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A nonperturbative argument is used to derive a one-electron Hamiltonian whose eigenfunctions
are in one-to-one correspondence with electron or hole quasiparticles of an g-electron system. Non-

local exchange is included exactly, and self-energy terms due to electronic correlation are included at
the level of approximation of a given S-electron wave function. %hen parametrized by quasiparti-
cle occupation numbers, this one-electron Hamiltonian is the functional derivative of an exact S-
electron energy functional, as in the Landau theory of interacting fermion systems. The present
nonperturbative derivation extends the Landau theory to ordered or localized systems for which

many-body perturbation theory is not directly applicable. Analysis of the Bardeen-Cooper-
Schrieffer (BCS) reduced Hamiltonian for superconductors leads to a temperature-dependent energy

gap and a transition temperature in good agreement with the BCS theory, in a formalism that con-

serves the number of electrons.

I. INTRODUCTION

Many-body perturbation theory runs into difficulties in
treating electronic interactions in condensed matter with
significant ordered or localized electronic structure. In
particular, ordered states that do not develop adiabatically
from corresponding unperturbed states cannot be
represented by the theory. The present paper approaches
many-body theory from a new point of view, in order to
develop a formalism that does not depend on perturbation
theory. Applications of current interest for such a theory
include materials in which both magnetic ordering and su-
perconductivity are possible, and narrow-band systems in
general.

For localized systems, or for localized states in extend-
ed systems, any quantitative theory must exclude the non-
physical Coulomb self-interaction of a single electron.
This is done trivially in the Hartree-Fock approximation,
by explicit use of nonlocal exchange. Using antisym-
metric N-electron variational wave functions, nonlocal ex-
change and correlation energies are computed quantita-
tively in current molecular theory. ' This direct ap-
proach is not feasible for extended systems. In solid-state
physics, the formalism of many-body perturbation theory
is highly developed and widely used. ' The natural model
of an unperturbed system is the free-electron gas. Because
the Hartree-Fock approximation is inaccurate for the
free-electron gas, exchange and correlation must be taken
into account at a common level of approximation, usually
represented by an effective local potential. Such an ap-
proxirnation can be inaccurate for localized states, because
the removal of one-electron Coulomb self-energy is not
exact.

In many-body perturbation theory, one-electron energy
levels are defined as roots of a Dyson equation, giving the
poles of the one-electron Green function. This formal-
ism has been used in recent calculations of band-gap pa-
rameters in Si, implementing the theory at the lowest
physically consistent level of perturbation terms. These

calculations resolve serious discrepancies in standard band
theory calculations using the local-density approximation
(LDA). ' While clearly more difficult than LDA calcu-
lations, the work of Hybertsen and Louie shows the im-
portance of including nonlocal electron self-energy, with
dynamical dielectric screening, in the Dyson equation.

It will be shown here that an effective one-electron
Hamiltonian is uniquely defined for a given eigenstate of
any ¹ lectron system. Nonlocal exchange is included ex-
actly, eliminating the one-electron Coulomb self-energy,
but other self-energy terms due to electronic correlation
are included at the level of approximation of the given
N-electron wave function.

The concept behind the formalism developed here is
that the correlated ¹lectron ground state is real and tan-
gible, while the point of departure of perturbation theory,
the so-called normal unperturbed state, is a nonphysical
artifact. The present theory is based on universal proper-
ties of correlated wave functions. Two basic principles
are exploited, and the apparatus of many-body theory is
derived from these principles. An effective one-electron
Hamiltonian is derived whose eigenvalues are Landau
one-electron energies, " derivatives of an exact energy
functional with respect to occupation numbers. The
eigenfunctions of this one-electron Hamiltonian are in
one-to-one correspondence with quasiparticle operators
appropriate to the Fermi-liquid model. " These operators
are explicitly constructed. Their properties make it possi-
ble to construct the one-electron Green function. Dyson
energies, defined as poles of this Green function, are equal
to the Landau one-electron energies in the case of normal
solids, whose one-electron functions are Bloch waves, but
not for finite or localized systems, for which the addition
or removal of one electron causes a finite change in the
one-electron Hamiltonian.

The first basic principle used here is that an exact ener-

gy expression for any ¹electron eigenstate can be
parameterized in terms of coefficients that are amplitudes
for virtual electron-pair excitation. The second basic
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principle is that any given S-electron eigenstate deter-
mines a unique orbital function basis, through the condi-
tion that the overlap between the N-electron wave func-
tion and a single Slater determinant should be maximized.
These orbital basis functions are eigenfunctions of a
uniquely defined one-electron Hamiltonian.

A novel aspect of the present formalism, which sup-
plants the adiabatic switching-on of standard perturbation
theory, is to represent the second-quantized Hamiltonian
of the interacting N-electron system in the orbital basis
adapted to a particular eigenstate. The explicit construc-
tion of quasiparticle operators and development of a Lan-
dau energy functional is carried out in this representation.

Section II here reviews the basic definitions of one-
electron energies in many-body perturbation theory and in
the Landau theory of interacting fermions (Fermi liquids).
Section III derives the one-electron Hamiltonian of the
present theory and shows that it is compatible with energy
levels derived from a Landau energy functional. Section
IV constructs quasiparticle operators defined by addition
or removal of one electron from a given N-electron eigen-
state, and shows that they are in one-to-one correspon-
dence with the eigenfunctions of the one-electron Hamil-
tonian appropriate to this state. Section V shows how to
construct the one-electron Green function. To demon-
strate that this formalism really moves onto new ground,
application to the BCS Hamiltonian is discussed in Sec.
VI. A summary and discussion is given in Sec. VII,

II. ONE-ELECTRON ENERGIES

One-electron energies can be defined in terins of elec-
tron and hole quasiparticles, using many-body perturba-
tion theory. If the N-electron ground state is

with energy E(N), then eigenstates of N —1 electrons,
with energies E(N —l, i) can be denoted by

N —l, i ) =i1;4 .

[rII re I =&pq all p e (6)

Orthonormality of the wave functions requires, using Eqs.
(2) and (3),

(N ~q,'q, ~N)=(N —l, i ~N —l,j)=5,,
( N

~
rl, rib

~

N ) = (N + l,a
~

N + 1,b ) =5,b .

(7a)

(7b)

If Eqs. (4) and (5) are valid, mean values of mixed opera-
tors such as )),));, with i &N &a, vanish in state

~

N).
Hence, Eqs. (6) are valid in this state, and the quasiparti-
cles have fermion properties.

An alternative definition of one-electron energies is
made in the phenomenological Fermi-liquid theory of
Landau. " An energy functional that depends only on
quasiparticle occupation numbers nP is postulated to exist.
Since these numbers are treated as continuous variables, a
grand canonical ensemble is assumed. For variations that
conserve total particle number

N =gnp,
P

a chemical potential p is defined such that E —pN is sta-
tionary. Given S, the ground state corresponds to the ab-
solute minimum of E —pN subject to the fermion condi-
tions

0&nP &1, all p .

One-electron energies at r=o are defined by

a fermion quasiparticle creation operator such that

([H,~,']—E.~.') ~
N) =O,

q. ~N)=0,

E(N + l,a) =E(N)+E„a & N .

Here, E, is the energy of an unoccupied electron quasi-
particle state.

The fermion property requires the anticommutator rela-
tions

Eigenstates of N+1 electrons, with energies E(N+1,a),
can be denoted by

ql'= 'N+ 1,a ) =i1,4 .

BE
FP =

Bn~

Hence, for the ground state, with i & N & a,

(10)

A one-to-one correspondence between orbital basis func-
tions IP;;P, I and the quasiparticle operators i);,)), will be
established in Sec. IV, below. Because of this correspon-
dence, Eq. (2) refers to a selected subset of N eigenstates
of the (N —1)-electron Hamiltonian. For consistency of
notation, the indexing of states

~
N+1,a) starts with

a =%+1.
In Eq. (2), q; is a fermion quasiparticle annihi1ation

operator, such that

nI=1) EI (p ) (1 la)

0 & nP ( 1, cP
——p;

n, =0, c,, )p .

(11b)

(1 lc)

The chemical potential (Fermi level) p is BE/BN, deter-
mined so that all quasiparticle states are occupied in order
of increasing energy unti1 Eqs. (8) and (11) are satisfied.
At nonzero temperature T, the entropy is

([q, ,H] —E,q, ) iN) =O,

qt~N)=0, (4)

S = —k g [n~ inn~ + (1 n~ )ln(1 n~ ) ] . — —
P

(12)

E(N —l,i)=E(N) E;, i =1,2, . . . , N —.
Here, E; is the energy of an occupied electron quasiparti-
cle state in the N-electron state

~

N). In Eq. (3), i), is

Free energy E —pX —TS is minimized to determine the
occupation numbers for nonzero T,

n~ = [exp[(e~ p) lkT]+1]—
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Equations (4), (5), and (10) must be recognized as dif-
ferent definitions of one-electron energies. To emphasize
this point, E, or E„defined by Eqs. (4) or (5), respective-
ly, can be referred to as Dyson energies, and e; or c, of
Eqs. (10) and (11) as Landau energies. For the same phys-
ical model, they must be related by

I

E;= c;dn;, i(X,
0

1

E, = e,, dn„a~%.
0

(14b)

For localized systems, the Landau and Dyson energies
are clearly different. Since N is quantized, the Landau
definition requires a statistical definition of nonintegral
occupation numbers. In standard many-body theory, oc-
cupation numbers (nz) are defined for quasiparticles
represented in the orbital basis that diagonalizes the un-
perturbed Hamiltonian. The present formalism differs by
constructing a particular b'asis IP;;P, t that is determined
by a true eigenstate of N electrons. The basis orbitals are
in one-to-one correspondence with states

I
5 —I,i ) and

I
N+l, a) of N —1 and %+1 electrons, respectively.

By requiring finite or periodic boundary conditions, it can
be assumed that energy levels are discrete. In this case,
occupation numbers in a pure quantum state will be
shown to be quantized, having values 0 or 1 only, except
for possible degeneracies exactly at the Fermi level. Frac-
tional occupation numbers I n~ ) are defined only statisti-
cally. Values of an energy functional interpolating be-
tween integral [ nz j, as postulated in the Landau theory,
can be chosen for analytical convenience, so long as the
values for integral I n~ J are correct. This argument shows
that discontinuities in dE/dn at integral t n~I are not a
necessary consequence of the underlying quantum theory,
despite recent emphasis on such discontinuities in the
Kohn-Sham formalism. ' ' An energy functional will be
considered here that is based on an exact formula for the
N-electron energy, for any ¹ This functional is a poly-
nomial function of occupation numbers. Hence the Lan-
dau energies given in Eq. (10) are continuous at integral

f np 1.

III. DERIVATION OF THE ONE-ELECTRON
HAMILTONIAN

The present discussion is concerned with ground-state
properties and low-lying excitations of ¹lectron sys-
tems. Theorems of Hohenberg and Kohn establish for
fixed N that the ground-state energy Eo is a functional of
the one-electron density, and that E0 is minimized by the
true ground-state one-electron density function. Low-
lying excitations of the ground state can be considered in
terms of eigenstates of N —1 and %+1 electrons in the
same cxtcfnal potential. ' As discussed in detail by NG-

zieres, many-body perturbation theory can be used to jus-
tify the Landau Fermi-liquid model, in which the N
electron energy is treated as a function of occupation
numbers in a particular one-electron orbital basis.

The present argument differs froin previous develop-
ments of this theory by defining an orbital basis that is
determined by the true N-electron wave function. This
basis is transformed as the wave function varies. This

eliminates the functional derivatives with respect to basis
variation of the exact formula for N-electron energy used
here, which becomes a function of occupation numbers as
postulated in the Landau theory. Internal consistency re-
quires that the equations that determine the orbital basis
should also determine Landau energies in agreement with
Eq. (10). This will be demonstrated here.

The Hamiltonian operator for N electrons is of the
form

H =g h (x;}++u(x;, x~),

where i,j = 1, . . . , X and ij denotes distinct index pairs
with i &j. In second-quantized notation,

H= g g(p Ih Iq)a~a~
P

+ —,
' g g g g(pq I

u
I
sr)apaqa„a, , (16)

where az is an electron creation operator for orbital state
Pz(x}, and the adjoint a~ is the corresponding annihilation
operator. Equation (16) is valid for arbitrary ¹ The in-
dices run over an assumed complete orthonormal set of
basis orbitals, with specific spin indices suppressed. The
basis is assumed to be discretized by imposing periodic
boundary conditions on a macroscopic cell boundary, or
by confining the system to a finite volume. The one-
electron operator h includes all external potentials, and u

is the unscreened Coulomb interaction.
It is convenient to subdivide the orthonormal orbital

basis for X-electron wave functions into two subsets: N
orbitals IP; I that are occupied in a reference Slater deter-
minant 40, and the residual set of unoccupied orbitals

tP, I. A normalized Slater determinant can be denoted
by 4,J ", indicating that orbitals P;,Pj, . . . , occupied in

40, are replaced, in the order given by P„Pi„.. . . By
convention here i,j,k, . . . &%&a,b, c, . . . . In second-
quantized notation,

C'o= &r ' ' ' a i I
vac ~ .

The determinantal basis is generated in the form

aC, =a.a, e0,

(17)

ab4; =a,aha-a;40,

An X-electron wave function is expanded as

q =c, e,+g ge', c,'+g QC'„'c,',"+.. .
i a ij ab

(19)

It will be assumed here that the orbital basis maximizes
the weight of reference determinant N0 in a given wave
function 4. It has been shown' ' that this condition
eliminates single-excitation functions 4; from the expan-
sion of 4'. %'ave functions of this structure are said to
satisfy the Brueckner condition. ' ' From Eq. (19},

co ——(@0
I
ql) .

Orbital variations of 40 are of the form
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since 40 is invariant under unitary transformation of its
occupied orbitals (P; j. It follows from Eq. (21) that sta-
tionary

I
co I

implies

(4,'I +)=coe =0, i &%&a, (22)

& =g (i I" I i)+g (iJ
I

u
I ij)+g g (ij

I
U

I
ab)cJ.

which is the Brueckner condition.
If all coefficients c vanish in Eq. (19), and if 4 is an

eigenfunction of H, the energy eigenvalue is given exactly
by

external potential but different boundary conditions.
Since u is a functional of electron density, such an ap-
proximation is plausible.

Since the energy E is determined in Eq. (23) by the pa-
rameters c~, in an orbital basis for which all coefficients
e vanish, the corresponding one-electron Hamiltonian A
must also depend on these parameters. The form of 4
compatible with Eq. (23) will be derived here. Stability of
Eq. (22), the Brueckner condition, or independence of
time in a tine-dependent formalism, requires that matrix
elements of JI should vanish for virtual single excitations.
This stabihty condition defines an effective one-electron
Hamiltonian A such that

ij ub
(a IA Ii)=(4; IH I%)=0, i &%&a . (27)

Here, u denotes the Coulomb-exchange operator U(l P), —
where P exchanges electron coordinates. Equation (23) is
exact because there are no terms involving more than two
electrons in the electronic Hamiltonian. Since 40 is as-
sumed to be the Slater determinant of greatest weight in
the expansion of +,

I e,"I &1, ij &% &a,b (24)

by construction. The wave function 4 is invariant under
separate unitary transformation of the occupied orbitals
IP; j and the unoccupied orbitals IP, j, and Eq. (23) is
also invariant to such transformations. Since (ij

I
U

I
ab)

is separately antisymmetric in the index pairs ij and ab,
the coefficients can be assumed to have the same antisym-
metry, corresponding to matrix elements of an effective
operator u,

c,j =( ;a+s—j s, —es) '(ab
I

u
I
ij) . (25)

This form is exhibited in the lowest order of perturbation
theory,

c~ =(E DJ ) '(ab
I

U—
I ij), (26)

where the energy denominator depends on the particular
perturbation formalism. Equation (26) is consistent with
treating u in Eq. (25) as an operator.

From the Hohenberg-Kohn theorems, if 0 is the elec-
tronic ground state for fixed E, the effective operator u
can be considered to be a functional of electron density,
since the orbital basis IP;;P, j and the coefficients c,j are
determined by %. The coefficients c1 will be treated here
as parameters to be computed or estimated by detailed
perturbation or variational calculations. In principle, they
are determined by a stationary variational condition.
Quantitative results have been obtained for electronic pair
correlation in calculations on atoms and molecules. ' * "'

Values of c~ in a particular basis can be abstracted from
such calculations. For an extended system, large molecule
or solid, calculations within an atomic cell could be con-
sidered to give matrix elements of an effective operator u,
as in Eq. (25). This matrix of u can be converted to a
basis of Bloch waves in a solid by simple linear transfor-
mation. This procedure is justified if the operator u can
be considered to be independent of one™electron occupa-
tion numbers, for ground-state functions with the same

These equations imply that the form of Eq. (23} is
preserved under first-order variations of the orbital basis.

In the Hartree-Fock approximation, the effective one-
electron Hamiltonian,

(28)

ij ab ij,k a, b, e

Since terms of quadratic or higher order in the coeffi-
cients c,j are absent from Eq. (23), it is consistent to oinit
terms of this order from (a

I
4 I i } deri~ed from Eq. (27),

which becomes, for i & N & a,

(a IMI!)= (0 IP Oli)+y y(aj I
0

I cb)CJ
j c,b

—g g (kj I
U

I ib)cp~ =0 .
k,j b

(30}

The residual terms in E . (27) can be considered to
determine the coefficients cJk through linear equations

g g(j I
A Ol b)cj +g g(jk I

U
I bc)cjk =0,

j b jk be

i &%&a, (31)

from which coefficients egg,
' can be constructed

by antisymmetrizing products c,
& yk if the coefficients yk

satisfy equations

V i~01»+g QVk IUIbc)r'k=0, j &&&b. (32)

The sum of Eqs. (30) and (31) gives Eq. (27) exactly, with
unrestricted sums as indicated. This form is obtained' by
transferring certain "exclusion principle violating" terms
between the originally derived last two terms of Eq. (30)
and the first term of Eq. (31). Because elements

is invariant under unitary transformation of the occupied
orbital set IP; j and is not affected by transformation of
the unoccupied set IP, j. Hence a canonical basis can be
constructed in which 4 0 is diagonalized. A similar situ-
ation holds for the operator A to be considered here,
which includes electronic correlation.

The matrix elements in Eq. (27) are well known'5' for
%' expanded through virtual triple excitations:

(29)
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(j i
A 0 i

b), for j&E &b, vanish in the Hartree-Fock ap-
proximation, they are of order c J . Hence, both terms in

Eq. (31) are essentially of second order in these coeffi-
cients. If the orbital basis is determined by Eq. (30), solu-
tion of Eqs. (31) is required for consistent solution of the
X-electron Schrodinger equation, following Eq. (27).
Since coefficients c Jk are not needed for energy-level cal-
culations, Eqs. (31) can be assumed without actually being
solved.

Since total wave function and energy are invariant
under separate unitary transformation of occupied and
unoccupied orbitals, Eq. (30) determines the orbital basis

up to such transformations and ensures that the energy is
stationary with respect to orbital variations. Consistent
definition of an operator A in the subspace of occupied
orbitals, i, 1 &N is given by

(1
I
~

I
i) = (1

I ~0
I
i)+g g (jiI u

I c»ci1
j c,b

sentation of the orbital basis, followed by redefinition of
for these parameters, and solution of the orbital eigen-

value equations with the current parameterized operator

Equation (23) is an exact energy formula for N elec-
trons. It depends only on numerical values of the coeffi-
cients c;1 in a particular orbital basis. If the operator
form of c,j is assumed, as in Eq. (2S), then the sums in
Eq. (23) are invariant under separate unitary transforma-
tions of the occupied orbitals {P;I and the unoccupied or-
bitals {P,). The procedure followed here is to construct
this orbital basis so that E is stationary with respect to
transformations that mix occupied and unoccupied orbi-
tals. Then the functional derivatives of the energy with
respect to orbital variations vanish, and E given by Eq.
(23) acts as a functional of occupation numbers, as postu-
lated in the Landau theory. The implied energy function-
al is

E({nI)= g«« I
ii

I i)+gn nj(ij I
u iij)

—g g (kj
i

u
i
ib)cg, .

k,j b

In the unoccupied subspace, a,d ~N,

(33a) +$ n;nl $ (1 n, —)(1 nb)(i—j i
u

i
ab)c J

ij ab

(a
i
A

i
d) = (a

i
A 0 i d)+g g (aj

i
u

i cb)c~z
j e, b

—g g(kj iu idb)ckj .
k,j b

(33b)

Coefficients ck& in Eq. (33a) are defined by electronic
correlation in state

i
N —1,1). Similarly, coefficients c~i

in Eq. (33b) are defmed in state
i
N + l,d ).

While the present derivation is not dependent on pertur-
bation theory, it is important to show that the formalism
is correct when perturbation theory is valid. This is
demonstrated most directly by comparing Eqs. (33) with
the graphical representation of the electron self-energy,
given in particular by Thouless (Fig. 19, p. 68). When
first-order perturbation formulas are valid for the coeffi-
cients c1, the three terms of Eqs. (33) correspond to the
first- and second-order connected self-energy diagrams
shown by Thouless.

Because of the antisymmetry of coefficients cj, for
both upper and lower index pairs, the internal sums in
Eqs. (30) and (33) are invariant under unitary transforma-
tion separately of the occupied and unoccupied basis orbi-
tals. Hence 4 is defined as an operator, independent of
representation. Unlike the Dyson equation in perturba-
tion theory, the effective Schrodinger equation involving
,P is linear, since A does not depend on the eigenvalues.
The coefficients c

~
are of course dependent on total ener-

gy and on the total eigenstate, but they are treated as
given numerical parameters here. In applications of this
formalism, this implies an outer self-consistency loop, in
which coefficients c,J. are determined for a given repre-

The sums here are unrestricted in range, but indexes are
chosen to correspond to Eq. (23) for the ground state ener-

gy when i,j&X &a,b. The coefficients c,j are assumed
to be defined for all index values. Equation (34) acts as a
functional of occupation numbers in the vicinity of the
ground state of N electrons, or of whatever other state is
used to determine the orbital basis, which is assumed to
vary with the N-electron state. The coefficients cj also
vary with the N-electron state, but are determined varia-
tionally.

By construction here, the N-electron energy is station-
ary with respect to variations of the orbital basis and of
the pair-excitation coefficients c& . The Rayleigh quo-
tient, which can be expressed as Eq. (34) plus a second
more complicated term that vanishes for an exact E-
electron eigenfunction, is stationary with respect to all
variations with specified occupation numbers. This
second term can be expressed as a functional of the N-
electron wave function 4 and of the reference state 40. It
does not depend explicitly on occupation numbers. Its
functional derivatives with respect to the orbital basis and
partial derivations with respect to the coefficients cj do
not vanish, but they cancel exactly the explicit derivatives
of Eq. (34). Hence, although the orbital basis and pair
coefficients are implicit functions of the occupation num-
bers, the chain rule for partial derivatives implies that
variations of total energy with respect to occupation num-
bers are given by the explicit partial derivatives of Eq. (34)
with respect to these numbers.

For arbitrary occupation numbers, matrix elements of
the one-electron Hamiltonian A ({nI ), given by Eq. (30),
take the form

(S I
~({nI) I e)= (p I

b
I e)+2 niVJ i

u
I e)+Q nj g (1—n. )(1—ns)V j I

u
I
ab)c~

J j a, b

—gn;n g(1 ns)(ij i
u iq—b)c/~

I,J
(3S)
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Correspondence with the Landau theory is demonstrated

by evaluating the partial derivatives of E(InI ) with

respect to occupation numbers, defining, from Eq. (34),

[Hri;]
~

N) =0, i &E,
[ri„H) i

X) =0, a )X,
(42a)

(42b)

= (p I
h

I I»)+gn&(ii I

u le)
Bnp

+gn g(1 n,—)(1 n—&)(pj
~

u
~

ab)c'

to the same level of approximation. These equations pro-
vide consistency conditions for an orbital basis compatible
with an assumed form of the quasiparticle operators.
Since a, +0 is not identically zero for a & X and a;4O is
not identically zero for i &N, Eqs. (42) are equivalent to
definitions of a one-electron Hamiltonian 4 such that—gn;n, g(1 nb—)(ij

~

u ~pb)cP. (36)
(a

~

M
~

i ) = (40
~

a, [H ri; ] ~

X ) =0, i & X &a, (43a)

In a diagonal representation of 4 ( [ n I ), Eqs. (35) and (36)
are identical, showing that Eq. (34) defines a Landau
functional. The Landau energies are

or

(a ~A'~i)=(op~ a; [7/„H] ~X) =0, l'&X(a . (43b)

=(i ~A ~i), i &N, (37a)
In the Hartree-Foek approximation, using Eq. (40) and
the corresponding expression for a, [H, a; ], Eqs. (43) both
reduce to

=(a ~A ~a), a&X,
7f~

(37b)

IV. QUASIPARTICLE STATES AND ENERGIES

Because of electronic interaction, the quasiparticle
operators are not elementary one-electron operators. In
the equations-of-motion' or excitation operator' method,
the structure of these operators is deduced by substituting
a linear combination of elementary operators a, aaa, etc. ,
into Eqs. (4) that define the quasiparticle operator ri;, and
similarly for qi, defined by Eqs. (5). The basic commuta-
tor required is

[ap,H]=g(p
~

h ~s)a, +g g g(pq ~

u ~sr)aqa, a, .
q r s

(38)

The resulting hierarchy of operator equations is closed
and reduced to numerical equations for the coefficients by
using mean values or anticommutator relations.

As an example, the Hartree-Foek approximation is ob-
tained by allowing the operator [ap,H] to act on the
single-determinant state 40 of Eq. (17). The hierarchy of
equations is closed by replacing all operator products by
their mean values in state 4o,

ap a& np 5' ap aq araz —
np nq ( 5' 5qr 5pr 5' ) (39)

where n&, nq are occupation numbers in 40. Then, using
Eqs. (39),

a; [a„H]=(a
~

A o ~

i) =0, i &X & a, (40)

if Eq. (27) is applied to the Hartree-Fock operator defined
by Eq. (28). In a diagonal representation of 4 o,

([a;,H] —e;a;)@o—-0 (41)

if the orbital basis satisfies Eq. (40) and c.; is an eigenvalue
of A 0. Since a;@o is identically zero, Eqs. (4) are satis-
fied, and a; acts on 40 as a quasiparticle annihilation
operator.

If Eqs. (4) and (5) are approximately satisfied, then

for the N-electron ground state. Equations (35) define the
operator 4 as a functional of occupation numbers.

q r s

where, if Eq. (25) is valid,

(cpq)'= —cpq . (47)

This ansatz, Eqs. (46), will be shown to be consistent with
Eqs. (4) and (5) and with Eq. (45) if coefficients c,

&
with

i,j & X & a, b are equal to the corresponding coefficients in
Eq. (45). As in Eqs. (33), coefficients in which one pair of
indices are of mixed range, such as c;J with i,j,I & X & b,
are defined in states

~

X —l, l ). Similarly, coefficients
cdj, with j &X&d,a, b are defined in state

~

%+1„d).
Coefficients for which r &X &s or s &X & r in Eqs. (46)
are not determined by the present argument, and will be
assumed to vanish. Certain coefficients with repeated in-
dices occur and cannot be assumed to be zero. Thus,
cj =c~, evaluated in state

~

X —l,i ) when expanded in
the orbital basis appropriate to state

~

X). Similarly,
c,'1 =cj, evaluated in state

~

X+ l, a ) in the orbital basis
for state

~

X).
The orbital basis must satisfy Eqs. (43). It will be

shown that with the assumed form of the quasiparticle

(a ~AD~i)=0, i(X &a,

for i);=a; and ri, =a, . Thus Eqs. (43) are compatible
with Eq. (27) in the Hartree-Fock case. It should be noted
that Eq. (44) determines the determinantal wave function
40, invariant under unitary transformation of its occupied
orbitals, whether or not the operator A 0 is diagonalized
within the set of occupied orbitals.

An unnormalized X-electron wave function subject to
the Brueckner condition can be expressed as

e=e,+y y e',,"c,", +
ij ab

which implies the exact energy formula given by Eq. (23).
Unnormalized quasiparticle operators will be assumed to
have a form in one-to-one correspondence with the orbital
basis functions,

I PS

rip ——ap+ —, g g g aqa„a, cpq+
q 1 S

(46)
~p=ap+ i X X Xa a aq(c~) + '
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=cJ i
vac&

Hence, Eq. (50} is approximated by

a, b

(51)

(52)

and Eq. (48) gives precisely the terms included in Eq. (45).
Because the coefficients CJ are antisymmetric with

respect to index pair (i,j ), both leading terms of Eq. (52)
vanish when i =j, in agreement with the anticommutator
relations. This verifies the second of Eqs. (4). The effect
of i)„Q ~ N, operating on 4 can be found from

operators, Eqs. (43) are compatible with the Brueckner
condition, which implies Eq. (27) and defines an effective
one-electron Hamiltonian operator. An implication of
these results is that 4 takes the form of a "quasideter-
minant, " constructed in analogy to 40, Eq. (17), but with
bare electron creation operators Q; replaced by g;, for
i&%,

q'=
I
&&='9x ' ' Rilvac& . (48)

The number operators g&g~ are quantized in this state,
with occupation number eigenvalues

n;=l, n, =o, i &%~a .

The product of operators rj; and g~, with i,j & N, as de-

fined by Eqs. (46) with the assumed coefficient values,

reduces to
ab ~ ab

i);i), =Q; Q, + (QkQ, c;k Q; —Qkck; )Q,Qb+
a, b k

(50)

if terms quadratic in the coefficients are neglected.
Operator products that annihilate the vacuum state are
neglected. Then, for the term in parentheses,

g (QkQJ C;k —Q; Qkckj )
~

vac & =(1 n; —n~ )cJ—
~
~vac &

ab t ab ab

k

(40
~

Q; rI, H
~

N & =0, i &E &Q . (55b)

From Eqs. (46), for i), products QJQ, Qi, annihilate
(4o

~
Q, when operating to the left in the first of Eqs. (55),

and nonvanishing terms in aha&a; are quadratic in c,j .
Hence, g; can be replaced by a; in this equation,
which becomes identical to Eq. (54}. Similarly, in the
second of Eqs. (55), i), can be replaced by Q„and this
equation also reduces to Eq. (54). Hence, to the accuracy
of terms retained in Eqs. (46), Eqs. (27) and (43) are con-
sistent.

Equation (43a) cannot be extended to define matrix ele-
ments ( I

~

4
~

i ) for i, l &X within the occupied basis set,
because Qi 40 vanishes identically. However, an effective
operator M~ can be defined in the eigenstate

~

X —1,1&

by its matrix elements in the orbital basis that diagonal-
izes A for state

~

E&. This gives

(I
I ~i

I
i)= («C o I Qi[»rj ]I &.—1 I &

= ( &bo
~
[H, g; ]re ~

E &
=F.; 5i;, i, l (E . (56)

The Dyson energy E; occurs here, as required by Eqs. (4),
rather than the Landau energy c;. Nondiagonal elements
can be evaluated, using Eqs. (46) and neglecting terms
quadratic in coefficients c J",

(I [ ~i [
I) = (I

]
~

[
i) =0, I~j,

which verifies the assumed form of operators rI& in Eqs.
(46).

Similarly, from Eq. (43b}, matrix elements of an effec-
tive operator A can be defined in the orbital basis that
diagonalizes A for state

~
N&,

(1
~

4
~

d}= (Q~40
~
Q~[i)„H)

~

N + l,d &

=(40~ [rI„H)re ~
N&=E, 5,q, Q, d PN .

(58)

Nondiagonal elements, evaluated using Eqs. (46), are

(Q ~M~d)=(Q ~~~d)=0, dWQ, Q, d&E. (59)
a, +~ ~aajabcj +

i,j b

gbX Q(. QJ +g QgQyC(J +
a, b

r

abQQ, c;, QQ, c;, +.-=0.
b b

Neglecting terms quadratic in the coefficients cj, this
verifies the second of Eqs. (5}.

%ith quasiparticle operators approximated as in Eqs.
(46}, it must be verified that Eqs. (27) and (43) are compa-
tible, so that the one-electron Hamiltonian A is uniquely
defined. A diagonalized representation of A is assumed.
Expressed in second-quantized notation, Eq. (27) is

(NO~Q;~Q, H ~X& =0, i &X&Q . (54}

A (n;)=A (1)— (1)(1 n;)+ . , i &N,—BA

nI.

A (n, )=A (0)+ (0)n, +. . . , QX.BA

BngUsing Eqs. (4) and (5), Eqs. (43) reduce to

—(@0
~
Q, q(H

~
X& =0, i &X &Q, (55a) Hence, from Eqs. (14), for i (X,

Equations (43), (57), and (59) establish a one-to-one
correspondence between the basis orbitals [P;;P, J that di-
agonalize the effective one-electron Hamiltonian A and
quasiparticle operators with the same indices. The Dyson
energies that occur in Eqs. (56) and (58) can be computed
by integrating Eqs. (14},using Landau energies c; and e,
that are eigenvalues of the operator functional 4 ([n I)
given by Eq. (35). In principle, the orbital basis should be
recomputed for each set of occupation numbers. A simple
approximation is obtained by expanding the operator A
in the Taylor series of occupation number displacements
about the X-electron ground state. In particular,
suppressing indication of occupation numbers that retain
their ground state values,
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fined by

lN) =riisplN —1, 1sP) (67)

(61)

evaluated for n;=1. Froin Eq. (36) this approximation
gives

is

g2
crisp a Isp 1sa +g ~afPaaC is 2 ~ isOa &

(68)

E,. =s,.+g n. g ( I —nb)(ij
l

U lib)c/'l, i (N . (62)
j b

Similarly, for a & N,

defined in a mixed basis. The rePresentation of ais a in

the orthonormal basis for state
l
N ), as assumed in Eqs.

(46), is

1 AE, = f a 4 (0)+n, (0)+ a dn,
0 Blia

1sa
u lsoa 1sa +g uaaCaa

a
(69)

1 a

2 c)ll
(63)

neglecting terms quadratic in the coefficients defined by
Et). (69). When substituted into Eq. (68), using
a 1,~ 1, ——1, again neglecting quadratic terms, this gives

l

N }= ls +g ((1,c'„& . (65)

The two occupied orbitals are isa and lsP, with identical
radial wave functions. The S ground state of He+ is de-
generate. The spin-up substate is indexed by 1sP, the or-
bital removed from the reference determinant of the state

l
N ), if the orbital basis were not changed. However, the

basis must change in this case, and the eigenstate is

l
N —1, 1sP~ = lsoa .

The hydrogenic 1s0 orbital of He+ is distinctly more
compact than the occupied ls natural orbital of He, since
the two electrons of the neutral atom mutually screen
each other. The Landau energies ei,p must differ in these
two states, Eqs. (65) and (66), because the appropriate or-
bital basis changes. Neither of these Landau energies
equals the Dyson energy Ei,p, which is defined as the
difference between total energy eigenvalues.

In this example, the exact quasiparticle operator de-

evaluated for n, =0. From Eq. (36),

Ea —=sa Q—nl Q(l —nb)(aj I
U

l
ab)cap' a &N . «4)

j b

The coefficients c~ and c,'l in Eqs. (62) and (64) reduce
to one-electron virtual excitation coefficients cl, which
vanish in state

l
N) by construction (the Brueckner con-

dition). However, in Eqs. (60), the orbital basis appropri-
ate to state

l
N ) is used in states

l
N —l, i ) and

l
N+ l,a ). The Brueckner condition no longer holds in

these states for this basis. The extra terms in Eqs. (62)
and (64) vanish if 4 does not change when one electron is
added or removed. In a normal periodic solid the addition
or removal of one Bloch wave can have only an infini-
tesimal effect on A, so that Landau and Dyson energies
can be identified. In contrast, finite effects are expected
for finite systems or for localized states in solids.

To illustrate the points made in this formal argument,
consider the He atom as an extreme example of a finite
system. The 'S ground-state wave function can be
represented in a natural orbital expansion, which satisfies
the Brueckner condition, for N =2,

g2
lisp a 1sp+ ~ + isaliapPaaC is 2

1sa+g aa isa@ 1saCaa + (70)

This agrees with Eqs. (46) if

lsP 1sa 1sa
C1spaa =C~a (71)

and identifies terms in Eqs. (46) whose coefficients have
repeated indices, like c„with transformations of the or-
bital basis.

Studies of the infinite uniform interacting free-electron
gas ' ' indicate that electronic exchange and correlation
must be considered together when electrons interact
through the unscreened Coulomb potential. Rapid depen-
dence on momentum transfer of the exchange potential is
largely compensated by a corresponding variation of the
correlation potential. The full effective exchange-
correlation potential is accordingly much more localized
(independent of momentum transfer) than either of its
separate unscreened components. In Eq. (23), which is ex-
act for total energy, there must be substantial cancellation
between the last two terms, in a basis of Bloch waves for a
solid. To exploit this cancellation, due to dielectric
screening, approximations in the two terms must be con-
sistent. The most systematic approach is to replace the
bare Coulomb potential by a dynamically screened poten-
tial, which can be obtained either by canonical transfor-
mation or by constructing the residual intrinsic electronic
Hamiltonian after decoupling collective plasma excita-
tions. ' ' ' As a practical alternative, calculations within a
neutral translational cell could simply omit all effects of
external potentials, retaining only a screened Madelung
potential, thus assuming that dielectric screening confines
the Coulomb interaction to the range of a lattice spacing.
The error in this model could be estimated and corrected
by a perturbation calculation of the dynamical screening
effect, starting from wave functions computed in the
strictly localized model. The method suggested here for
estimating coefficients cj in a basis of Bloch waves could
be used for such calculations.
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V. THE SINGLE-PARTICLE GREEN FUNCTION (N ~a;g ri, re, ~N)= —c ', i,j &N&a, b . (79)

If a complete set of quasiparticle operators are known,
the single-particle Green function can be constructed.
Following Hedin and Lundqvist, the zero-temperature
one-electron Green function is

X I X g X g X
G(x,x', E)= + (72)

e Ef—i r—i, s Ez—+ i ri

in the limit g~O+, in coordinate-energy representation.
The functions fi(x) and fq(x) will be defined below. The
sums here are over complete sets of states of N —1 and
N+1 electrons, respectively, for indices I and A. When
imposed finite or periodic boundary conditions are re-

laxed, the sums in Eq. (72) are replaced by integrals over a
continuous energy range, weighted by density-of-states
factors, and the total excitation energies EI or Ez take on
complex values. The resulting contour integrals have
complex values.

The orbital basis set constructed here is in one-to-one
correspondence with a set of quasiparticle operators. Al-
though the orbital set can be assumed to be complete (and
orthogonal), this cannot be true for the states

~

N —l, i )
and

~
N+ 1,a) identified in terms of the quasiparticle

operators ri; and ri„respectively, acting on state
~

N ). A
complete manifold of states of N —1 electrons must in-
clude all orders of excitation, represented by operators

JI li~ li IJ Ib~ (73)

acting on
~

N ). Similarly, for N + 1 electrons, a com-
plete manifold requires operators

9A Ia~ Ij Ia ib~ (74)

acting on
~

N ).
The functions in Eq. (72) are defined by

Similarly, operator a, has a component in state

~

N —1,(ij;b)) =Y);ri gb ~

N) .

The amplitude coefficient is

(N
~ gi, gfg;a, ~N) = cP)—~, i j &N &a, b .

(80)

The energy of the higher-order state defined by Eq. (78) is
estimated by E(N)+Ef.,i„where

Ej .,b ——E, +Eb —E (82)

f;(x)=P;(x), i &N,

f& i, (x)= —g.((((x) c,fi j &N &a,b, (84)

Similarly, the energy of the state defined by Eq. (80) is es-
timated by E(N) E" i„—whe.re

Er');b =E; +Ej —Eb ~

Since the orbital basis is chosen to diagonalize the sin-

gle quasiparticle Landau energies c,; and c„respectively,
it cannot be assumed that the energies of states I =(ij;b)
or A =(j;ab) are exactly diagonalized at the same level of
approximation. Hence, Eqs. (82) and (83) are mean values
in approximate eigenstates. Energy shifts due to interac-
tions among these states could be estimated by direct cal-
culations of the relevant (N —1) or (N + 1)-electron
eigenstates.

The present argument shows, for interacting fermions,
that the set of quasiparticle operators ri; or ri, must be
augmented by higher-order operators, as in Eqs. (73) or
(74). From Eqs. (75), (77), and (81), functions fi(x) at
successive orders of excitation of the (N —1)-electron
manifold are

fr(x(=(((' —(,I g((, (x)ax ((r),
P

frtx(=(((' gr(rx(x(rrx +(((,rA) .

P

(75) Similarly, from Eqs. (75), (77), and (79), the functions
fq(x) at successive orders of excitation of the (N+1)-
electron manifold are

In the orbital basis constructed here for state
bare electron annihilation operators can be expanded by
inversion of Eqs. (46),

ai, =re, + i g g Qadi. ri.risc„+ (76)
S

with nonzero coefficients determined as in Eqs. (46). Us-
ing Eqs. (7), matrix elements of the bare electron opera-
tors are, from Eq. (76),

(N —l,i ~a~ ~N)=(N ~ri;a~ ~N)=5~, i &N, (77a)

(N )az [N+l, a)=(N )a vp, )N)=5, a&N . (77b)

Higher-order states, as indicated in Eqs. (73) and (74), also
produce matrix elements of the bare electron operators aP.
The operator a; has a component in state

I
N+1, (j;ab)) =rij.ri, ref, ~

N) .

Using Eq. (76), the amplitude coefficient is

f, (x), N &a,

ff.,i, (x)= —g(t(;(x)cf ', ij &N &a,b,

These functions, with energy mean values given by Eqs.
(82) and (83), should be used in Eq. (72) to construct the
one-electron Green function.

Standard perturbation theory is based on an adiabatic
time development starting from noninteracting bare parti-
cle states. ' Roots of the one-electron Dyson equation, as
usually defined, are indexed by a single orbital index.
This corresponds to the first order of the quasiparticle
states with operators q; or g, . The present argument
shows that additional states, corresponding to higher-
order excitations of the (N —1)- and (N+1)-electron
manifolds, are required for a complete representation of
the one-electron Green function. Such states are con-
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sidered by Hedin and Lundqvist. In discussing the elec-
tron self-energy, they show that the one-electron Dyson
equation at given k has multiple solutions. One solution
corresponds to a quasiparticle, g& for an electron state, in-

cluding virtual plasmons and particle-hole excitations.
Another solution corresponds to an electron plus real
plasmons, described here by operators at the second order
of excitation in Eq. (74). As mentioned above, interac-
tions between these higher-order excitations, resulting in
energy-shift corrections to Eq. (82), should be taken into
account by variational or perturbation calculations on
states of the (N —1)- or (X +1)-electron manifolds.

It should be noted that the energy range of these
higher-order states will in general overlap the spectrum of
eigenvalues E; or E&. By construction, the quasiparticle
operators ri; and g, are decoupled from higher-order
quasiparticles, but in the overlapping energy range the en-

ergy density of states must take such quasiparticle states
into account.

VI. RELATION TO BARDEEN-COOPER-
SCHRIEFFER THEORY

An important practical goal of the present analysis is to
provide a common formalism for treating normal solids
and superconductors. It will be shown here, in outline,
how this formalism might be applied to the electronic in-

teraction Hamiltonian postulated in the BCS theory. A
more detailed analysis will be published separately.

The basic mechanism of BCS theory is a selective in-
teraction between electrons in time-reversed states (k&)
and ( —kl), where the arrow denotes spin direction. It
was shown by Cooper that an attractive interaction be-
tween electrons just above the Fermi surface in a metal
leads to a collective bound state below the single-particle
energy continuum. As shown in the BCS theory, the re-
sult is to disrupt the continuous distribution of one-
electron energies across the Fermi level and to form an en-

ergy gap. The interaction mechanism is a net attraction
due to virtual emission and reabsorption of phonons.

The special nature of this interaction is emphasized in
discussions by March et al. ~ and by Weisskopf. 2~ The
postulated electronic interaction is only weakly dependent
on momentum transfer, in contrast to the Coulomb in-
teraction, but is confined to a narrow energy shell of
width 25 at the Fermi surface. For the phonon-induced
interaction, 5 is of magnitude %co, where co is a Debye fre-
quency, such that fuu-0. 05 eV. For Bloch waves or
quasiparticles indexed by momenta k;,kz, the sums over
index pairs, j that occur in the total electronic energy, Eq.
(23) here, can be expressed as double sums over Q;1 and
q;J, where the total momentum of a pair ij is

Qj=" +ki
and the momentum transfer is

+y nxn —x y ( 1 nL )( 1 n —t, ) V»L CL»
K L

(89)

Exchange integrals do not occur here because the reduced
Hamiltonian, Eq. (88), does not couple electrons of paral-
lel spin. The coefficients CL» can be assumed to be of the
form given by Eq. (25). Their magnitudes are bounded by
Eq. (24).

The Landau energies, which are eigenvalues of the ef-
fective one-electron Hamiltonian, are given by Eqs. (36).
When applied to Eq. (89) this gives

BE o
cp —— ——Ep+n p Vpp

BPlp

the measure of the sum over q is one dimensional unless
Q=O, but two dimensional (half the area of the Fermi
surface) for Q=O. Hence the interaction is selective for
pairs (k, —k).

The physical basis for Q=O selectivity is elucidated in
the discussion by Weisskopf. A traveling electron, en-
visaged as a wave packet, with momentum k, leaves
behind it a tube of inward ion displacements. A second
electron, following the same path, finds a region of attrac-
tive potential in this tube, and its energy is lowered. The
effect is negligible unless the paths are parallel, and is
maximized if the momenta are equal and opposite. Since
spatial wave functions can be identical only in relative
singlet states, the interaction is maximized for opposite
spin pairs (kt, —kl).

The BCS model can be described in terms of a reduced
Hamiltonian of the form

O t 1

HBCS y ~»uxor»+ 2 y y Vxx ux~ '—x~ x'~»'—
+K K K'

where E denotes (k, &) and —K denotes ( —k)). The un-

perturbed creation operators ax can be postulated to refer
to quasiparticles of a normal metal. The screened
Coulomb interaction is already contained in the effective
one-electron energies EK. The model two-electron in-
teraction Vx~ is assumed to be attractive and to act only
if Ex and E» both lie within an energy shell of width 25
at the Fermi surface, E =p.

In the present formalism, the point of departure is the
correlated X-electron ground state, which is not required
to have any simple relationship to a noninteracting sys-
tem. The two basic principles used here, the exact energy
fortnula, Eq. (23), and the stability condition, Eq. (27),
which determines an effective one-electron Hamiltonian,
are universally valid. This argument leads directly to the
energy functional given by Eq. (34), in the orbital basis
that diagonalizes the one-electron Hamiltonian of Eq.
(35). Applied to the BCS model Hamiltonian, Eq. (34) for
the energy functional is

~Bcs g n»E» +g n» n —x Vxx
0

+K K

q;~=k; —k~ . (87)

For an interaction that is weakly dependent on q, the ef-
fective strength of the interaction depends on the number
of values of q that are compatible with given total Q. A
geometrical argument shows that in the limit of small 5

+n p g ( 1 nL )( 1 nL ) Vpl C—L—p
L

xV»pCpx .
K
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The occupation numbers here refer to quasiparticle states
that include the BCS interaction. Hence, Eq. (48) is valid,
and quasiparticle levels are occupied in sequence of in-
creasing Landau energies. A Fermi level or chemical po-
tential p, is defined such that at zero temperature V»» ———V/0 . (97)

When the temperature dependence of the occupation
numbers in Eqs. (92) cannot be neglected, Eq. (90) can still
be simplified by assuming constant interaction

ni ——n I ——1, cr~p,

(91b)

If Eq. (47) is valid for the coefficients C»», the two sums
in Eq. (90) can be combin& to give Eq. (93) with a
temperature-dependent parameter D defined for E»=-p0

by

In the BCS theory, Vpp is of order 0 ', if 0 is the sys-
tem volume, so Vpp can be neglected in Eq. (90). The
sums in Eq. (90) are symmetrical about the Fermi level if
matrix elements VKK are approximately constant, equal to
—VQ within the interacting shell of width 25. A sim-
plified treatment of temperature dependence is possible
when these sums can be assumed to be approximately
equal and independent of temperature. Then

g ( 1 nr. )(—1 ni. )—VpL CLp —— D, —
I.

g ii»ii »V»pCp»-=- D-
K

(92)

These sums are negative, representing ground-state corre-
lation energies, regardless of the sign of V. Equations (92)
should be valid in the strong-coupling limit, when the
dimensionless product of V and the density of states at
the Fermi level is relatively large. In this limit a greater
proportion of electronic states within the energy width 25
are maintained in their T =0 condition (n» ——1 or nr, ——0)
for T)0.

Equations (90) and (92) imply

sp =Ep+(1 2n p)D . — (93)

Since occupation numbers are determined by Eqs. (91), the
Landau energies differ below and above the Fermi level.
At zero temperature,

0 0
Fi =6 I =EI —D, EI QEJ gp,

&w =&-w =Ex+a~ p &Eg &g0 0

(94a)

(94b)

n =F(n)= Iexp[(1 2n)D/kT]+1I— (95)

At T =0 this equation has three solutions, n =0, —,', 1,
compatible with Eqs. (91) for the ground state. Three
solutions exist for F'( —, ) & 1, but coalesce into a unique
solution, n = —,', for F'( —,

'
) & 1. Hence the transition tem-

perature T, is determined by F'( —,
'

) = 1, or

(96)

in agreement with the exact result in the strong-coupling
limit.

This gives an energy gap of magnitude 2D at the Fermi
level. Equation (93) indicates that the energy gap depends
on temperature through the occupation numbers n

The gap vanishes in the high-temperature limit because
n p~ —, at the Fermi level. Evaluated at Ep ——p, Eq.
(13) is an implicit equation for occupation number as a
function of T,

1D= g(1 2n—k )VC» .
2Q K,

(98)

Comparing with BCS theory at T=O, the coefficients
can be assumed to have the form

CK ——D/EK,

where

E» =(«» I )'+D—'1'"sgn(E» I )—
(99)

(100)

As required by the present formalism, the coefficients C»
have magnitude & 1. Parameter D is nonnegative. For
nonzero D, Eq. (98) is the consistency condition of the
BCS theory at T =0. Replacing the sum by an integral
over the shell of interacting electrons, for density of states

p at the Fermi level,

2 p
+s de

p V Il —s ( e2 +D 2
)

i /2

Hence, at T =0, the energy gap is 2D, where

(101)

D =5 csch -=25e —ir v (102)
pV

At T„ the Landau energies e» reduce to Ek, and occu-
pation numbers are given by the normal Fermi-Dirac
function. Hence, for T & T„Eq. (98) becomes

D(T) = g tanh
V D(T)

K' ~K'
(103)

This equation determines T, in the BCS theory. ' In
the weak-coupling limit ( kT, «5),

kT, = 1.145e "P'. —-
From Eqs. (102) and (105), using D(T =0),

2D/kT, =3.52,

(105)

(106)

which is the BCS result in the weak-coupling limit. Ex-
perimental values of this ratio, from thermodynamic
measurements, lie generally between 3.5 and 4.0, while
tunneling measurements give a larger spread of data. De-
tailed analysis of the temperature dependence of the ener-

gy gap, as determined by the present theory, will be given
in a separate publication.

Unless D(T) is identically zero, the limit T~T, requires
a consistency condition, expressed as an integral over the
shell of interacting electrons,

2 +& 1 E
dc —tan

pV —s
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Evaluation of the coefficients CL,x in Eqs. (89) amounts
to solution of the secular equation for a Cooper pair.
The difference from the BCS theory is that the present
formalism starts from a parametrized representation of
the correlated N-electron ground state, not from a postu-
lated noninteracting electron system. The coefficients
CLx are of magnitude near unity for k and 1 near the Fer-
mi surface, since they are elements of the ground-state
eigenvector of a Hamiltonian matrix with many near-
degenerate diagonal elements, corresponding to virtual
pair excitations of the unperturbed system. Details of this
analysis will be published elsewhere.

A crucial physical question is why the present analysis
does not lead to an energy gap in normal metals. The
answer is that the gap structure is built into the postulated
BCS Hamiltonian, by the unique pairing between orbital
states (k, t) and ( —k, i). For the normal Coulomb or
screened Coulomb interaction, matrix elements depend
primarily on momentum transfer q, so the sum over index
pairs ij in Eq. (34) cannot be reduced to a single term.
The result is that the second term in Eq. (93) becomes a
sum over states above and below the Fermi level, and the
average value goes to zero.

VII. DISCUSSION

An electron added or removed from a quasiparticle
state carries with it all the energy and momentum associ-
ated with it in the interacting X-electron system. " As
discussed by Nozieres, the concept of a quasiparticle is
justified by many-particle perturbation theory only if,
starting from a noninteracting particle, identity is main-
tained through a process of switching on the particle in-
teraction. The lifetime must be longer than the switching
time. Hence, quasiparticle theory would appear to be
valid only for small deviations from the N-electron
ground state. In contrast, the present derivation is time
independent and appears to be universally applicable to
N-electron systems. Quasiparticle lifetimes appear only at
the final stage of analysis, when confining boundary con-
ditions that discretize energy levels are relaxed.

In applying this formahsm to finite or localized systems
a distinction must be made between Landau and Dyson
one-electron energy levels. The former are derivatives of
an energy functional with respect to an occupation num-
ber, while the latter are energy differences between eigen-
states of X and l)t'+ I electrons. The Landau and Dyson
one-electron energies are sho~n to be equal only when the

one-electron Hamiltonian defined here is unaffected by
adding or removing one electron from a given l)I-electron
eigenstate.

This one-electron Hamiltonian, which contains nonlocal
exchange and correlation operators, is uniquely defined
for any given N-electron eigenstate. The eigenvalues of
this one-electron Hamiltonian are equal to Landau ener-
gies. The eigenfunctions provide an orbital basis for rep-
resentation of the system Hamiltonian. Quasiparticle
operators can be explicitly constructed in this basis.

The total energy functional defined here depends on a
particular choice of orbital basis and on values of virtual
pair excitation coefficients as well as on occupation num-
bers. The pair coefficients are assumed to be exact, satis-
fying a stationary variational principle for the total ener-

gy, so functional derivatives of the energy with respect to
these coefficients can be assumed to vanish. Functional
derivatives with respect to the orbital basis vanish by con-
struction since this condition defines the one-electron
Hamiltonian. Hence, variations of the residual energy ex-
pression depend only on the occupation numbers, as pos-
tulated in the Landau theory. The present derivation
shows that this result is valid in a neighborhood of the
occupation-number values for the X-electron state used to
define the pair-excitation coefficients and one-electron
Hamiltonian or orbital basis. The one-electron Hamil-
tonian is parametrized by occupation numbers. Its eigen-
functions and eigenvalues should be recomputed as occu-
pation numbers change in a finite or localized system.

The virtual pair-excitation coefficients are considered
here as basic parameters, to be computed separately from
the one-electron Hamiltonian and quasiparticle operators.
Since calculations can be carrie out accurately for local-
ized systems, a practical computational procedure might
be to compute pair-excitation coefficients in a localized
representation by a cellular calculation, then to transform
to a Bloch wave representation for an extended system, as-
suming that Eq. (25) is valid. Analysis of the BCS Hamil-
tonia, given in Sec. VI here, indicates that the present
formalism is valid for systems for which perturbation
theory is generally considered to be inapplicable.
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