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Theory of the upper critical field of a magnetic superconductor
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We have derived a general set of microscopic equations for the upper critical field of a magnetic
superconductor which is valid for any concentration of normal impurity scattering and includes ful-

ly the dynamics of the phonons and of the spin fluctuations. As spin correlations can be long range,
we avoid, in our derivation, the usual contact approximation and get an expression which behaves

properly near the magnetic transition. Numerical estimates for various possible values of the mag-
netic parameters reveal that, for some regimes, the dynamics of the spin diffusions can be impor-
tant. In addition it is found, from general symmetry considerations, that singlet-triplet amplitude

mixing can occur in dirty superconductors with large band-splitting effects due to internal magneti-
zation.

I. INTRODUCTION

The effect of single magnetic ions on superconducting
properties has been extensively studied and is now reason-
ably well understood. This is not the case for
stoichiometric concentrations of magnetic moments, pos-
sibly because the discovery of systems exhibiting reentrant
behavior is much more recent. Still, considerable infor-
mation has now been accumulated in HoMo6S6 and even
more in ErRhq84. In particular, the critical magnetic
field of single-crystal tetragonal ErRh4B4 samples has
been measured by, among others, Crabtree et al. ,

' supple-
mentin previous polycrystalline studies by Behroozi
et al. ' In the single-crystal case the magnetic properties
are found to be highly anisotropic. Because the Er mag-
netic moments are confined, by crystal-field effects, to
the basal plane, the tetragonal c axis shows weak
paramagnetism (hard axis) with a resulting temperature
dependence of the upper critical magnetic field which is
very similar in shape to that of ordinary superconductors,
even near the reentrant temperature T,2. Along the easy
axis, with field in the plane of the magnetic moments, the
situation is radically altered by the strong paramagnetism,
and H, 2(T) becomes bell shaped with a maximum around
5.5 K.

Maekawa and Tachiki have given an early theory of
the upper critical magnetic field of reentrant supercon-
ductors. Their theory applies only to the dirty limit and
employs the same BCS approximations as in the original
work of Werthamer, Helfand, and Hohnberg for ordinary
superconductors. Furthermore, it is assumed that the
magnetic frequencies involved are large compared with T,
(the "high-frequency" limit) which is equivalent to a BCS
assumption for the phonon part. Such an assumption
leads to greatly simplified formulas and the theory
reduces to conventional form with an "effective pairing
potential" that contains a correction for the magnetic in-
teractions. In such a theory the magnetic interaction part
always grows sufficiently fast, as the temperature is
lowered, that it overwhelms the BCS attraction before the
magnetic temperature T~ is reached. The high-frequency

limit for the magnetic interactions is not made in the sub-

sequent work of Machida and Younger. Instead, these
authors consider the opposite case, namely, the static lim-
it. This leads to a theory of the same form as a conven-
tional BCS microscopic theory of H, 2 for a system with
independent Abrikosov-Gorkov magnetic impurities, with
the difference that the effective spin-flip scattering time is
now temperature dependent. Quite different results from
those of Maekawa and Tachiki are obtained in this limit.
Furthermore, it has been emphasized by Lee that the
static limit of Machida and Younger suffers from an un-

physical divergence of the magnetic interaction at the
magnetic transition temperature which would always lead
to the zero-order parameter as this temperature is reached.
The divergence can be traced to the mode of integration
used in the magnetic part of the electron self-energy and
can be removed when the energy dependence in the mag-
netic susceptibility is properly accounted for.

Of course, other theoretical works have appeared deal-
ing with the magnetic properties of ferromagnetic super-
conductors and the reader is referred to the review of
Umezawa, Matsumoto, and Whitehead. These authors
adopt a somewhat different approach to the problem than
that of Maekawa and Tachiki and of Machida and
Younger and discuss extensions of these works. In partic-
ular, they consider in some detail a specific application of
the theory to the H, 2 data observed in single-crystal
ErRhq84 in which the electron band-splitting effect of the
internal magnetic fields plays a prominent role (see also
Sakai et al. ' ). While good agreement with experiment
can be obtained in these theories with reasonable magnetic
parameters, it should be noted that the proper dynamic
nature of the spin fiuctuations is not account for. Coffey,
Levin, and Grest" have considered such effects in their
work in the quasiparticle density of states of a reentrant
superconductor and have stressed their importance.
While the phonon part of the problem is handled in a
BCS formalism, these authors treat fully, within an
Eliashberg formalism, the dynamics of the spin fluctua-
tions and no "high-" or "low-" frequency limit is taken.
In addition, their hydrodynamic model for the dynamic
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spin susceptibility is properly constrained through a fit
parameter to satisfy the susceptibility sum rule. As an ex-
ample of the importance of such more sophisticated cal-
culations, Coffey et al. conclude, among other things,
that the high-frequency limit can greatly overestimate the
effect of magnetism on the critical temperature and, by
implication also, on other properties. A complementary
work which deals only with the critical temperature but
which uses an Eliashberg formalism in a form that fol-
lows the original work of Rainer' and also imposes the
appropriate sum rule on the dynamic susceptibility, is that
of Dupont et al. ' These authors find that for a signifi-
cant range of magnetic parameters, dynamic calculation
gave results for the reentrant curve that are not very dif-
ferent from the static-limit results, concluding that a
low-frequency approximation is better than a high-
frequency approximation.

In this paper we develop a theory of the upper critical
magnetic field of magnetic superconductors which follows
closely the microscopic approach of Machida and
Younger but which includes several generalizations and
extensions as well as avoids many of their approxima-
tions. Rather than base our work on the BCS-type theory
of H, i given by Werthamer et al. , we start from the
theory given recently by Schossmann and Schachinger. '

While this work considers only the electron-phonon in-
teraction and no magnetic interaction, it derives equations
for H, i that fully account for strong-coupling effects.
Here, an additional magnetic self-energy part involving
the dynamic susceptibility is introduced and the general-
ized strong-coupling equations derived. They are not re-
stricted to the dirty limit but apply to any impurity con-
centration. As in the previous work of Rainer et al. ' we
find that our generalized equations, couple, in principle,
singlet to trifilet states asymmetric in frequency and not in
momentum. Detailed numerical calculations of the im-
portance of such effects are given including the impor-
tance of band splitting by the internal magnetic field, the
dynamics of spin fluctuations and of the electron-phonon
interaction itself, and the effect of finite concentrations of
impurities.

This paper is structured into several parts. In Sec. II
we describe our derivations of equations for the upper
critical field H, i which involve major extensions of the
work of Helfand and Werthamer. ' The original formal-
ism is extended to include strong-coupling effects both for
the phonon and for the spin fluctuations and also to treat
accurately the long-range nature of the magnetic interac-
tion. For the spin fluctuations themselves we use a hydro-
dynamic model along the lines described by Bennett and
Martin' and Halperin and Hohenberg' but extended to
include the effect of the magnetic field. The details are
found in Sec. III. %e restrict ourselves to weak magnetic
fields in the sense that only linear effects are considered
and therefore stay away from the saturation regime. In
Sec. IV we present simplifications of our general formulas
and give extensive numerical results, which can be divided
into two broad categories. In the first set of results we ig-
nore the effect of band splitting by the internal magnetic
field and study the effect of spin fluctuation on H, z com-
paring full dynamical results to static-hmit results for a

large range of magnetic parameters. We find that the im-
portance of dynamics depends strongly on the size of the
correlation length for the spin system. In the second set
of results we consider only the band-splitting effects. It is
shown that the matrix structure of the equations requires
a mixing of some antiparallel spin states with parallel spin
states, which has the effect of decreasing H, 2 more than
would be the case when such mixing is ignored. In addi-
tion, it is found that the mixing is increased when normal
impurity scattering is taken into account.

II. FORMAL DEVELOPMENT

The Green's function of a superconductor is determined
by the series

G=Gp+Gp g (XGp)", (2.1)

where G, Gp, and X are 4X4 matrices in Nambu formal-
ism and are, respectively, the interacting and noninteract-
ing Green's function and the self-energy X.

The self-energy consists of three parts. The first is due
to the electron-phonon interaction

Xq ph(y, z, &~ ) = —T g T3GpG(y~z~cprn )

X r3crpg D (y —z, cp~ —pi~ ), (2.2)

X (cpn —aim ~ y *)Jfd ~ (2.3)

with X the susceptibility, jfd the magnetic electron ex-
change constant, and (S ) the average internal spin polari-
zation. Finally, the non-spin-flip impurities give

1
Xt(y, z,cp„)=-

IIP
r3crpG ( y —z,cti„)r3crp5( y —z )

(2.4)

r is the lifetime of electrons which results from the
scattering potential:

+Imp

dQ~k, )

=2mn N(0) f ~
V(k„k,. ) ~'.

4m
(2.5)

nt is the concentration of impurities and N(0) the density
of states on the Fermi surface.

r; and cr;, i = 1,2,3 are two sets of Pauli matrices and i.p
as well as crp are unit matrices. We define the "vector"
matrix I vcr ),

j ro I —( T3cr / y 7pcr2$ 7 3cr3)' (2.6)

The electron-electron interaction mediated via phonons is

with T the temperature, D the phonon Green's function,
and g the electron-phonon coupling. In (2.2), pi„ is a
Matsubara frequency. The localized spin part is

X,(y, z,cp„)

=pe [ ro ] '( S )' Tg I r—o I
'6 ( y, z cp~ ) t nr )

J'
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assumed to be very short ranged and is therefore always
approximated by a 5-function model

D (co„—co~, x—x') =D (co„—co~ )5(x—x') . (2.7)

y11 y12 0
gab y21 y22 0

0 0 y33
(2.8)

J

where' '= —g' vanishes in the limit H=O,
For small stationary fields we adopt a hydrodynamic

model for the spin diffusion which is described in more
detail in Sec. III:

In general, this is not the case for the spin part of the in-
tel'actloll whlcli Is described by X (~„ct—)~,x —x ). Ili
our homogeneous magnetic field parallel to the z axis this
matrix has the form

f d q " 2tr[B(q, co)]
dt's" (2~)' -- 1 —e-)

=2m.S(S+1)f . (2.13)" (2~)'

Here, Vs is the volume of the Brillouin zone and B is the
spectral density for the spin fluctuations, namely,

8' (q,z)X"(~.,q)= f dz . (2.14)
l COn —Z

which is also given in Sec. III.
For the upper critical magnetic field it is sufficient to

neglect all off-diagonal terms in the perturbation series (1)
which use higher than first order. In this case the diago-
nal part describes the normal state and is not affected by
Cooper pair creation:

7"(k, co„)=X"(k,co„)=7"(k,co„)
G~p 0

Gn=GZ= 0 6Q.P
=60+60&d Gn (2.15)

I' (k,co„)=-I"(k,co„)

mDk X(k)
co„rM+

~
co„( +Dk

(2 9) For the off-diagonal part, all the remaining terms can be
combined to give

= -& [X(k)—X(0)]
co„w~+

~
co„~ +Dk

D=
X(q)

'

1 S(S+1)Xq=—
3 T —T +0('e'

(2.10)

(2.11)

(2.12)

A A
G,f——Gn X,f6„. (2.16)

r
G„(x,x', r, r')=G„(x,x', r, r')

~ H Oexp i —A—dsr

(2.17)

As described by Helfand and Werthamer" the space
dependence of the Green's function in a weak magnetic
field results in the form

Y(q) is the static susceptibility and go a correlation length
for the spin diffusion. The magnetic relaxation time r
and the constants c are not independent but have to be
chosen to satisfy the sum rule

where A(x) is the vector potential. In the case of no
magnetic field, Eq. (2.15) becomes translationally invari-
ant and can be solved in momentUm space with the ansatz

G.(~.,k)=[i~.r~o —«ioo —brio'] '

i n —&b n +lb
+ &000+ — —

2 2 ~003
(co ib) +e — (G+ib) +e 2 (co„ib) +e —(co„+ib) +e

N —Eb
%30'3 .

(co„+ib) +e
N —l&

3 0+ 2 2(co„ib) +e— (G„+ib) +e (co„ib) +e— (2.18)

The state is assumed to be isotropic. It is also assumed that the self-energy does not vary very much in the region of the
Fermi surface so that it can be evaluated right on the Fermi level, i.e., at kI. The self-energy caused by spin diffusion
can be written in the form

2 I

Xsg d(kF, a)„)=—Tg f X(e')de'[ro J'G„(e',co„)[vcr] f jfdX,'„(kF k', co„—co ) . —
Pg

(2.19)

In (2.19), N(e) is the density of states, dS' a constant energy surface average, and Uk the Fermi velocity. With the form
of the spin fluctuations g' given in (2.9) and (2.10), the integration over angle in (2.19) only gives functions which are
symmetric with respect to e' and so all parts of G„antisymmetric in e' can be neglected. Therefore only these parts of
the Green s function (2.18) which are proportional to ~pro and r&o& give contributions to the integral in (2.19). These two
parts can be expressed by the real and imaginary parts of the newly define function

(co + ib)sgnru
Ass (co„,co )= — jfdX (co„—cd, kF —k ) .

(2~) m[(co +ib) +e (k'))
(2.20)
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As already mentioned, the interaction length of the phonons is so small that its momentum dependence can be neglected.
This part can be treated in the usual way by using the function

h(co„—co ) = 1Q a F(Q),
Q +(co„—co )

where the Eliashberg function

dS UF dS' U~ gk, k' BQ, F —k~
a F(Q)=

(d~SiUF )

(2.21)

(2.22)

has been introduced.
Finally, the impurity part of the self-energy can be treated in a similar way. By inserting the self-energy into the in-

verted form of Eq. (2.1S) and by comparing the coefficients of rocro and r3cr3, the following two equations result:

co„=co„+mTg (A, ph,(co„co )+—Retr[ksg (co„,co )]+2Imkst4(co„, co ) Isgnco
Imp

sgnm„, (2.23}

$ = —~T g t Im[A"(co,„,co )+'il(co„,,co ) —A(co,„,co )]—2 Re[A'(co„, ,co )] I sgnco jdf (S )—3 . (2.24)

In order to simplify all further calculations, we choose, for the off-diagonal matrix, the ansatz

Gof (xyx geog )=Fs(xpx ycopg )7 $02 iF, (x,x', co„)r~cr» (2.2S}

with F, and F, real functions. The triplet amplitude F, is not new and can already be found in the work of Rainer
t al. ' It differs from the triplet pairing discussed by Fenton and Psaltakis. '6 Their work deals with a triplet pair ampli-
tude asymmetric in momentum space, while ours is asymmetric in frequency as in the case of Rainer et al. '

The matrix of the normal-state Green's function (2.18} is of a form that only the diagonal elements are nonzero and

therefore it is easy to calculate explicitly each part of the matrix G,rr. The equation for 6|4 is

Fs( x,x', co„)+iF,(x,x',co„)

T

= f d'& f d &G»(»»~. ) TQ I[Fs(y z ~ )+iF (y» ~m)][g'D. -,h(~. —~ )5(y —z) —Jy~&"(~. ~,y *)]—

[Fs(y,z, co—) iF, (y, z—,co )]kg

X [I (CO„—CO y,mz)+X (CO+ —COm, y —Z)+2lg (CO„—COm, y —Z)] I

1+ [Fs(y» ~n)+&Ft(y z ~.)] G44(»x' con»
% ~imp

(2.26)

and for Gz3 is

F( s, x'x~„)—iF, (x,x',~„)

z Gp2 X,Q, Q)~

X Tg [Fs(y,z, &m ) iF, (y, z, corn )][g—De ph(con co )5(y ——z) jfdX (con co—,y z—)]—
—[Fs(y,z,co„)+iF,(y, z„co )]Jfd[X "(co„—co,y z)+7 (co„—co,y——*) 2iX'2(co„co—, y z)]— —

1
[Fs(y~z~co~ } &+r(y, z,co~)] G33(z,—x', co„) . (2.27)
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—eI xF(x,x,co„)=e f(co„), (2.28)

where a=eH/m and xz means the component orthogo-
nal to the magnetic fiel. This is a Gaussian function
which becomes a constant in the limit of H=O and it tells
us the behavior of the two-point function F(x,x', co„) in
the limit x~x . In this ease„ the behavior of this function
for x&x' is not important for estimating H, z. However,
we know that for H=O, F(k,co„) is of the form

F(k, co„)=
co„+e +6 (2.29)

which is very easy to transform into an x-space represen-
tation. Neglecting all b, terms of higher than first order,
F(x,x', co„) is proportional to

The equations for G32 and Gqi are only the complex con-

jugate forms of Gzi and Gi~.
It is not possible to apply the method of Helfand and

Werthamer' in a straightforward way to the spin fluctua-
tions X's because they are not necessarily short ranged
enough to be approximated by a 5-function model. This
is in contrast to the short-range-phonon exchange case for
which the eigenstate of the Cooper pairs with the lowest
eigenvalue has the form

kF
F( X,X',co„)— g exp

U
/x —x'f

UF

sin(kF
~

x —x'
~

)
X

kF fx —x')
(2.30)

Fs, c(x«x «co„)=4(x)Fs, t(x —x', co„), (2.31)

where P(x) describes the slow varying behavior in a mag-
netic field and rewrite (2.21) and (2.22) in such a way that
the influence of the magnetic field is completely separated
in these equations from the influence of the l.agrange
el':tron-electron interaction. Equation (2.21) reduces to

This is a fast oscillating function and these oscillations
can be of importance when spin diffusion is included in
the theory, as shown by other authors.

In order to construct a method of solving Eqs. (2.21)
and (2.22), we assume that the electron-electron interac-
tions are only important for determining the first oscillat-
ing behavior of the Green s function with respect to varia-
tions hx=x —x' and this should not be changed signifi-
cantly by a weak magnetic field. The magnetic field itself
only determines the shape of the function F(x,x', co„) on a
scale very large compared to k~ '. We assume therefore
that these two influences can be accounted for approxi-
mately by the product ansatz

P(x)[Fs(x x', co„)+—iF, (x x', co„)]—

6]) x,f,co~ g,N~ 644 Q, x, egg~

Z G~~ X—Ig, N+ 0 p
N

Tg t[Fs(y —z,~~)+i~(y —z,~~)][g'D, .»(~„~,y—z) j—~,X —(co„—~,y —z)]

and (2.22) becomes

P(x)[Fs(x xco ) iF (x——x' co )]—

[Fs(y z, co ) iF—,(y z,—co —)]j~—
X [X (co«« co~,y —z)+X (co„— co~,y —z) 2i J—' (co—„—co,y —z)) j

1+
2

[Fs(y —* co. )+i+&(y —z,co. )] G~(x —y, co„)
~ Hm'7

ImP
(2.32)

f d 3 Gzz(x«y «~««)4(y «co««)G33(y «x«co««)

X —' f d'y f d'~G22(x —y~ )IH=o
«'

X T g I [F (y z, co„) iF, (y z,— )][g—D, „(c—o„co,y z) jf 7 —( „——,y——z)]

—[Fs(y —z, co )+iF((y z«co«««)]jfd—

X [g (co«« —co««««y —z) +X (co«« —
co««««y —z) —2lg (co„co~«y —z) ])—

1+ [Fs(y—z,~. ) —cFt(y —z,~.)1 G33(x —y, ~. )
I H =0.

1Al P

(2.33)
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The normalization factor llN is necessary to provide the
proper limits for H=O. The advantage of this step is that
the F(x—x') part has become translationally invariant
and can easily be transformed into momentum space. The
integration acting on P(x) is the same as in the theory of
Werthamer, Helfand, and Hohnberg and it can be re-
placed by the eigenstate with the lowest eigenvalue:

3'622»Y V 633 Y» = & n

a(o~„)=2m.N(0) I dq e 'i tan
x

X =8B~2UF .2

(2.35)

x'"q
(co„+ib)sgnco„

(2.36)

(2.37)

P ]& Xsf f 44$&X = —QNn X (2.34)
It remains to discuss the equations for Fs and F, . Equa-
tion (2.27) is now

a(co„)
Fs(k~n)+&F~(k n}= — "

[Gii(k ~n)G~(k, n)] I H=0N
3

3 S sm +~~t &m g ~ De-Ph n m Jfd n rn ~

(2n )'

[Fs(k ioim } iFt(k rom )ufd

X [I"(con —co,k —k') +I'i(oi„co,k—k' }+2—i7"(co„—oi,k —k') ] I

+ [Fs(k',oi„)+iF((k,co„)]
7TTl fop

(2.38)

It is easy to see that with the form (2.15) the condition

Gii(k ~n )G~(~~own }
I H =0=G2i(k own )G33(k&ron }

I H =Q

(2.39)
is satisfied. Therefore, Eq. (2.33) transforms in the same
way as (2.32) and the complex conjugate form of (2.38) re-
sults. This proves that the ansatz (2.25} is correct and
that further considerations can be restricted to (2.38).

Fs and F, can now be regarded as off-diagonal parts of
the Green's function without magnetic field. For a linear-
ized theory we make an ansatz for the Green's function of
the form

G (k»own } [Gn (k~~n } ~s(own )r2r2+i~t(~n )+i+1]

(2.40)

I

According to the Dyson equation the gap functions 5, ,
are proportional to the self-energy. For these we always
take averages over the momentum right on the Fermi sur-
face and this is the reason why the gaps are not functions
of the momentum. With the form (2.18) for G„and by
explicit insertion in (2.38) the ansatz is

Fs(k,co„)+iF,(k,oi„)

=[As(ro„)+id, (con)]G»(k, co„)G44(k,ron) . (2.41)

If (2.41} is inserted in (2.38) the integration over momen-
tum is of a form expressible by (2.20) and (2.21)

a(co„) hs(ro )+i b„(co )
b,s(con )+ib, (con ) = T g [Aq ph(&n —&m ) —ksw(own, oem )]

m (corn + ib }sgncon

as(~ ) —ia~(~ )+ . [}Isw'(own oem )+~sw(~n 1~m }—2'~sw(oini~m ) 1(co i b)sgnco—

b,s(co„)+i b, ,(co„)+
p (oi„+lb)sgnco„

For (2.42) one has to take care that Fs(k, own ) iF, (k, co„) is replaced by—the complex conjugate form of (2.41). Finally,
we have to choose the right factor N, which is done by postulating the limit

a(co„)
lim =1,0 0 (2.43)
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which means

m.N (0)
(to„+ib}sgnco„

(2.44)

With (2.43) inserted in (2A2), one recovers the correct T, equation, which is in agreement with other authors. ' For
convenience we make the replacement

a(ro„)
t4(oi„)+iA, (ro„)= (co„+ib}sgnto„[hs(ro„)+iZ,(co„)]X(0)

and analogous for its complex conjugate. The equation becomes

b,s(ro„)+id, (to„)=n.T g [bs(co )+id, (to )][I,, ph(~o„—co ) Ai—(to„, , ro ) —jr, ']
N(0

(2.45)

N 0) [~s(m } i~—i(to )]l~sw( re~ two)+4w( moron) —2i~sw(ton to~)]

a(co„)
+ [&s(ro„)+i&,(co„)] .

5'Timp
(2.46)

In (2.46) the additional factor of itt has been introduced to describe the Coulomb pseudopotential. This result gives, to-
gether with (2.23) and (2.24), and a closed set of equations.

III. SPIN DIFFUSION IN A HOMOGENEOUS
MAGNETIC FIELD

We need the spin-diffusion propagator of a ferromagnet
when a homogeneous magnetic field is applied. This
propagator has already been investigated by several other
authors' ' in the zero-magnetic-field limit and we extend
their results using a hydrodynamic model.

The change in the local spin by the diffusion process is
described by

r)s diff
(3.1)

(3.2)

where D is the diffusion coefficient. The influence of
magnetic fields on the motion of spins is easily derived
from the quantum-mechanical single-spin equation

1 Bs' = [H,S'],
i t

H'(t) to be weak perturbations and find the linearized
equation

Sl
r}t H

=Va&rjk[&S'«»o+ «S'&B"(t)] (3.7)

which describes the additional influence of a homogene-
ous magnetic field. Finally, we get the change of the spin
in an alternating magnetic field by

aS' aB'
r)t, sUs r}t

(3.8)

The complete change with time of the spin is given by the
sum of all these infiuences (3.1), (3.7), and (3.8),

BS' 2; j t, j k BB'(k)
"r}t

=DV S'+ps@;,k[sjBo+ (Sj)B (t)]+X

(3.9)

H= ptrs'[Bo+B'(o—)] . (3.3) In momentum and frequency representation this is

BS'
BI;

=jr jr&ijks [Bo+B (t)] '.

The spin operators are composed of two parts

(3.4)

Bo is the constant homogeneous field and B'(a ) an addi-
tional perturbation from which the susceptibility will be
derived. The S' are operators which obey the usual com-
mutation laws of angular momentum. Equations (3.2)
and (3.3) together result in the equation of motion

[(ito+Dq )5; k+prtejkBjo]S (ro, q)

=err Ejk(sj)B (co,q)+os(q)B'(co, q) . (3.10)

The matrix acting on S"(co,q) can be inverted and multi-
plying (3.10) with

(3.11)

(3.6)

where 5' describes the average polarization. of the spins in
the homogeneous magnetic field. We regard 5S'(t) and

we get the form

S'(ar, q) =X' (co,jq)Bj(ro, q),

where the dynamic susceptibility is
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[(lco+Dg )X(0)—X(q)]ps+pE; g+ [(i+Dg )X(q)+psX(0)+p]~;' pliX(0)~pa
X"(co,q) =

2 2 2 2(i~+De ) c—a I Bp
I

(3.13)

In a constant field parallel to the z axis the nonvanishing
terms are

(icoDq )X(q)+psX(0)
I Bp IX"(p~,q)=X (co,q)=

(i~+D~')' i a —
I Bp I

'

We see that it is sufficient to choose the ansatz

Ss(~„)=as( —~„),
&,(co„)=—&,( —~„) .

(4.6)

(4.7}

(&'pi+Dq')X(q)
X co, q 2 2 2(ico+Dq ) ps I

B—p I

X"(pi,q) = -X"(pi, q)

(i~+De')X(0) —X(q) 8
(ico+Dq ) pz I

B—p I

(3.14a)

(3.14b)

(3.14c)

1 coDq X(q)=8 co,g
ir m +(Dq cur )—

; Dq'[X(q) —X(0)]IB,
Ig i2(~ q)

co +(Dg ci) 'r~ )—

(3.15a)

(3.15b}

where we introduced the additional parameters w which
provide a cutoff at high frequencies and which are inter-
preted as magnetic relaxation time. %'ith these spectral
densities the forms (2.7) and (2.8) for the spin-diffusion
propagator in temperature representation follow.

IV. NUMERICAL RESULTS

In Eq. (2.46) the real and imaginary part of the gap are
mixed because the eigenvalues a(co„) and the spin fluctua-
tion Asia are complex functions. The imaginary part of
the gap h, (co„) has the matrix structure ~2o2 and there-
fore transforms like a spin S= 1 state under rotations in
space described by

We assume Bp to be weak enough that as a first approxi-
mation all terms of higher than first order in

I Bp I
can be

neglected.
The spectral density is found by taking the imaginary

part of X" and the real part of X',
8 "(co,q) =8 (pi, q)

The antisymmetry of the imaginary part (4.7) can be in-
terpreted as antisymmetry in time on the real axis and in
this way takes care of the Pauli principle.

From the form of the eigenvalue (2.36) we see that the
band-splitting term b plays the same role as Pauli
paramagnetism. The polarization term proportional to
(S) which itself is strongly temperature dependent can
make a large contribution to b and can by itself cause a
significant depression of 8, 2 as discussed by Umezawa
et al. This means there are two effects which can cause
the reentrant behavior, namely, band splitting and spin
fluctuations. We will regard each case separately, that is,
we will consider only the effect of spin fluctuations and
then only band splitting.

In the case where the polarization term is neglected, a
term Rek, ' (co„,pi ) remains in Eq. (2.24). Since A,

' is to
first order linearly dependent on the magnetic field, its in-
fluence on B,z is of second order and thus can be neglect-
ed. With b=0, all the functions A,s~ defined by (2.20) be-
come real. This will result in considerable simplifications.

The equation for the real part is

~s(pin }=~rTy a(pram }I~e-ph(~n p'ln )

—tr[Asii (a)„,co )]—p I

1
X sgn&~ + sgn&pg

~imp
(4.9)

&& &s( )+ a(n )~s(~n ) (4 &)
1

+imp

which gives, together with

~, =~&+~TQ I~&,i,(~.—~~)+«[~sw(~. ~~)]l

U =exp —P[rcr I2

6 G=U 'GU .

(4.1)

(4.2)

a closed set of Eliashberg equations. The spin-fluctuation
part is given by

~s~w(pin ~m )

This means that the Pauli exclusion principle is not satis-
fied by the parallel pairing of electrons nor by a sym-
metric space configuration which is the same for the real
and imaginary parts of the gap. However, it can be
shown that the following relations hold:

=Jfd
(2ir)' (r5 +e )m

3 —2

Dk X' (kF —k)

(co„—co )2~~+ Ice„—co
I
+Dk

a(co„)=a'( —co„),

~su(~n~~m)=~sw( ~n —~m)

~s'w(~. ~~ }=—4~( —~.,~~) .

(4.3)

(4.4)

(4.5)

(4.10)

It is possible but a rather lengthy task to integrate (4.10)
analytically. Details are given in the Appendix. In the
static limit ~„—co =0 the result is fairly simple:
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g(g+1) 2 (4kF/T )go+(T —T /T~ )
asia(~. ,ro ) = » Jf2„N(0)ln

12goqF [(gokF/T )' '~co„I /2eF+(T —T /T )'/']' (4.11)

which is in agreement with the result of Lee and is al-
ways the dominant part of the interaction even when
dynamics is included. In this last instance it is necessary
to employ the full equation (A4). We note that this ex-
pression was derived for the momentum-dependent static
susceptibility given in Eq. (2.12} and the dynamic exten-
sion including the magnetic relaxation time ~si [Eqs.
(2.9)—(2.11)]without the need for approximation.

In Figs. 1 and 2 we show two sets of B,z(T} diagrams
as a function of temperature for two values of the mag-
netic correlation length go which enters Eq. (2.12) for the
static-limit magnetic susceptibility. In Fig. 1, which we
discuss first, gokF/T =0.3 (a rather small value}. The
top curve is included for comparison and applies to the
case when spin fluctuations are completely omitted. In
this case, as in all the others, the electron-phonon spectral
density a F(Q) of Eq. (2.22) is taken to be that of Nb
metal with a mass enhancement factor k set equal to 1.
The Coulomb pseudopotential p,

' is chosen to get a criti-
cal temperature T,o of 1.0 meV. The set of lower curves
is labeled by the value of the effective strength between
the suprconducting electrons and the spins, namely,
N(0)J'~f. We see that, with increasing values of this pa-
rameter, the resulting B,2(T) curves start to deviate from
our reference curve in two distinctive ways. First„ the
spin fluctuations reduce the upper critical temperature
T, i. For N(0)jr=0.056 meV, T„ is already less than
half its initial value T, =1.0 meV. Further important
modifications occur resulting from the introduction of

spin fluctuations at low temperatures near the magnetic
critical temperature T~ which was set equal to 0.1 meV.
Even for the case N(0}jy~ 0——01.2 meV, which is the
smallest value for this parameter that is shown in Fig. 1,
superconductivity is destroyed on reaching TM. This is
due to the effect that at the temperature T the spin fluc-
tuation is determined only by the value in(eF/co) and the
chemical potential was chosen to be rather large with

eF ——5 eV. For larger values of the electron-magnetic cou-
pling, the reentrant temperature T,2 can be significantly
larger than T . This feature is due to the large increase
in the magnetic susceptibility ' that occurs as T ap-
proaches T . We note that, for small N(0j)y~, the max-
imum in B,2(T) is found to be closer to T so that an im-
portant resemblance to the usual curve B,, (T) remains.
At high values of N(O)dfd this resemblance is lost entire-
ly. In closing the discussion of this figure, we note that
all results described so far were calculated using the full
dynamical theory Asia (ro„,co~) but also coincide with the
static-limit results, Eq. (4.12). This is not the case for Fig.
2 where gokF/T =3.0. In this case, the resulting B,2(T)
curves are quite different from the curves previously
described. For the same value of N(0)d~z, the supercon-
ducting transition temperature T„ is smaller when go is
small. Also, the curves remain closer to the B,2o(T) curve
and the drop near the magnetic transition temperature T
is less significant. In fact, for the upper curves, T, i falls
below T~. For each value of N (0j)fd, labeling the curves
in Fig. 2 we find three distinct cases. The solid curves

I.o I.p

o.e p.e-

cn 0.6

I~
N
CP

0.4

6

I-
N
CP

Io 04

0.2

O.I 0.2 0.~ 0.4 0.5 0.6 0.V 0.8 O.g I.p
T (meV)

FIG. 1. Suppression of 8,2(T) by spin fluctuations with in-
creasing jfqN (0) given in meV. The magnetic correlation length
is@cF/T =0.3 and other parameters are S=1.5. T, without
spin fluctuations is taken to be 1.0 meV (11.5 K) and the mag-
netic transition set at T =0.1 meV. The difference between a
fully dynamic calculation of spin fluctuations and a static ap-
proximation is too small to show up.

O. l 0.2 0.5 0.4 0.5 0.6 0.7 PB 0.9 l.O
T (meV)

FIG. 2. Same as Fig. 1 but the magnetic correlation length is
taken as gokF/T =3.0. The dashed curve {———) is for

=0.1 meV ' and the dashed-dotted curve ( —.——~ ) for
=0.01 meV, where the spin diffusion is calculated with full

dynamic. (~~ is the magnetic relaxation time. ) The solid line
describes the static limit.
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full inclusions of the dynamics. We now want to discuss
the effects of band splitting on 8,2(T) curves.

If the term X' in the spin fiuctuations is not negligible,
its main contribution will result, according to Eqs. (2.46)
and (2.24), in an effective band splitting. The same effect
will also result from the polarization term (S). In our
second case, we regard next a superconductor without
spin fiuctuations but with this polarization term included.
Equation (2.46) reduces then to the coupled set

KT
~s(co. ) = g [Rea(~~)~s(~~)

m=0

0.2-

O.I 0.2 0.5 0.4 0.5 0.6 0.7 0.8 09 l.O
T (meV)

FIG. 3. 8,2( T) for different values of the magnetic coherence
length gkp/T given by the numbers above the curves. In all
cases S=1.5, the magnetic temperature is 0.1 meV, and the su-
perconducting temperature without spin fluctuations is set at
T p= 1.0 meV. The solid lines I,

') are the result of a static
approximation for the spin fluctuation, while the dashed-dotted
curves ( —~ —~ —~ ) were obtained using the full dynamic with

w~ =O. l meV

( ) describe the static limit, i.e., the spin fiuctuations
are treated in the approximation co„—co~ =0 with

Asia(co„, co ) reducing to formula (4.11). The other two
curves employ the full dynamic expression for
Asip(co„, co ) given by Eq. (A6). In this case, it is neces-
sary to specify the value of the magnetic relaxation time

which plays the role of a cutoff. There is little
knowledge about this parameter and we consider two
values, namely, r =0.1 meV ' (dashed curve) ( ———)

and 0.01 meV ' (dashed-dotted curve) ( —* ——).
Another parameter that enters the dynamic calculations
for spin fiuctuations is the constant c which relates the
spin-diffusion parameter D in Eq. (2.11}to the inverse of
the static susceptibility. This constant is, however, not ar-
bitrary once r is chosen and is to be determined from the
sum rule (2.13). The importance of satisfying this sum
rule has been stressed by Dupont et ctl. ' It is also present
in the work of Coffey et cil. ,

" which we have followed
closely except for the important fact that we chose inc and
VM1ed c.

On comparing static and dynamic results in Fig. 2 it be-
comes obvious that, in aH cases, the dynamic corrections
are significant and the differences in the results become
very pronounced for large values of N(0}J'yq. This effect
is further einphasized in Fig. 3 where the magnetic coher-
ence length go is varied and dynamic ( ——.—) and stat-
ic ( ) results are compared. AII curves are for

=0.1 meV'. The coupling strength N(0j)&z is not
fixed in these graphs but rather has been adjusted to get
the same superconducting temperature T„=9 K (0.78
meV). It is clear that for small values of go the static lim-
it is sufficient but this does not follow when go is large, in
which case quantitative results can only be obtained with

X[A,, ph(n —m)+A, , pi,(n+m+1) —2p']

+ [Rea(co„)b,s(co„)
1 I

Simp

—Ima(co, }h,(co„)], (4.12)

KT
b, (co„)= g [Rea(co )5,(co )+Ima(co„)bs(co )]

m=0

X [A, p&(n —m ) —A,, ph(n +m + 1)]

[Rea(co„)h,(co„}
I 1

7'imp

+ Ima(co„}b,,(co„)] . (4.13)

The sum over the negative Matsubara frequencies has
been converted to one over the positive ones using only
the symmetries (4.37)—(4.7). We see that for the imagi-
nary part the phonon interactions largely cancel and the
Coulomb repulsion p' has dropped out; however, a strong
mixing with the real part can be caused by the impurities.
Similar equations have already been used by Schossmann
and Schachinger' to explain the 8,2(T) of ViSi as due to
Pauli paramagnetic limiting. For the polarization it is
sufficient to assume the simplest possible model for the
susceptibility that is valid in this region, namely,

S(S+1)
& =Jfe&S &i= Jy~

— I a&
3k' ( T T)—(4.14)

and to introduce the polarization parameter

S(S+1) 1I =Jf
3k T (4.15)

In Fig. 4 we show reentrant B,z(T) curves resulting
from band splitting for different values of the parameter
p. In each case the reentrant temperature T,2 is O. I meV,
corresponding to a divergence in b due to the assumed
form of the model susceptibility in (4.14). Also the super-
conducting transition temperature T, i is fixed at 1 meV.
The electron-phonon spectral density is as always that of
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This last equation has the same form as (4.12) with 6, set
equal to zero but with the effective coupling and impurity
content reduced by the factor

( I/2~; p)[1/N(0)][lma(co„)]
1 ——

[1—(1/2w~~)[1/N(0)]Rea(c&i„) [Rea(to„)

which is clearly less than 1 for the case of r; ~ large since
the denominator in the second term is near 1.

V. CONCLUSION

We have presented a microscopic theory for the upper
critical magnetic field B,z(T) of a ferromagnetic super-
conductor in the paramagnetic region. A fundamental set
of Eliashberg-type equations is derived which fully in-
cludes the dynamics, as well as the band-splitting effect
caused by the polarization of the spin system. In our
derivations, which are valid for any amount of normal
impurities, the long-range nature of the spin correlations
in space are accounted for by making a new ansatz for the
pair amplitude in a magnetic field which does not assume
a contact interaction. This is necessary in order to avoid
an unphysical singularity which would otherwise be intro-
duced near the magnetic temperature due to the diver-
gence in the static magnetic susceptibility at that tempera-
ture. In our formulation it is found, from general symme-
try considerations, that the singlet and triplet amplitudes
are naturally mixed, a result already present in the work
of Rainer et al. ' Detailed numerical evaluations of the

I

full set of equations show that without approximation the
effect of spin fluctuations in the 8,2(T) curves can be
very significant for a certain range of values of the as-
sumed magnetic parameters. Furthermore, when the
magnetic coherence length ($0) is large, the dynamics of
the spin fluctuation cannot be ignored in quantitative cal-
culations. These effects are, however, less significant
when jo is small. As for the effects of band splitting, we

fin, as in previous works reviewed by Umezawa et al. ,
that they can be very large and can explain the observed
large anisotropies in single crystals. Furthermore, we find
that the 8,2 curves are sensitive to the amount of normal
impurities present and that they can be greatly affected by
triplet mixing for some ranges of values of the relevant
parameters.

APPENDIX

In Sec. II we have defined the spin-diffusion part of the
interaction

b Gm +i sgnco~
~sw(t&in &~m )=-

2w m' Nm+8 +E k

x jjyX (t&i» t&i»»kt'

By assuming a spherical Fermi surface the only remaining
angular dependence is in X' and the integration over an-
gles can be performed as a first step. For I"this is

'SS 1

6kpgo

2

0 t + —(k~+k') +tgo

Jtl

2

0 t + —(k+ —k') +tCo

~l8

2

2 2

{k+k~)'+t+(t' —0)'" (k k~)'+t (t—' 0)'"— —
+in

2

(k+k~)'+t —(t' —0)'~' (k k~)'+t +(t' ——0)'~'

(A2)

where

(A3)

{A4)

For the integral over the energy the dynamics of electrons is approximated over the Fermi surface by

(A5)

and we get a rather lengthy expression for A,
"after considerable algebra:
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jggN(0)S(S + 1)
4w(~an «to~ ) =

24COeF

where we defined

gokF'
Xo-

T

(4x, +t)' —t'+ Q
1n

M 2+ (p&)1/2[t + (Q )1/2j1/2+ (Q) 1/2
I

2

4x, +t+(t' Q—)' '
(t' —Q)'/' 4x, +t —(t' —Q)'"

+[t +(t2 Q)1/2]1/2—21n
+ [t (t2 Q)1/2]1/2

(A6)

(A7)

and

gokF (CO + tb )sgnai2 2
' 1/2

N =
Nl

26'F
(AS)

For the case that v Q & t the logarithm can be analytically continued to inverse tangent function.
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