, which is equivalent to setting
fi= 1.

8. Calcuhation of energy levels

We now begin an explicitly quantum-mechanical treat-
ment of Eqs. (2.2) and (2.3) and introduce the eigenener-
gies E„and eigenstates

~
n ) of Ho, which are assumed to

be known. We compute the energy shift ~&„of the nth
eigenstate due to the coupling to the set of harmonic oscil-
lators. The Hamiltonian H can be developed as

2

H =H + g —'(p + ' j') —Xg j + —,
' X g

J J J

g.7)

The term L„ is "local" in frequency in the sense that it in-
volves only the value of K(co) at the transition frequencies
towards lower-energy states. Its real part contributes to a
pure energy shift and vanishes when K (eo} is purely dissi-
pative [ReK(co)=0]. On the other hand, the term G„ is
"global" in frequency in the sense that it involves the
values of ImK(oi) over al/ frequencies. This term is real,
vanishes when K(ro) is purely dispersive [ImK(eo)=0],
and only produces a shift in the energy levels. We note
that this term is divergent for co~ ce if ImK(ro) behaves
as co with ee) 1.

We now consider two illustrative examples.

1. The harmonic oscillator

When V(x)= —,
' cooX, formulas (2.13) and (2.14) give

n K (~o) 1 I" dcolmK(co)hE =—
2 filo 27r o co(cop+ co )

(2.17)

The second term, the global term, can be divergent but is
independent of the level number n. As the physically
measurable quantities are energy level differences, this
divergence has no physical significance. The change in
the energy level spacing is

K'(a)o)
Qg„—AI"„

2630
(2.18)

which naturally coincides with the expression of the com-
plex frequency shift of the classical oscillator.



ESTEVE, DEVORET, AND MARTINIS 34

2. The case offriction proportioned to uelonty

We consider the case when K is of the form hf/dt
which yields K(co) =iM .The quantity I.„ is then purely
imaginary and 6„ is now

dN6.= ——QMnmco. m I
Nt I conm I

+co
(2.19}

10 )( Y(u))

This term is divergent at co~00 and to proceed, we intro-
duce a cutoff frequency co, to the upper bound of the in-
tegral. We then find

6„=——g M„co„(lnco, —In
~
co„~ ) .

NS

(2.20)

Using the fact that
~

n ) is a nondegenerate bound state,
one easily shows that

XM. oi. =&n I&'o»]X In&= &n ~[~,X][n)= &,
PS 2

ancl Ilence,

(2.21)

6„=— lnco, +—g M„co„ ln
~
co„

2~
(2.22}

The term containing the cutoff frequency in this expres-
sion is independent of n and thus does not contribute to a
shift in the energy-level differences.

III. THE QUANTIZED ENERGY LEVELS
OF THE CURRENT-SIASED JOSEPHSON JUNCTION

At low temperature, a Josephson junction of small di-
mensions has only one degree of freedom, the phase
difference 5 across the junction. This phase difference is
a macroscopic variable involving the correlated motion of
a large number of Cooper pairs. The junction can be
represented as a particle of coordinate X=C(4o/2n) 5
(4o ——h /2e and C is the junction capacitance) moving in a
tilted potential, the tilt being proportional to the steady
current fiowing through the junction. The mass of the
particle can be taken as unity and the coupling to the en-
vironment is due to the circuit of admittance Y(co) in
parallel with the junction (see Fig. 1). In the classical re-
gime, X obeys an equation of type (2.1) with'

FIG. 1. A Josephson junction can be represented as an ideal
junction of critical current Io parallel with a capacitance C. We
consider a junction biased with a current source I. A linear dis-
sipative circuit of admittance F(co) can be added in parallel
with the junction.

one of its minima by a cubic potential U(X) (see Fig. 2).
One can choose as independent parameters of the well, the
barrier height b U and the frequency cop of oscillations at
the bottom of the well when there is no dissipation, i.e.,
when Y(co}=0. The ratio b, U/%cod roughly indicates the
number of levels in the well.

The existence of these quantum levels has been demon-
strated by applying an external microwave excitation to
the junction. When the microwave frequency coincides
with a transition frequency between levels, the population
in the upper level increases, thereby enhancing the escape
rate of the particle out of the metastable well. This corre-
sponds to the switching of the junction to the nonzero-

UIx)

0

&(co)= Y(co)
C (3.1)

and

X I XI'(X)= —Io cos +C(4,/2~)' Io C(e,/2~)2

(3.2)

%'e consider the case where the particle is trapped in one
of the metastable minima of V(X) (zero-voltage state).

For I slightly under the critical current Io, the poten-
tial well is very well approximated in the vicinity of each

FIG. 2. Cubic potential U(x) involved in the motion of the
particle representing the junction in its zero voltage state when
it is biased slightly below the critical current Io. Here, AU is
the barrier height and co~ is the frequency of the small oscilla-
tions of the particle at the bottom of the well. Transitions be-
tween quantized energy levels in this metastable well can be in-
duced by applying a microwave excitation at the transition fre-
quencies.
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b coio ——( —0.09+0.05)
COP

(3.3)

voltage state which can be detected easily.
One therefore obtains resonances whose positions give

energy differences between levels and whose widths give
the hfetimes of the excited states involved in the transi-
tion. These lifetimes are dominated by the influence of
friction which forces energy states to decay towards
lower-energy states; the influence of tunneling through the
bamer can be neglected.

We have evaluated the magnitude of the energy-level
shifts Go and Gi of the ground and first excited states for
an experimentally relevant value of the well parameter
b, U/Acoz, where there are two bound states in the well.
This corresponds to Fig. 3 of Ref. 1. The dissipative cir-
cuit in parallel with the junction is taken as a pure resis-
tor, giving a quality factor Q =RCco~ to the classical os-
cillations in the well.

The matrix elements and energies needed in Eqs. (2.13)
and (2.22) were calculated by solving numerically the
eigenstates of the cubic potential. A basis consisting of
the first 30 eigenfunctions of the harmonic oscillator was
used. In this basis, the matrix elements of the Hamiltoni-
an for the cubic potential are known exactly and the
eigenstates can be found using a simple diagonalization
routine. This procedure gives a good precision for the
quasi bound states in the well and their energies. For ex-
ample, the sum rule of Eq. (2.21} is verified with 2 lo ac-
curacy. The continuum of states outside the well, howev-
er, is sampled by a relatively small number of discrete
states. This approximation is sufficient to compute the
order of magnitude of G„, which turns out to be only a
small correction.

We thus obtained the following estimate for the com-
plex shift btaio Lkco'io+ ib—,—t0'i'0 of the transition fre-
quency between the ground and first excited states
67)0=0.84i)p.'

where 80 is the part of the tunneling exponent which does
not depend on the dissipation (80=—", b U/co~ for the par-
ticle in the cubic potential of Sec. III) and where d!8 is the
modification due to friction. Following the perturbative
approach of Caldeira and Leggett, one finds for the tun-
neling of the variable X of the preceding section

ca= ' f Y( i~—)~ ~X,(~) ~'d~,
2~C

(4.2)

where Xa(co) is the Fourier transform of the "bounce"
trajectory Xtt(t), that is the zero-energy solution of

8
Xg — U(Xs }=0.

Bx
(4.3)

For the case of the cubic potential, this trajectory is given
by

(
27 gU) f/i

Xtt(t) =
cosh (tozt/2)

(4.4)

Taking the Fourier transform of Xtt (t},we arrive at

108 hU
3 g 2 0

P

—EQ7 QP u du

sinh u
(4.5)

Therefore, ~ is affected by the value of the admit-
tance at imaginary negatiue frequencies itozu/m —with u

extending over a broad range given by the kernel
u3/sinh2u. It is, in fact, more convenient to express lLB
in terms of the temporal response y(t) of the admittance
defined as

mechanism on the tunneling of a quantum variable. The
tunneling rate I can be written as

r

(4.1)

Lkcoi'0 ————,r( ' ———T~(1.08+0.05)
y (t)= Y(ri))e'"'dc' .1

2%
(4.6)

The results are valid as long as a perturbative approach
can be used, which is when Q ««1. They show that (i) the
linewidth of the transition between ground and first excit-
ed states is approximately given by 1/Q, and (ii) the glo-
bal term G„ induces a shift of the transition frequency
which is much smaller than the linewidth. These results
support the interpretation of the resommce experiment of
Ref. 1 which neglected any frequency shift due to the
resistive part of the admittance.

Thus, resonant escape experiments in a current-biased
Josephson junction essentially probe the admittance of the
circuit in parallel with the junction at the transition fre-
quencies between levels. In the next section, @re vvil1 see
that quantum tuimeling is affected in a very different way
by the admittance.

IV. THE INPI.UENCE OF AN ARBITRARY
ADMI'TTANCE ON THE QUANTUM TUNNELING

OF A JOSEPHSON JUNCTION

Vfe begin with a result derived by Leggett' which
expresses the effect of an arbitrary linear dissipating

The response y (t) can either be measured directly or cal-
culated from the measured Y(co). One thus obtains

with

Ccilp 2m
(4.7)

ta(x)= g =g(3,x) —xg(4, x) .
) (n+x)

(4.8)

The function g(n, x) is the Rieman function. ' Expression
(4.7) is more useful than (4.5) when one is trying to grasp
intuitively what inAuence a given admittance mi11 have on
tunneling.

The weight function w(co~t/2m) is a monotonic func-
tion which decreases for long times as (co~t/2~) /6 (see
Fig. 3). The time scale of this weight function is
~r ——(co~/2m) ' and can be interpreted as the time scale of
the tunneling events. There are taro cases peahen expression
(4.7) gives simple results: this is when y (t) has a charac-
teristic time ~ either much shorter or much greater than
ff0
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(i) r«rr (admittance with short response time). In
that case, the integral in Eq. (4.7) will be dominated by
the first two moments of y (r),

r

iu(0) f y(t)dt+ iu'(0) I ry(t)dr
7T CAPP

0

(4.9)

1a, = (n =0),
Zc

(4.19)

2
Z

n
Zc Zp

Zc+Zp
(n &1), (4.20)

where xi=21/u, u being the line wave velocity and where
a„ is given by

Using

(4.10)

where Z, is the characteristic iinpedance of the transmis-
sion line.

We find

one ean rewrite (4.9) as

, g(3), Y(0)+ —.Y'(0) . (4.11)
7T CQ)p 5 Ca)~ i

One can interpret Y(0}and Y'(0) in terms of an effective
resistance and capacitance

162 hU aip58= i i Qa~iu Ii Ore

CQ) 2'
which, in the case rI »rr, reduces to

162
g(3)

AU 1
1 0

'fT
CEO'

(4.21)

(4.22)

Y(0)= 1

Ry

Y'(0) =iCr .

(4.12)

(4.13)

b8 45 1 1 Cr
, g( ) (4.14)

(ii} r»~T (admittance with long response time}. In
this case, the integral in Eq. (4.7} will be dominated by the
t =0 value of the function y (r),

The first term of the right-hand side of Eq. (4.11) can
easily be recognized as the result of Caldeira and Leggett
for a pure resistor s while the second term is just a renor-
malization of the capacitance of the junction by the effec-
tive capacitance of the admittance

Thus, for long transmission lines, M is independent of 1

and of Zu, and is the same as obtained for a pure resistor
of admittance Y=Z, '. 's One easily shows that this re-
sult still holds when Zo depends on frequency, since the
response function y (r), is, in that case, the sum of 5(t)/Z,
and of a function which is equal to zero for t & ~l.

We so: that by biasing the junction through a transmis-
sion line of characteristic impedance Z, much greater
than the junction impedance (Ceo& ) ', the influence of the
biasing circuitry can be neglected as far as tunneling is
concerned. In contrast, the effect of the line on the energy
levels would be a periodic function of l ' and would de-
pend on Zo. This difference in behavior is a remarkable
property of friction in the quantum regime.

V. DISCUSSION

(4.15)

Using

y(0)= lim iroY(r0), (4.16)

and interpreting the limit of iai Y(ro) as the inverse of an
effective inductance I.r, one can rewrite (4.15) as

h, B 5 L
Bp 2Iy * (4.17)

y(t)= g a„5(t nut), — (4.18)

where 1. is the effective inductance of the junction given
by L =(Ccrc)

This last formula shows that a bias circuitry with reso-
nances well below the plasma frequency can still drastical-
ly affect quantum tunneling rates.

Finally, there is another case which lends itself to a
simple analysis: it is the case of an ideal transmission line
of length I large compared to its wavelength at the plasma
frequency, terminated on an impedance Zo.

When Zo is a pure resistor, Y(co) is a periodic function
of co. The response function thus consists of 5 functions,

%e can now discuss the relationship between the modi-
fication of the tunneling exponent and the width and shift
of an absorption resonance. In Fig. 3, we show for com-
parison the weight functions entering in the integration of
the temporal response of the admittance to get either the
tunneling exponent [Fig. 3(a)] or the width of the first ex-
cited state [Fig. 3(b)]. The tunneling weight function de-
creases monotonically towards zero as t~ 00, whereas the
level-width weight function is a simple cosine that keeps a
constant amplitude as t~ ao. The qualitative differences
between the two functions is maintained if one considers
higher excited states. For these higher states, the level-
width weight function would be a sum of cosines with dif-
ferent frequencies. Note that the weight function for the
shift of a level is also an oscillatory function which is, for
the most part, a sum of sines instead of cosines.

The time scale of the variations of the weight functions
for tunneling and level broadening is in all cases the same
and of the order of 2n. /a&z. If the temporal response of
the admittance decays rapidly on this time scale, then
only the value at t =0 of these two weight functions will
affect the physical phenomena and the time evolution of
the functions will be not revealed. Neglecting the contri-
bution of the small global term to the shift of the transi-
tion frequency, one obtains, using expressions (2.13) and
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the time scale 2n/to~, then the weight functions will select
different features of that temporal response. We will have

b,8~ lim itoY(to), (5.2)

b,to,o~ Y(toio) . (5.3)

cos fv~ f}

We see that in this case, there is no longer a simple rela-
tionship between tunneling and level shift and broadening,
which are affected in two independent ways by the admit-
tance.

A solvable case that belongs to neither the short- nor
the long-response-tine case is when the admittance con-
sists of a simple transmission line with characteristic im-
pedance Z, terminated by a resistor Zo. When the length
l of the line is long compared with the wavelength A, at
co&, one gets the simple result

(4.14), a simple relation between the modification of tun-
neling and the frequency shift htoio and linewidth h,co'i'o,

~io I ~toto
I+p

&o io 10
(5.1)

FIG. 3. The modification M of the exponent of the tunnel-

ing rate and the energy level width ImhE of a junction are ob-
tained by integrating the temporal response y(t) of the admit-
tance with a weighting function shown, respectively, in (a) and
{b). Panel (b) pertains, in particular, to the level width of the
first excited state when its transition frequency to the ground
state is m~0 ——0.84'~.

Zo
I
~toi'o

I

Zc N]o

when l =nA, (n is an integer), (5.4)

Sa Z, I&~i'ol=P when I =(n+ —,')A, .
&o Zo ~&o

(5.5)
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