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We present a model for the temperature dependence of the resistance and ultrasonic attenuation
of a superconducting granular lead film. Treating the film as a network of random resistors and us-
ing percolation methods, we postulate that while the dc resistance is the resistance of an infinite net-
work, the surface acoustic wave measures the average resistance of finite “subnetworks,” the sizes of
which are on the order of the acoustic wavelength. The resistance of the infinite network will vanish
when more than some critical fraction of the resistors in the network becomes equal to zero. How-
ever, when the resistance of the infinite network vanishes, some of the subnetworks will still have
nonzero resistance. Consequently, the ultrasonic attenuation should be nonzero even when the dc
resistance vanishes. This is in agreement with our experimental data.

I. INTRODUCTION

There has been a considerable amount of interest in sys-
tems of low dimensionality, and particularly in granular
films' as a realization of these systems. This interest
motivated surface-acoustic-wave (SAW) experiments on a
superconducting granular lead film.?

The data on the resistance and ultrasonic attenuation of
this film, as functions of temperature, are shown in Figs.
1 and 2. The film was approximately 500 A thick and
had a normal-state sheet resistance of 1000 Q. The ul-
trasonic attenuation in the normal state was approximate-
ly 4.4 dB/cm, as measured with the SAW at a frequency
of 700 MHz. The attenuation of the SAW comes from
the coupling of the piezoelectric field in the substrate to
the film.> This produces Joule losses proportional to the
sheet resistance. The attenuation should therefore also be
proportional to the sheet resistance. However, comparing
the data of Figs. 1 and 2, the observed attenuation in the
superconducting state is not proportional to the sheet
resistance and, in fact, remains finite below the tempera-
ture at which the sheet resistance goes to zero. It has been
shown? that the excess attenuation in the superconducting
state cannot be accounted for by the presence of thermally
excited vortex-antivortex pairs. In this paper we present a
percolation-theoretic model which accounts for this excess
attenuation and also describes the resistive transition in
the film.

Our assumption is that long-range superconducting or-
der sets in via classical percolation in a network of
Josephson junctions.** Quantum phase fluctuations, and
thus all complications related to phase locking®
(Kosterlitz-Thouless transition), are neglected. Under this
assumption, the model essentially reduces to a classical
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random resistor network. Above the transition tempera-
ture of the grains Ty, all resistors (i.e., all Josephson junc-
tions) are in their normal state and their values are distri-
buted according to some function W"™(r). When the tem-
perature is lowered below T, a fraction of the junction
resistors go superconducting and the macroscopic sheet
resistance R decreases. At some temperature T, the frac-
tion of superconducting junctions reaches the percolation
threshold p. and an infinite superconducting cluster ap-
pears in the network. The resistance then drops to zero
and remains zero for T < T,.

However, the SAW attenuation remains finite at
T =T, and then slowly decreases to zero. We explain this
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FIG. 1. Normalized resistance (dots) and theory (solid curve)
as a function of reduced temperature.
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FIG. 2. Normalized attenuation (dots) and theory (crosses) as
a function of reduced temperature.

behavior with the following model. The acoustoelectric
fields produced by the SAW propagating on the piezoelec-
tric substrate have wavelengths equal to that of the SAW.
These fields sample the resistance of small sections of the
film, the dimensions of these sections being comparable to
the SAW wavelength. The resistance of some of these
small sections remains finite, even when the macroscopic
sheet resistance of the film vanishes. If, for example, we
assume that the network resistors form a square lattice,
then 50% of the resistors would still be in the normal
state at T.. The SAW is sensitive to the resistance of
these small sections since the SAW is not confined to
move along the path of least resistance (the infinite super-
conducting cluster). Therefore the attenuation should be
proportional to the arithmetic average of the resistance of
these small sections and will be nonzero at 7.

In Sec. II of this paper we analyze the resistance of a
granular film in the normal and superconducting states.
In Sec. III we analyze the ultrasonic attenuation of the
film in the normal and superconducting states. Our re-
sults are summarized in Sec. IV. Throughout this paper,
individual junction resistances will be denoted by r, and
the sheet resistance of the network (either finite or infi-
nite) will be denoted R.

II. RESISTANCE IN GRANULAR FILMS

A. Normal-state resistance (AHL model)

In the normal state, the sheet resistance R” of a random
resistance network can be described by the theory of Am-
begaokar, Halperin and Langer (AHL).” This is a per-
colation argument for handling a very broad distribution
of resistors whose values may range over many orders of
magnitude. The AHL theory proceeds as follows. First,
let us consider an infinite random resistor network and
disconnect all the resistors. We then reconnect them one
by one, starting from the smallest ones. At some stage in
this process, adding one more resistor will form an infin-
ite cluster connecting the ends of the network. The value
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of this crucial resistor will be denoted by r.. The claim is
that for a two-dimensional network, R" is roughly given
by r.. To see this, note that resistances r >>r. do not
matter much since they are shunted by the smaller resis-
tances of order .. On the other hand, resistances r <r,
by themselves cannot provide transport to macroscopic
distances. Thus, R" is determined from the requirement
that resistances r <r. would constitute a fraction p, of all
resistances, that is

[ & wrndr =p., M)

where r,~R". For simplicity, we shall not distinguish be-
tween 7, and R" hereafter.

Let us assume some specific form for the distribution
function W"(r). Following AHL, we take the junction
resistance as

=r,e5, (2)

where £ is a random variable related to the distance be-
tween neighboring metallic grains. Equation (2) is reason-
able since we view the barriers between grains as tunnel
junctions. We will assume that £ is uniformly distributed
from zero to some maximum value In(7,/7,):

W(E) = 1/In(ry /ry), for 0<&<In(ry/ry) 4
0, otherwise .

From Egs. (2) and (3), the distribution function for the
junction resistors is

—:'—ln(rz/r,), forr, <r,

Whr)= 4)

0, otherwise .

In Egs. (3) and (4), r; and r, are, respectively, the small-
est and largest resistances of the junctions. Substituting
this distribution into (1) we get

pe=In(R"/r)/In(r,/ry) . ()

For our film, we have estimated® that r;~0.5 Q. Given
this value for r; and R"~1 kQ, and assuming that
p.=0.5, Eq. (5) yields r, /ry =4 X 10°.

B. Resistance in the superconducting state

Our picture of the superconducting film below the tran-
sition temperature of the grains T, is one in which the
phases of the superconducting energy gap fluctuate from
one grain to another. As the temperature falls, successive
pairs of grains become phase locked and their junction
resistance vanishes. The temperature 7,(r) at which a
Josephson junction becomes superconducting depends
upon the junction resistance r in the normal state and is
determined by the condition®

E(r,TJ)=‘kaTJ . (6)

Here, v is a constant of order unity and E is the Joseph-
son coupling energy given by’
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E(r,T)=—ﬂ—~h—¥—)-tanh
4e°r

A(T)

;
2T | 7

where A(T) is the energy gap of the bulk superconduc-
tor.!® In Eq. (6) we have neglected the charging energy of
the grains. It follows from (6) and (7) that at a tempera-
ture T < T, all junctions whose normal-state resistance is
smaller than

rJ(T)—Mtanh

" 4eXykgT

A(T)

8
2kpT ®)

will be superconducting. The fraction p(T) of supercon-
ducting junctions is then given by
Tt In[r;(T)/r]

p(D= [~ Wirdr=

1 In(ry/ry) ®)

and the critical temperature T, for the onset of macro-
scopic superconductivity is given by setting p(T,.)=p, in
(9). It follows from (5) that

ry(T.)=R" . (10)

The AHL model would imply a temperature-inde-
pendent sheet resistance R(T)=R" for all T>T,.. As
soon as T falls below T,, R(T) would be zero since we
should now have an infinite cluster of short-circuited
junctions. Clearly, as seen in Fig. 1, this is not what hap-
pens in our system. R (T) decreases continuously from its
normal-state value R" for T>T, to zero at T=T,."
Thus, to reproduce this continuous drop of R(T), an ap-
proach different from AHL is needed. The approach that
we use will be based on the effective-medium approxima-
tion.'> We treat the problem in two stages. First, we re-
place the actual distribution W"(r) by a binary distribu-
tion

WS(r)=p(T)8(r)+[1—p(T)]8(r —R™) . (11

That is, the distribution of normal resistances is represent-
ed by a single, typical resistance. This typical resistance is
chosen to be R" to ensure, at least, the correct value for
the normal state resistance (when p =0). The binary dis-
tribution (11) can be easily handled by the effective-
medium approximation, the result being

2D

Pe

R(D)= R™. (12)

This holds, of course, only for p <p., while for p >p,,
R (T) is equal to zero.
From Egs. (5), (9), and (12) it follows that

R(T)
R’l

Equation (13) gives the normalized sheet resistance of the
film in the region T <T,, r;(T) being given by (8). In
Fig. 1 we plot the normalized resistance R(7)/R" as a
function of reduced temperature 7/T,. T, was taken to
be that value which gave the best agreement between
theory and experiment. In our case 7,=6.72 K. The
solid curve in Fig. 1 gives the normalized resistance as

=In[R"/r;(T)]/In(R"/r}) . (13)

predicted by (13). In evaluating (13) we must know the
value of y. The value of ¥ was fixed by requiring that
R(T,.)/R"=0 at a reduced temperature of 0.8 as seen
from the experimental data in Fig. 1. Since at T =T, we
have r;(T.)=R", (8) tells us that y=3.3. It appears that
for our particular choice of the distribution of £, and
therefore W"(r), the theory predicts a more gradual de-
crease in resistance than is seen experimentally.!* The re-
sult (13) for the normalized resistance in the range
T. <T < T, may be sensitive to the distribution'* of £ and
to the effective-medium approximation. Near p., the
resistance behaves as R ~(p.—p)’ with s~1.3, rather
than s =1 as predicted by the effective-medium approxi-
mation.’> Choosing s greater than one somewhat im-
proves the agreement with experiment.

III. ULTRASONIC ATTENUATION
IN GRANULAR FILMS

A. Normal state

Adler® has shown that the SAW attenuation in a homo-
geneous film is proportional to its sheet resistance. But
for granular films, the predicted proportionality between
the SAW attenuation and the sheet resistance does not
hold quantitatively in the normal state. In our case, the
normal-state attenuation is 4.4 dB/cm, whereas Adler
would predict 2.3 dB/cm.? Furthermore, as seen in Figs.
1 and 2, the ultrasonic attenuation is still rather large even
when the macroscopic sheet resistance of the film is equal
to zero.

We propose a reinterpretation of Adler’s result which
will bring it into accord with the experimental data. We
replace the macroscopic sheet resistance, which is the
sheet resistance of an infinite network, by the average
resistance of a square of side L cut out of the film. The
reasoning behind this is as follows. The macroscopic
resistance measures the response of the film to a dc poten-
tial, i.e., an ac potential of infinite wavelength. On the
other hand, when a surface wave propagates, it produces
an alternating current of finite wavelength, namely the
acoustic wavelength. We may regard this alternating
current as an ensemble of direct currents, each of which
selects a section of the film and samples its local sheet
resistance. The size of each ‘“sample” should be
L~A/2m, where A is the wavelength of the SAW.!®
Furthermore, since the film is not homogeneous, the resis-
tance R (L) of each “sample” will change from location to
location. Hence, it is the average sheet resistance R(L) of
small sections of the film (each of which is a finite resis-
tor network) and not the macroscopic sheet resistance of
the infinite resistor network that governs the attenuation
of the surface wave.

The problem at hand, therefore, is to try to determine
R(L) for T >T,. More precisely, the problem is stated
as follows. Given the distribution W (r) for the individual
resistors of the network, determine the distribution
W (L,R) of the resistances of squares of size L. There are
two extreme cases.

(i) L =L, (a microscopic distance comparable to the
grain size). In this limit the distribution is that for the in-
dividual resistors W"(r), i.e., Eq. (4).
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(ii) L — 0. In this limit, W(L,R) reduces to a 8 func-
tion, 8(R —R™), since in the thermodynamic limit, the
normal-state sheet resistance is a well-defined quantity
with no fluctuations.

In order to estimate R (L) for intermediate L, we will
use some of the ideas of Shklovskii and Efros.!” These
ideas are essentially an extension of the AHL argument to
a finite network of size L. For convenience, we shall
measure L in terms of the grain size so that a square of
size L contains L? junction resistances. In the present ex-
periments A~5 um which, with an average grain size of
500 A, implies that L ~16. An important difference—as
compared to the case of the infinite network—is that now
the percolation threshold p; =p.(L) is not well defined
but rather fluctuates from one finite resistor network to
another. Indeed, it is only in the thermodynamic limit
that percolation always starts strictly at p =p,, i.e., when
precisely a fraction p, of the bonds become randomly “oc-
cupied.” For a finite system, the percolation threshold p,
is a statistical variable distributed according to some dis-
tribution ¢;. This distribution has been studied numeri-
cally by Reynolds et al.'® Even for L as small as 10, the
distribution is close to a Gaussian'’

1 (pr —PL)*
=—eXp | ——————— (14)
oL Vamoy P 207
The width of the distribution is
o, =BL~", (15)

where B is a constant of order unity and v=+ is the ex-
ponent for the correlation length in the two-dimensional
percolation problem. When L increases, o; approaches
zero while p; approaches p, as

(16)

where A is another constant of order unity. The con-
stants 4 and B are not expected to be universal, i.e., they
should depend upon the type of lattice as well as the de-

DL =D +AL —1/v7
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be the value of the crucial resistor for which percolation
occurs in the finite network. As for the case of the
normal-state resistance, we shall not distinguish between
r.(L) and the normal-state sheet resistance of the finite
network R™L). According to Shklovskii and Efros,
R™L) is then a statistical variable given by the upper lim-
it of integration in (1) when p, is replaced by p; on the
right-hand side, p; being distributed according to (14).
Taking W"(r) from (4) and substituting into (1), we obtain

ln[R”(L)/r‘]/ln(rz/rl)=pL, (17)
which, then solved for R"(L), yields
R"(L)=r1exp[len(r2/r1)] . (18)

The average sheet resistance in the normal state is then

R"L)= [ dp,R™L)¢y , (19)
which, by (14) and (18), yields
R™L)=R"exp{+[o,In(r,/r))}?} . (20)

We see that when L — 0, 0, —0 and R "(L)—R" as it
should. Furthermore, since the attenuation a is propor-
tionall9 to the sheet resistance, we have the following rela-
tion:

alexpt) _, _R™L) 1)
a(Adler) 7 R

Using this relation in (20), we find that o, =0.075.

B. Superconducting state

__Let us now estimate the average sheet resistance
R(L,T) below T, i.e., when some fraction of the junc-
tions are superconducting. To do this, we take (12) but re-
place p. by p; and R" by R"(L). We then have

tails of the averaging procedure. We assume that the (T)
width of the distribution plays a more important role than R(L.T)= 1-222 \RYL), for p(T)<py, (22)
the shift of p; from p, (i.e., we set p; =p.) so that we T Pr
only have one undetermined constant B. We fix B from 0, otherwise .
the experimental R "(L) (the average sheet resistance in - .
the normal state) and use this value of B to determine Its average, R(L,T), is then
R(L) (the average sheet resistance in the superconducting RL.D= T do, R
stato) (L,D= [ dp.R(L,T)g.,
Analogous to the infinite network, we define 7.(L) to which by (14) and (22) becomes
|
RLD=—— [ (1=p(D/pyJexp | — P2 o e ey |a 23)
) Vina, e p PrJexp | — 202 +pLinlry/ry) \app .
Making the change in variable x =p; —p and completing the square in the argument of the exponential, we obtain
= = 1 © | x (x +p —p,)*
R(L,T)/R"L)= —_—
Vmoy, Lz +p 2wl | 24
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where B, =p. +021In(ry/r;)=0.585 and p =p(T). Since
the attenuation should be proportional to the average
sheet resistance, (24) gives the normalized attenuation for
T <T,. We can get an analytic expression for (24) by
considering the limits of p. For p >p,, (24) can be written
(see the Appendix) as

- _ o o2
R(L,T)/R ”(L):TLCX _ _1'@_2_127;
mp ot
B | e |2 2s)
2p o)

and when p is somewhat smaller than p,, (24) can be writ-
ten as

R(L,T)/R™"L)~1—p/p, . (26)

Our theoretical results for the normalized attenuation
are plotted in Fig. 2. We see that there is qualitative
agreement between theory and experiment. The theory
predicts that the attenuation should smoothly decrease to
zero but will still be nonzero around T,.

IV. SUMMARY

In summary, we have presented a percolation-theoretic
model for the temperature dependence of the dc resistance
and ultrasonic attenuation of a superconducting granular
lead film. The film is treated as a random resistor net-
work; the resistors of the network represent the insulating
barriers between neighboring grains. In the normal state
we assume that the values of these resistors are given by
rie%, where £ is a random variable taken to be constant
over an interval from O to In(r,/r;). This yields a distri-
bution function W"(r) for the resistors to the network.
As the temperature is lowered below the transition tem-
perature of the grains T, neighboring grains whose
Josephson coupling energy is greater than the thermal en-
ergy will become coupled. In the resistor network picture,
this corresponds to short-circuiting those resistors which
represent the junctions between the coupled grains. When

the fraction of shorted junction resistors reaches the per-
colation threshold (at some temperature T, < T,) an infi-
nite superconducting cluster appears in the network and
the dc resistance drops to zero and remains zero for
T <T.. Furthermore, while the dc resistance measure-
ments sample the resistance of the entire (infinite) net-
work, the SAW is effectively measuring the average resis-
tance of finite “subnetworks” whose dimensions are of the
order of the acoustic wavelength. When macroscopic su-
perconductivity occurs (as determined by the dc resistance
measurement), there are still regions of the film which
contain junction resistors that have not been shorted and
these regions will produce an attenuation. Thus, one of
the predictions of our model is that the ultrasonic attenua-
tion should be nonzero even when the dc resistance is
equal to zero.

Returning to Fig. 1, it appears that our model predicts
a more gradual decrease in normalized resistance than is
seen experimentally. Since the result (13) for the normal-
ized resistance in the region T < T, is sensitive (to some
extent) to the choice of the functional dependence of the
random variable £, a more “realistic”’ choice for this func-
tion may give a sharper decrease in the normalized resis-
tance. Also, as discussed immediately after Eq. (13), the
critical exponent s for percolation is rather greater than
unity and this will tend to reduce the resistance below that
predicted by the effective-medium approximation. We are
currently investigating the effect that different choices for
the functional dependence of & would have on the resis-
tance curves. We are also looking at the region near p, in
more detail.
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APPENDIX

Here we discuss the evaluation of the integral in (24). The key to the analytic treatment of the integral lies in the
smallness of 0. Consider first the case when p is large, such that p >p,. Then the argument of the exponential in-
creases as we increase x from zero to infinity. The main contribution to the integral comes from the region of small x
up to a few o (for larger x, the integrand is already exponentially small). Thus, in this case, x /(x +p) can be replaced
by x /p since’®® o, <<p, and (24) reduces to

(x +p —p. )

— — 1 ©
R(L,T)/R"L)~—— dx .
( )/R "(L) > f X exp 207 x (A1)

morp *0

Performing the change of variables y =(x +p —p,)/V 20, (A1) becomes

= = oL (p—p.)? P —Pc © 2
R(L,T)/R™L)~ — -’dy
)/R "(L) Vamp exp l 207 Vap » € dy (A2)

where y; =(p —p.)/V20. The second term on the right-hand side of (A2) is related to the error function. Thus, we
write (A2) as
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— — oL (p—p.)? P —P.
R(L,T)/R "(L)~ -
V2mp c*p 207 2p

[1—erf(y,)]. (A3)

Now we consider the case when p is very small (at least several o; smaller than p,). For small p the integrand of (24)
has a sharp maximum (at x =p, —p) within the integration region. In this case, (24) can be rewritten as

- = 1 Pe—p | (x +p—p.)?
R(L,T)/R™L)~ 2P =P e —p/F
e | D R =l L (a4
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