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Master-equation approach to shot noise in Josephson junctions
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We model the normal resistance of a hysteretic Josephson junction by writing a master equation
to describe the individual quasiparticle tunneling. We solve the master equation by a WKB method
near the zero-voltage state and near the nonzero-voltage state. We find that near the zero-voltage
state the solution is given by the Boltzmann distribution with second-order corrections awhile near
the nonzero-voltage state we obtain a nonsymmetric, non-Boltzmann distribution of voltage Auctua-

tions, similar to the results obtained in a previous discussion based on the Fokker-Planck equation.

I. INTRODUCTION

Noise effects in tunnel and Josephson junctions are of
primary importance and interest both from the theoretical
aspect and, even more so, from the practical viewpoint.
Consequently, extensive theoretical and experimental in-
vestigations of these effo:ts have been conducted. ' The
elements under consideration are most commonly operat-
ed in a temperature range where the dominant noise ef-
fects are due to Johnson (thermal) noise of the normal
resistance. The commonly accepted description of the
noisy dynamics of these junctions has been the classical
I.angevin equation and, consequently, the corresponding
Fokker-Planck equation. The extensive theoretical re-
sults for this range of temperatures are in good agreement
with experimental measurements in a variety of devices
based on Josephson junctions. These investigations were
primarily concerned with fluctuations about and transi-
tions from the zero-voltage state of the junction. The
nonzero-voltage state was studied in the Smoluchowski
limit for the overdamped junction. " Recently, Johnson
noise fluctuations about and transitions from the
nonzero-voltage state into the zero-voltage state in an un-
derdamped Josephson junction were studied. These re-
sults have not been verified experimentally at this time.

At very low temperatures, as k&T=AcuJ, where RcoJ is
the Josephson plasma frequency, the thermal-noise
description of the fluctuations is no longer accurate.
Therefore various generalizations of I.angevin's equation
to include quantum fluctuations have been proposed for
this range of teinperatures. ' In addition, transition

rates from the zero-voltage state were calculated via mac-
roscopic quantum tunneling (MQT) theories. "'2 Exten-
sive experimental effort has been devoted to the verifica-
tion of these theories. ' ' At low, but finite tempera-
tures, at which the electrostatic energy increment due to
the tunneling of a single quasiparticle is comparable with
kttT, another quantum effect is likely to become impor-
tant. This is the discreteness of electric charge that mani-
fests itself as shot noise. ' This effect is certainly present
in the nonzero-voltage state of the Josephson junction.
This discreteness naturally calls for a master-equation
description. However, in Ref. 6 we tried to simplify the
problem by using an effective Fokker-Planck equation to
describe the shot-noise effect and obtained transition rates
from the dissipative nonzero-voltage state into the zero-
voltage state which are considerably higher than those
predicted by classical theimal-noise models. Similar
analysis of the zero-voltage state' led to results which
show surprising agreement with the experimental mea-
surements of Ref. 13.

In this paper we show that the effective Fokker-Planck
equation we have assumed in Refs. 6 and 17 is the one ob-
tained from a master equation by truncating the
Kramers-Moyal series' ' after the second moment.
However, as shown below, such truncation is not justified,
and all moments have to be accounted for. We show that
the truncation is justified for the description of small fluc-
tuations, but leads to increasingly large errors when ap-
plied to large fluctuations about steady states.

We derive the master equation by using the classical
theory of quasiparticle tunneling and construct its
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steady-state solution by employing the recently developed

theory of Ref. 20.
In Sec. II we present the derivation of the master equa-

tion. In See. III we construct the solution of the master
equation near the zero-voltage state and obtain a
Boltzmann distribution of fluctuations with small higher-
order corrections due to shot noise. Thus, in contrast
with previous expectations, ' this model cannot explain
the measurements of Ref. 13.

In Sec. IV we construct the solution near the nonzero-
voltage state and calculate the height of the effective bar-
rier for transitions from that state into the zero-voltage
state. Finally, in Sec. V we present a discussion of the re-

sults.

8+68+ sin8=I+L(t),
where L ( t ) is Gaussian white noise with

(L(t)L(t+s)) =2GT5(s),

(2.6)

(2.7)

and T is temperature measured in units of EJ /kz.
The probability density function p(8, 8,t) of these fiuc-

tuations obeys the Fokker-Planck equation
r

and a stable nonequilibrium steady state with 8 a 2n.-
periodie function of 8.

As mentioned in the Introduction, in the range of tem-
peratures where the voltage fluctuations are primarily due
to Johnson noise, the noise dynamics of the junction is
described by the I angevin equation

II. THE MASTER EQUATION p= —8 p+U'(8) p+6 . (8p+T) p
dt 88 g8 g8 g8

(2.8)

In this section we describe the individual tunneling of
quasiparticles across the junction. This tunneling gives
rise to both the normal resistance and the fluctuations as-
sociated with it.

In the absence of quasiparticle tunneling the dynamics
of the order parameter 8 (the superconducting phase
difference across the junction) is governed by the follow-
ing equation,

where

U(8) = I8 cos8—. — (2.9)

This leads to the Boltzmann quasistationary distribution
of energies about the stable equilibrium state. Near the
nonequilibrium steady state the fluctuation must be
described by a different distribution, since the Boltzmann
distribution

V
C +IJ sin8=I&, ,

df
(2.1) pa = exp( —E/T), (2.10)

where C is the capacitance, V(t) is the instantaneous volt-
age, Iq is the critical Josephson current, and Is, is the
driving external current through the junction. In addi-
tion, we have the Josephson relation

8(t)= V(t) . (2.2)

8+68+ sin8=I,

where

(2.3)

The usual way dissipation is introduced into this model is
the phenomenological addition of Ohmic resistance in
parallel with the junction. ' This, together with Eqs.
(2.1) and (2.2), leads to the following dimensionless equa-
tion,

p~ exp( —W/T) (2.11)

was found and W was calculated using a WKB approxi-
mation. This led to an expression for W of the form

(~ —~o)'
2

while it is a stationary solution of Eq. (2.8), is nonperiodic
and even unbounded as 8~co. Moreover, pa implies a
vanishing probability current in phase space. Instead, we
seek a stationary solution of Eq. (2.8) that is bounded and
periodic in 8 with the same period as the force term
I sin8, and th—at produces a nonzero current in the ap-
propriate direction. This approach was pursued in Ref. 5,
where a stationary distribution of the form

6= (toiRC)

I=Id, /IJ, (2.4)

near the nonzero-voltage steady state. Here, A is the ac-
tion of a constant probability contour and Ao is the action
of the nonequilibrium steady-state solution of Eq. (2.3),
0

&.e.,

A= I 818, (2.13)

time is measured in units of toj, and energy is measured
in units of

(2.5)

The dynamics of Eq. (2.3) has been thoroughly investigat-
ed in Refs. 5, 23, and 24. We consider here the hysteretic
junction in which two stable states coexist: a stable equili-
brium state with

8=0 and 8= arcsinI,

where the integral in Eq. (2.13) is a line integral on a W
contour (see Appendix and Ref. 5). Note that 8' is not
equal to the energy E and, consequently, p&pa even very
close to the steady-state trajectory.

As mentioned in the Introduction, at low temperatures
the discreteness of the quasiparticle tunneling should be
taken into account and a master-equation approach is
called for rather than the Langevin-equation description.

We begin with Eqs. (2.1) and (2.2) for the description of
the dynamics in the absence of quasiparticle tunneling.
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Next, we model the quasiparticle tunneling rates as fol-
lows. We assume elastic tunneling of the quasiparticles so
the tunneling rates at energy E are given by

I N(E)dE
eV

coth
2

(2.17)

l =&f~«)[1—fL «)]
& =&f «)[1—fz «) 1

(2.14) where N(E) is the density of states per unit energy and R
is the normal Ohmic resistance of the junction. Thus,

for some constant c, where I is the tunneling rate from
right to left and r is the tunneling rate from left to right,
and ft, (E) and fz{E) are the occupation probabilities of
single quasiparticle states on the two sides of the junction.
The functions fL(E) and fR(E) are equilibrium Fermi
distributions with Fermi levels which are displaced by the
amount eV,

r+ N E E= coth
eR 2kBT

(2.18)

We consider the case when r and l can be replaced by
their mean values [with respect to X(E)], and conse-
quently we obtain

fz{E)=
exp

1

E+eV—Ep

kgT

I' —eV
eA 1 —exp

8
(2.19)

fL(E)=

and hence

1

exp +1
8

(2.15) eV
eR exp —1

B

Thus the dynamic equations (2.1) and (2.2) in presence of
quasiparticle tunneling are replaced by the stochastic Eqs.
(2.20) and (2.21),

1 —eV—= exp
r kgT

(2.16)

Ig 1dcV(t+dt)= V(t)+ — sin8(t)dt+ dt+o(dt), (2.20)

r+I eV.-l="'" 2k, T

[Equation (2.15) should include the shift in the Fermi lev-
el due to the transfer of a single charge across the junc-
tion, since the Fermi levels after a transition are shifted
relative to their positions before the transition. In the
limit of small e/C considered here, such a correction was
found to be negligible. However, if e/C is not negligible
relative to V, and e /2C is not smaller than ktt T, such a
correction can be important. See Sec. VI for a discussion
of this case.]

Next, we (dent(fy f N(lr)dEe(r —I} as the snenn ne(
electric current I across the junction, so that

with probability [1 (r+l )d—t]+o(dt),

V(t+dt) = V(t)+ — sin8(t)dt+ dt+ —+o(dt),
Ig Idc e

(2.21)

with probability (t)dt+o(dt). The transition probability
density p(8, V, t), defined by

p(8, V, t)= Pr(8(t)=8, V(t)= Vi 8(0)=Ho, V(0)= Vo),

(2.22)

satisfies the forward Kolmogorov equation or master
equation'

Bp 2eV Bp
at= a aH

Idc Ij . Bp e e——sinH +r V——,8 p V——,H, t
C C BV C' C'

r

+l V+ —,8 p V+ —,8, t —[r( ,V)8l+( ,V)8](p,VtH),
L

(2.23)

with the initial conditions

p(8, V, t) 5(8—8,, V—V, ) as t 0.

2ekg TT~ t~t~J, E~
AEJ

(2.25)

To be consistent with the notations of Ref. 5, we intro-
duce the dimensionless variables

p{8,V, t)hp(H, H, t),
where EJ is defined in Eq. (2.5). %'e obtain

fuuJHeV=
2

(2.26)

ecuJ faceJ
IJ 2EJ

{2.27)

In these dimensionless units the elementary chan, ge in
charge is given by
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Thus q is the ratio of the zero-point energy of the junction
to the Josephson coupling energy. It is also the inverse of
the number of quasiparticles transferred across the junc-
tion in one period 2m /co J. Note that q is also the parame-
ter which determines the range where MQT becomes im-
portant; that is, for q not too small, MQT can be appreci-
able 11,12

Our analysis concerns the case where q is small, so we
can solve the master equation asymptotically. In the
chosen units we have

r q8 r +I q8—=exp, = coth
I T '

r —l 2T

q exp

Now the master equation (2.23} takes the form

(2.28)

at
=

aH
= —8 (I —sinH—) . +r(8, 8—q)p(8, 8—q, t)+l(8, 8+q)p(8, 8+q, t) [r(8,8—)+l(8,8)]p(8,8,t) .

88
(2.29)

In summary, the master equation (2.29) holds under the
following assumptions:

(1) The dynamics of 8 obeys the continuous classical
Josephson relations (2.1) and (2.2) between jumps.

(2) The quasiparticle tunneling is elastic and is con-
trolled by the instantaneous Fermi occupation probability
of single-particle states on the two sides of the junction.

(3) The tunneling matrix elements and the density of
states are essentially energy independent.

(4) The individual quasiparticle tunneling is uncorrelat-

III. THE KRAMERS-MOYAI. EXPANSION
AND MOMENT TRUNCATION

is based on the premise that higher powers of q are negli-
gible relative to the lower ones. This is, however, not al-

ways the case here, since, for example, the stationary solu-
tion of Eq. (3.5) has the WKB form

p= exp
—W(8, 8)

(3.6)

where 8'(8,8) is a solution of the eikonal (Hamilton-
Jacobi) equation, 20

h 2
aW . aW aW M2 aW8 +(I sinH) —. +M~ + =0.

aH

(3.7)

For small q the Kramers-Moyal expansion is obtained
by expanding the master equation (2.29) in a formal Tay-
lor series in powers of q. It is given by

Hence,

=O(1/q"),
oo

( }n gn

gHn
=Lp+ g . [M„(8,8)p(8, 8,t)], (3.1)

so that a typical term in Eq. (3.1) has the form

where L is the Liouville operator, given by

Lp = —8 (I sinH)— —Bp Bp
88 aH

' (3.2)

Qn(M )
=O(1} .

aH" (3.S)

that is,

=q "[r(8,8)+ ( —1)"1(8,8)), (3.3)

and M„(8,8) are the conditional jump moments. These
moments are given by

q "M„(8,8)=q"Pr(d H=q
~
8, 8)+( q)"Pr(b8= —q—

~
8, 8)

Thus all terms in the Kramers-Moyal expansion are of the
same order in q and therefore all moments have to be con-
sidered in general.

As shown in Refs. 19 and 20, the WKB structure (3.6)
of the solution to the master equation (2.29} leads to the
eikonal equation

M„(8,8)=r(8,8)+(—1)"l(8,8) . (3.4)
aH aH

(3.9)

Usually, the Kramers-Moyal series in (3.1) is truncated at
n =2 to obtain the Fokker-Planck equation where M(z, 8,8) is the conditional-moment generating

function of the jump process
gp B(M(p) q~ 8 (M2p)

=Lp —q
gg 2 gg2

(3.5) M(z, 8,8)=r(8,8)(e' 1)+l(8, 8)(e ——1)+ 1 . (3.10)

This procedure has been criticized in the literature. '

To understand the difficulty in this truncation procedure,
we show next the intrinsic inconsistency of such a pro-
cedure. The truncation of higher-order terms in Eq. (3.1)

It is easy to see that for small deviations from equilibri-
um, W=O and grad@'=0, Eq. (3.7) is obtained by trun-
cating Taylor's expansion of Eq. (3.9) at second order.
Thus, the leading quadratic terms in Taylor's expansion
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of both solutions [to (3.7) and (3.9)] are the same. It fol-

lows that Eq. (3.5) is adequate for the description of small

fluctuations about equilibrium up to size q
'

This discussion implies that the Fokker-Planck equa-

tion (3.5), used in Refs. 6 and 17 to describe shot noise in

a Josephson junction, provides a good approximation for
small fluctuations. However, the transition rates calculat-
ed from (3.5) are different from those calculated from

(2.29},as shown in Secs. IV and V.

IV. THE ZERO-VOLTAGE STATE

In this section we construct an asymptotic solution to
the master equation (2.29) in the WKB form (3.6) near the
stable equilibrium state 8=0, 8= arcsinI. To this end we
construct a solution to the eikonal equation (3.9) as an

asymptotic series in powers of G. We assume that G is
sufficiently small so the junction is hysteretic. Thus, set-
ting Ws ——a8'/a8, we obtain

r(8,8, W, , W ) =8m +(I—sin8) W +G8
exp 8'&—

.
'. +

—q8
T

exp( —IV )

q8
1 —exp T

+ coth
qj9

(4 1)

8"=8'p+ GS') +
%e obtain, to leading order,

. are, aw,
8 +(I sin8) . —=0,

a8

so that Wo is a function only of the energy

E= —,8 +U(8),

where U(8) is given by (2.9). At the next order we obtain

(4.2)

(4.3)

(4.4)

. aR'i aevi
8 + (I sin8)—

a8

a~0 q8 a 8'0
exp . — + exp

a8 a8

q8
I —exp T

q8—exp T
(4.5)

a Wo(E) .a Wo(E)=8:—8%0(E),
a8 aE

we obtain

(4.6)

2~ cosh t [28'0(E}—1](q8/2T) I &~ q8d8= coth d8
0 sinh(q 8/2T ) 2T

(4.7)

The solvability condition for Eq. (4.5) is that the integral
of the right-hand side over a constant-energy contour van-

ishes. Hence, using

We see from Eq. (4.2) that the correction of order 6 for
the Boltzmann distribution can be calculated by the same
method. This correction represents the contribution of
the quasiparticle tunneling Hamiltonian to the energy. A
similar correction has been observed in Refs. 10, 16, 26,
and 27. Further corrections of order q and higher orders
can be calculated as well. They represent the effect of
shot noise near equilibrium. Even for the sinall junctions
made today we have q=10, so these corrections are
negligible. Furthermore, if the refinements mentioned
following Eq. (2.16) are introduced, the corrected form of
8'is given by

for all E ~EJ. It follows that

a IVO(E }
2 —1=1

~2I—
kgb 90 kgTC

(4.9)

Wo(E)=E . (4.8)

This corresponds to a correction to the usuaI Boltzmann
distribution, which is only of order q .

Therefore, to leading order in q and 6 the quasistationary
distribution of fluctuations about equilibrium is of
Boltzmann type. Consequently, the transition rate over
the potential barrier is deterntincd by the Boltzmann fac-
tor exp( 5U/T), where 5U is—the height of the potential
barrier.

V. THE NONZERO-VOLTAGE STATE

First, we consider the averaged dynamics of the "sto-
chastic" junction obtained by averaging Eqs. (2.20) and
(2.21) over all jumps. This also corresponds to retaining
only the first term in the Kramers-Moyal series in Eq.
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(3.1). We obtain a damped Liouville equation,

Bp ~ B[(r—1)p] ~ B(8p)=Lp+q . =Ip+ 6
88 80

(5.1)

by Eq. (2.28). Equation (5.1) is Liouvilles equation for
the damped dynamics (2.3). Hence, on the average, the
motion is bistable, as described in Ref. 5. In particular,

there is a nonequilibrium steady-state solution whose
phase-space trajectory is given by

I 68——+—cosO+ .
6 I

We write the eikonal equation (4.1) in the form

8We+(I sin—8—G8) W +68 W +
exp 8'—q8

8 + exp( —W ) —exp
qL9

8 T

qj9
1 —exp

T

(5.2)

or, alternatively, in the form

cosh —8' —coshq8 q8
2T ~ 2T

T
l

'

l
2qIE

2qX
'" '

GT
(5.7)

sinh q8
2T

'=0. (53)

Equations (5.2) and (5.3) comprise the generalization of
the eikonal equation of Refs. 5 and 6.

We require W to be a periodic function of 8 on the
steady-state trajectory S. We show in the Appendix (see
also Refs. 5 and 28) that this implies that W= const on S
(e.g., W=Q) and V'W=Q as well. We proceed now as in
Refs. 5 and 6. We show in the Appendix that, on
constant- W contours and for small 6,

. =~8K(W)+O(6),
BO

where K( W) is defined in Eq. (A9) of the Appendix [also
see Eq. (5.8) below] and that the constant- W contours are
the steady-state trajectories of the equation

8+g(8,K)+ sin8=I, (5.4)

where g(8,K) is a nonlinear dissipative force given by

g(8),K)=-
2qE

q8(1 —2K)
2T

—cosh q8
2T

sinh
2T

(5.5)

In the limit K~Q (i.e., on S) we have

g(8,K)~68 .

Away from S, E determines a renormalized value for the
nonlinear dissipative term g in Eq. (5.4). These contours
are given by

W(K) —W(0)=(q/2T) f K- dK+O(6) .g(8&)
(5.8)

Since K is a function of 8 and 8 through Eqs. (5.6) and
(5.7), the probability density of finding the system at a
point (8,8) in D is given by

p= exp[ —W(K(8, 8))/q], (5.9)

with W(K) given by Eq. (5.8).
In Fig. 2 we show the graphs of W(K) for T »q and

T«q. We note that for T»q the graph agrees with
that of Ref. 5. [Our W/q corresponds to W/T of Ref. 5,
while our K corresponds to 6(1—K) of Eq. (3.18) there. ]
The transition rate from S to the stable equilibriuin state,
i.e., from the nonzero-voltage state to the zero-voltage
state of the Josephson junction, is again determined by an
exponential factor exp( —W, /q), where W, = W(K, ) and
where K, is the value of the parameter K in Eqs. (5.4) and
(5.5) for which the steady-state trajectory touches the 8
axis. We refer to this as the critical trajectory. To calcu-
late the critical value L„we assume that in the limit of
small current and small dissipation, the critical trajectory
satisfies

2~I= f g(8(8),K)d8, (5.10)

(( ) denotes averaging over constant- W contours, see the
Appendix). In Fig. 1 we show the constant- W contours
for high (T»q ) and low ( T «q ) temperatures. We note
that for T »q these contours are identical to those of
Ref. 5, which are obtained under pure Johnson noise as-
sumptions.

From Eqs. (5.6) and (5.7) and Fig. 1 we see, as in Ref. 5,
that through each point (8,8) in D, the basin of attraction
of S, there is a unique constant- W contour, and hence a
unique K. We can express Was a function of K by

8=(8)+ . cos8+O(6 ),
(8)

with

(5.6)
wh«e 8(8)=

~

cos(8—d)/2
~

and d = const. Thus, using
Eq. (5.5) we have that K, is the solution of the following
implicit equation:
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FIG. 1. The constant-8'contours for IJ ——10pA, Id, ——8 pA,
C=1 pF, and R =15 Q. (a) For T=10 K. The upper dashed
line is the steady-state solution. Lines (1)—(4) are the constant-
8' contours for E= —0.25, —0.5, —0.75, —0.85, and —0.9,
respectively. The dotted line is steady-state trajectory of the
equation of motion with different dissipation G. (b) For T=0. 1

K. The solid lines are the constant- 8' contours for K = —0.05,
—0. 1, and —0. 125, respectively. The dashed line is the steady-
state trajectory and the dotted line is the steady-state trajectory
~ith different dissipation.

O.QO
-0.2 -O.l5 -0.05

FIG. 2. The effective energy 8' as function of E for IJ——10
pA, Id, ——8 pA, C=1 pF, and R =15 Q. The solid line is the
effective energy for the Johnson limit, awhile the circles are the
effective energy calculated by the master equation (see text). (a)
for T=10K and (b) for T=0. 1 K.

qIK,
6 o

—cosh —cos-q 0
T 2

sinh —cos-q 0
T 2

q(1 —2K, ) g
cosh cos

T 2

The graphs of E, versus I are given in Fig. 3 for T&~q
and T ~&q. In Fig. 4 me compare the graphs of the effec-
tive barrier height (hE) of the present theory and that in
the thermal (Johnson noise) theory of Ref. 5 and the ap-

proxirnated one for shot noise of Ref. 6. The graphs were
obtained from numerical solutions of the critical trajec-
tories. To emphasize the effect of shot noise, relative to
that of Johnson noise, we calculate the ratio of the transi-
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FIG. 3. The parameter E~ which characterizes the critical
trajectory and determines the transition rate, plotted as a func-
tion of the applied current for IJ ——10 pA, C = 1 pF, and R = 15
Q.

I/ I)

FIG. 4. The effective barrier height hE as function of the ap-
plied current. The solid line is the thermal limit (Ref. 5), the tri-
angles are the Fokker-Planck description of shot noise (Ref. 6),
and the circles are the master-equation description.

tion rates from Fig. 4. For example, even at I=0.6 the
shot-noise rate is about 8 orders of magnitude greater than
that of the Johnson noise rate.

VI. DISCUSSION

First, we discuss the results of Ref. 6 in view of the
present model. Near the nonzero-voltage resistive steady
state the truncated Kramers-Moyal equation (3.5) is iden-
tical to the Fokker-Planck (FP) equation used in Ref. 6.
The transition rate predicted in Ref. 6 is not the same as
here; however, the dependence of the rate on parameters is
similar to the one obtained in this paper and both theories
give rates which are orders of magnitude higher than
those predicted by Johnson noise alone. We also observe
that, because of the strong stability of the nonzero resis-
tive state, transitions can be observed only at driving
currents which are close to I;„,the minimal current for
which that state exists. In the nonequilibrium state, the
probability of voltage fluctuations is always non-
Boltzmann, even when the Johnson noise dominates. To
observe the effect of shot noise, the junction should be
small enough and the temperature low enough so that
T g q, or in usual physical units, k~ T ~ —,

'
Acoj. For exam-

ple, for a junction with the parameters given in Fig. 1,
namely IJ ——10pA and C=1 pF, the shot noise will
govern the distribution of fluctuations as well as the tran-
sition rate when T & 1 K: When i=6 pA and 8 =15 0,
we obtain for the steady state a lifetime of x=1.7 msec
independent of temperature. By contrast, if the shot noise
is ignored, the calculated lifetime at T=0.8 K is about 7
sec, and increases to 3 g 10 ' sec when T drops to 0.3 K.

Near the zero-voltage stable equilibrium state the FP
equation (3.5), which was used in Ref. 17, is a good ap-
proximation to the master equation. However, it is not a
valid approximation for describing large fluctuations

around that state. ' The master equation (2.29) predicts a
Boltzmann distribution of energies for both small and
large fluctuations. We have to bear in mind the fact that
the model (2.29) neglects macroscopic quantum effects of
the junction which should be accounted for. At the
present time a more general master equation that incorpo-
rates these effects is under study.

We studied the Josephson junction in a range of tem-
peratures for which q « 1. With the advent of miniaturi-
zation of the junction, the limit q = 1 is being approached.
In this limit a new approach to modeling the junction is
called for. To see the effect of q y 1 we consider a low-
capacitance tunnel junction. In an unbiased junction the
Fermi levels on both sides are at the same height. When a
dc current I~, flows, the junction is charged at the rate
Iz, This cause.s the Fermi level on one side (say, on the
right) to be shifted relative to the Fermi level on the other
side at the rate Iz, /C. At first it may seem that for any
finite voltage across the junction there is a finite probabil-
ity of charge transfer. However, we have to take into con-
sideration the change in voltage caused by such a transfer:
When a single charge e moves across the junction, the gap
between the Fermi levels on the two sides decreases by
e /2C. Thus, as long as the junction voltage before the
transfer is less than e/ZC (and thus the gap before the
electron transfer is less than e /2C), and as long as
kq T & e /2C, the number of empty states into which the
moving charge can tunnel directly is negligible. The tun-
neling probability is also correspondingly small. It fol-
lows that whenever the junction voltage reaches the value
e/ZC the tunneling probability increases drastically, and
as a result the voltage soon drops by e/C to about
—e/2C. Thus the voltage exhibits sawtooth oscillations
between +e/2C at a frequency Iz, /e. ' The oscilla-
tions described here, though apparently similar to the ones
described in Ref. 31, actually arise from a different mech-
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anism. In particular, the two treatments lead to different

results for the voltage fluctuations.
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F(z—,8,8), (A 1)

where d/dt denotes differentiation along 5, z = W&, and

In this Appendix we construct the asymptotic expan-
sion of W(8, 8) around the resistive state. First, we show
that on S we have 8'= const =0 and grad 8'=0. To this
end we write Eq. (5.2) on S in the form

F(z,g, g)=G8 z+

q8 q8
exp z — + exp( —z) —exp

T T

q9
1 —exp T

(A2)

and

F(0,8,8) =F,(0,8,8)=0

{A3}

d8 BY
dt BWs

=I sing —6—8
sinh —W

qI9

2T

sinh q8

F~{z,8,8)=68
exp z — + exp( —z)q0

T
pO.

d 8'g

dt
BY dW8

Bg' dt
BY

Bg
'

(A6)

1 —exp T

Hence F(z, g, g)~0 for all z&0. Now it follows from
(Al) that for W to be a periodic function on S we must
have BW/B8=0, and then dW/dt =0, so that W= const
on S and consequently grad W=O on S.

Next, we need to consider the following sets of equa-
tions in the phase space (8,8). (a) The averaged equations
of motion of the variables 8, 8 [see Eq. (2.3)],

d8 dg=8, =I sing —68 . —
dt dt

(A4)

(b) The parametric equations for the constant- W contouts,
dO

dt (A5)

. cosh —8' —coshqI9 q8

dg Gg 2T 2T
— =I—sin8+

dt 8'g
sinh qO

2T

d0 8Y
dt 8 8'g

(c) The parametric equations for the characteristic lines of
the eikonal equation (4.1},

(A7)

where the integral in (A7) is a line integral along the
constant- W contour that passes through the point (8,8) in
phase space. The function H was chosen so that
H = const on constant- 8'contours, i.e.,

dt W =const
0

hence, H=H(W). We can now calculate the rate of
change of H( W) on a characteristic curve,

dH dO dO

where d8/dt and d 8/dt are given by Eq. (A6).
After some tedious calculations, we find

dW BY BW
'BW, 'BW,

Next, we find BW/Bg on the constant-W contours. To
this end we consider the function

~ g2
H(8, 8)= —cosg Ig—

2

. cosh —W& —coshq8 qO

8 Gj 2T 2T 'd0,
o 8

sinh q8
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dH dH dW

dW, „„dh dh

+O(6 ), (A9)

where K(W) is constant on constant-8' contours. The
quantity K( W), which is defined by (A9), is equal to zero
on the steady-state trajectory S where W=O. Using (A9)
in (A5), we can rewrite (A5) for small 6 as

where g(8, K( W) ) is defined in Eq. (5.5). Hence,

8 = g—(8,K)+I s—in8 .18

~e find the constant- W contours 8(8,K) by expanding
the solution of (A 1 1) in power»f 6,

88= +8o+68 i+6

= —g(8, E(W))+I sin8—,

(A10)
and scaling K =GKo. Proceeding as in Ref. 28, we obtain
Eqs. (5.6) and (5.7). The calculation of W(8, 8) follows
Eq. (5.8).
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