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Theory of the transferred hyperfine interaction between well-separated atoms
and the influence of soft-phonon modes

Keshav N. Shrivastava
School of Physics, University ofHyderabad, P 0 .Ce.ntral University, Hyderabad 500 134, India

(Received 24 October 1985}

We have calculated the transferred hyperfine interaction at the F ion in PbF2 in w'hich the dis-

tance between F and Pb + is 30% larger than the bond lengths in MnF2. The contributions arising

from the overlap of wave functions and the charge transfer and the charge redistribution effects
have been calculated from first principles and the s, p, and p spin densities have been found. The
change in the transferred hyperfine coupling due to a soft-phonon mode which goes to zero at a
temperature of T, =50 K has been calculated and verified experimentally.

I. INTRODUCTION

PbF2 is a superionic lattice as the F sublattice has a
lower melting point than that of the Pb + sublattice. The
nuclear relaxation time of the ' F nuclei in PbF2 has been
measured by Boyce et al. ' and the electron paramagnetic
resonance of the Mni+ ion in this lattice by Evora and
Jaccarino and by Madrid et al.' The PbFz lattice is
much larger in size than any other lattice in which the
electron paramagnetic resonance of the Mn + ion has
been studied so far. The Mn +-F distance in PbF2 is
2.58 A which is 28% larger than the 2.01 A in LiF and
24% larger than the Mn2+-F bond lengths of 2.10 and
2.13 A in MnFi and 2.09 A in KMnF&. The ' F
transferred hyperfine coupling constants in PbFi.Mn +

are found to be A, =33.82 MHz and 3~=7.82 MHz.
However, slightly different values, A, =34 MHz and

Az ——6 MHz, have been reported by Vernon et al.
Another characteristic of this lattice is that there is a
soft-phonon mode, the frequency of which vanishes at a
temperature of about 50 K so that the transferred hyper-
fine coupling shows a large reduction in its magnitude at
this temperature with respect to its value at zero tempera-
ture. Since the electron frequency is larger than the hop-
ping

frequency
1/~„of F diffusion, toe, ~&1, only the

M, = ——, to + —,
'

transition of the Mn + ion is seen and
the F sublattice melting is enhanced.

In our previous work, we have calculated the
transferred hyperfine interaction at the F site due to lat-
tice vibrations in LiF:Mni+, KMgF:Mni+, MnF2, and
FeFz lattices. We have developed the complete theory for
the transfer of an electron from an occupied orbital of an
atom to an empty orbital of another atom. It was
discovered that the transfer of an electron from one orbi-
tal to an empty orbital resulted in readjustment of charges
leading to a contribution to the transferred hyperfine in-
teraction. This calculation was reported'o 's for three
paramagnetic ions, V +, Cr +, and Cu + and their ion
pairs with F as an intervening ion. The magnetic d elec-
trons of the V + and Cr + ions transform like the T& ir-
reducible representation of the octahedral group,
representing m bonding with the F ion, whereas the mag-
netic electrons of Cu + transform like the Es irreducible

representation of the octahedral group and have tr bonds
with the F ion. In P-KNO& the NOs ions are rotating
and vibrating so that there are liquidlike correlation times

r, which create interesting hyperfine effects. The reduc-
tion in the hyperfine coupling of the Mni+ ion due to
such correlations has also been studied. "

In this paper, we present the theory of the transferred
hyperfine interaction at the F ion due to both the o-
bonding and ir-bonding electrons at the Mn2+ ion when
the distance between the Mn + ion and the F ion is
larger than in MnFq as appropriate to the Mn~+-doped
PbF2 lattice. We also calculate for what may be the first
time, the effect of a soft-phonon mode on the transferred
hyperfine interaction for F near a Mn2+ ion in PbF2.
We find that our calculations are in accord with the ex-
perimental measurements2 s of magnetic resonance in
Mn + Pbp

II. STATIC THEORY

We first discuss the theory of the transferred hyperfine
interaction' at the F ion site due to electrons at the
Mn + ion with all the ions rigidly held in the lattice. We
consider'5 ' the two-atom three-electron configuration

, ai-aa& in which electrons 1 and 2 have their spins anti-
parallel and localized on one of the orbitals belonging to
an F ion such as 2s or 2p. The third electron belongs to
an occupied orbital a& on a magnetic atom, Mn + in the
present case which has a 3ds configuration. The Hamil-
tonian of the system is given by

where e jr;~ is the repulsive Coulomb interaction between
electrons and

(2)

is the one-electron Hamiltonian containing the kinetic en-

ergy and the electron-nuclear attraction summed over all
nuclei. We construct Slater-type wave functions for a sys-
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tern Pz which has 2p orbitals doubly occupied with anti-
parallel spins and one occupied d 2, orbital as

Pa= IPnsPnidsi, ) . (3)

it~ =4~+r0a . (5)

There are 3! such permutations because of spin permuta-
tions which are implied. We consider the transfer of an
electron from the occupied p', to the empty d', , orbital

which leaves behind an electron of up spin on the ligand
atom. This up spin density is parallel to the d moment of
the magnetic atom and hence may be termed the positive
spin density at the ligand ion. The resulting configuration
is given by

Pa= lp id, ~,d,'3, &

As before, the spin permutations are implied. The per-
turbed ionic configuration is described by,

where P, represents the d orbitals which transform like
the Ezz irreducible representation of the octahedral group,
Xs are the linear combinations of the 2s(F ) orbitals
which transform like E2z, and Xp are those of the 2p orbi-
tals which also transform like the E2& irreducible repre-
sentation. Similarly g is the linear combination of 2p„
and 2pp orbitals of the F ions which transform like the
T2a irreducible representation of the octahedral group.
The three d orbitals also transform like the Tzz irreduci-
ble representation. The bonding orbitals which are
orthogonal to (11) are given by

&s =&s+)'sA~

&+=&~+)'pea
X' =X +yg

Up to the lowest order in y the condition of orthogonality
between (11) and (12) gives,

According to Serber's method, " the matrix elements be-
tween any two configurations such as 1(a, and faJ
(fqPz or |,t——a) may be calculated from the expression

R;8
where P ' ' is the spin permutation operator. In our case

~s =rs+~~s

~~=)'~+~p~

A, =y +Sp

where the overlap integrals are defined by

(13)

E~ —Ea

The matrix elements of any interaction, A, between the
configurations it& and 1(a each containing three electrons
1—3 are given by

The transferred hyperfine interaction at the F site is
described by the Hamiltonian PP=g, . I' A S, where I' is
the nuclear spin of the ith F ion and S is the electronic
spin of the Mn + ion. The transferred hyperfine constant
is determined froin an isotropic component,

In the notation,

( A
I
A

I
A ) =A I" Eg, ——

~i =Ea

hg ——Eg —Eg

(w la)=s,
2

(a,a, lla, a, &=(a,az 0304

the transfer coefficient is given by

gPa&rPcv I
&s(0)

I fsS

and anisotropic components

1 —3gpagxpz(r &afa aS

gpagxpx&r ) f1 —3

S
where the spin densities are given by

f, =A,„ f =A, , f =k„

(15)

(16)

y=((ai
I
Mi

I
a3) —(ai

I P,
I
a, )5

+ & si 3& I l I
~ 3si 3 &

—
& si i si 3 I I

si 1 si3 &~

+ &~i«11~3~i &
—

&~ilail

lui~i &~)~a

where A, is the single-electron Hamiltonian given by (2).
We make linear combinations of d orbitals with 2s and 2p
of the F ion as

fs =Ms(d~ —A,sos —A, X~),

Q, =N, (d A+ ), —

and g is the Lande splitting factor of the electron, S = —',
for Mn +, gN is the nuclear gyromagnetic ratio, pa is the
Bohr magneton, and pz is the nuclear magneton. The
average value of the radius vector of the 2p electrons of
F occurs as (r ) which we calculate from the
Hartree-Fock wave functions.

The dipole-dipole interaction between magnetic elec-
trons and the nuclear spin of the ligand ions may be writ-
ten as

5~=g gpag„p~(r, , ')[3(e;,'S;)(e;,"I, ) S; S,], —
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where e,J is the unit vector in the dire:tion from the jth
nucleus F to the ith electron, S; is the electron spin of
Mn +, and IJ is the nuclear spin of F . In a cubic field
two of the 3d electrons of Mn + transform as the Ezs ir-
reducible representation while the remaining three elec-
trons transform as the Tzs irreducible representation of
the octahedral group so that the components of the
transferred hyperftne interaction occur as given by (15)
and (16}. The effect of the electrons other than those in-
cluded in the three-electron two-atom model (3} has been
calculated in the point-charge model. A typical matrix
element is calculated from the Hamiltonian

Vt+ Vi (Mn + ) + V(F+ ),2' (19)

+&ai
I

V„(Mn +) Ia3&

+&ai
I
V(F')

I
az & (20)

The Hartree equation for the orbital a i is
r

fi V e+ )'(F+ ) + zzz(rz) zzz(rz)) lzzz(rz))2' r

where Vi (Mn +) and V (F+) are effective one-electron
Hartree potential energies. The valen cies have been
chosen such that the electron transfer already considered
in (3) and (4) is not counted again. For example, the ele-
ment &a i I ~t I a3 & is calculated as

$2+2

2m

which is long compared with the Mn +-F distance in
MnFz. Therefore we take the distance 8 as a parameter
as was done in previous cases. ' ' We take the orbitals
ai ——az —ls(F ) and a3 =d, (Mn +) and compute all the

integrals. The overlap integral & ls (F )
I
d z(Mn +)

&

along with some of the Coulomb integrals is plotted in
Fig. 1, as a function of distance between Mn + and F
ions. It is found that the Coulomb interaction plays a
dominant role at large distances such as those found in
PbFz as compared with MnFz where overlap dominates.
The energies which are independent of the
interatomic distance are & ls

I
fi~Vz/2m

I
ls &

= —37.253
au. , &d,

I
fi i)7 /2m

I d, &=6.626 au. , and & ls lsIIls ls&
=5.357 a.u. Next we take a, =az ——2s (F } and
a3 ——d, (Mnz+). The computed values of the overlap in-

tegral &2s(F ) Id, (Mnz+)& and some of the Coulomb

integrals are shown in Fig. 2 as a function of Mn +-F
distance. The distance-independent values
are &2s Ittt' V /2ttt I2s&= —3.884 a.u. , &2s2sII2s2s&
=0.8834 a.u. Again we see that Coulomb integrals dom-
inate over the overlap effects. We construct the value of
y from (10) using hit ———1.0 a.u. and hence obtain the 2s
spin density from (17) and (13). This value is plotted in
Fig. 3 as a function of interatomic distance. For
4' I(pz, (0)

I
=136.58 a.u. the hyperftne constant of 2s

(o.u.)
0.0l0—

and for
I az & is

r

fi V + V, (Mn +)
I a3 & =EH(Mn +)

I a3 & .
2ply

(22)

Multiplying (21) by &az I
and (22) by &ai I

and integrat-
ing we find

& az
I
~i

I
ai & =EH(F )~ —EH(Mn")~ —&aza3II za1 &

+ 0) 03

+&ai
I

Vi(Mn +) Iaz& . (23)

0.001
The one-electron Hartree energies are given by Clementi'
whereas the remaining integrals are calculated. It is
found that the effect of the exchange core polarization
at the site of the F ion far separated from the Mnz+ ion
is small.

III. COMPUTATIONAL RESULTS

The crystal structure of P-PbFz is described by Vernon
et al. Within a subunit cell Mn + is surrounded by eight
F iona which are at the corners of a cube of side a/2.
with a =5.96 A. The Mn +-F distance is 8 =2.58 A

2.2

FIG. 1. Overlap integral between 1s {F ) and d q{Mn +) as a
function of interatomic separation along with some of the
Coulomb integrals as vrell as the split kinetic energy. {a)

(d) ( ls ls
I I

lsd t })& 10 ', and (e} —(d 2ls
I
Id zd t ). In the case

of {b) and {d) the values have been divided by factors of 10 and
10 as indicated above to accommodate them on the same graph
as the overlap, e.g., at 8 =1.8 A, & lsd 2I I

lsd 2& =0.307 a.u. ,
etc. Note that {c)and {e)are negative.
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(o.u.)
Q.lQ

CL
O.QS

LU

2.2 2.6(&)

shell of F occupied by a single electron is given by
Ax, ——(8n/3)[

~ qx, (0)
~

gN)it~/ao]=16312 G. Therefore
the experimental value of 12 G corresponds to a spin den-
sity of 0.73X10 . This value is also shown in Fig. 3.
The agreement between the calculated 2s spin density and
the measured values is quite reasonable as we have not in-

FIG. 2. Various integrals of 2s {F ) with those of
3d,2{Mn2+) in atomic units as a function of interatomic
distance which is in A. (a) (2s

~

d i), (b) (2s2s
~
~2sd z),

(c) (2sd q~~2sd q) X10 ', (d) —(d q2s(~d qd q), and (e)

—(2s
~

iir V' /2m
~

d 2). Note that split kinetic energy changes

sign.

eluded the 1 s contribution. The amplitude of the ls shell
at the site of the F nucleus is yi, (0}=14.58 a.u. How-
ever, that of 2s is negative, y2, (0}=—3.3 a.u. Therefore„
it is important ta consider the cross term between ls and
2s spin densities. The isotmpic spin density at the F is
then defined by

fs I
&s(0}

I
'=f~

I V zs(0)
I
'+f is I vis(0} I

'

+2(fiJ'2, }' 'yi, (0}y2,(0} (24)
0

For an interatomic distance of 1.8 A, the ls atomic field
is 1.8, the 2s field is 2.01, and the ls, 2s cross term is
—1.9 a.u. Therefore, the effect of ls shell is to reduce the
2s spin density by about 5%. Therefore, the theoretical
value of the isotropic spin density is in reasanable agree-
ment with the experimental value.

We now take at ——a2 ——2p (F ) and as ——d, ,(Mn +) or-

bitals and calculate all the integrals, some of which are
shown in Fig. 4. The calculated f~ spin density is plotted
in Fig. 5. The hyperfine constant of a 2p shell is given by
Azz(0}= —,

'
gzpz(r ) /a ii= 458. 98 G, where we used

gN ——5.256 for the nuclear gyromagnetic ratio of ' F and
(r ) =6.405ao with the Bohr radius ao ——0.529)&10
cm and p~ ——5.0505)&10 2 erg/G. The calculation is
ance again performed with a i ——a i ——2p„(F } and
as ——d, (Mn + ). Some of the integrals of which are shown
in Fig. 6 and the resulting m spin density is given in Fig.
7. We find that the calculated values are in reasonable
agreement with the experimental measurements.

The sign of the transferred hyperftne field at the F
site calculated in the previous section is positive which
means that the field at F is parallel to the 3d t t t t t mo-

{o.u. )

0.1Q-

0.0'l0

Vl

n 0,0S
LU

X

0.01
2.6{A)

FIG. 3. f2, spin density at the site of F ion as calculated as
a function of interatomic distance. The Mn +-F separation as
appropriate to PbF2 is indicated by an arrow. The experixnen-
tally measured value {Ref. 3) is shown by a triangular point as
discussed in the text.

FIG. 4. Various integrals between 2p (F ) and d 2{Mn +).
(a) (2p~ td g); (b) (2p~2p~~~2p~d 2); (c) —(d 22p~~~d, d 2); (d)

&2p d zll2p d 2)&&lo ', «) &2p
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{a.u.j
0.010-

0.010—

O.OOS

0.00'

; PbF2

3.0{A)

1.8

1

2.2

I

2.6

I

0
3.0 {A)

FIG. 5. Calculated p spin density on the F ion as a func-
tion of interatomic distance. The distance as in PbF&.Mn~+ is
marked by an arrow. The point shows the experimental value.

ment. We visualize it as follows. First we consider
t 1-t 1 1 t t configuration in which the 2s(F ) orbitals are
doubly occupied with antiparallel spins and 3d' electrons
of the Mn2+ are spin up according to the Hund's ground
state so that the total spin is + —,'. The 3d l l l l l orbitals
are vacant so that when we consider the transfer of an
electron from the 2s l(F ) orbital to the empty d l orbital
of Mn +, there is a net up spin density at the F ion
which is in the same direction as that of the occupied
3d t 1 t t t orbital. This is the positive transferred hyper-
fine interaction. There is an overlap between the 2s t(F )

(o.u.)
0.10-

~ 00S
4J

FIG. 7. m-electron spin density at the F site as a function of
interatomic distance. The Mn +-F distance for PbF2.Mn + is
marked by an arrow.

and 3d'& orbitals so that because of the Pauli principle
the 2s t(F ) orbital is prevented from coming towards the
3d t orbitals so that the amplitude of the 2s t(F ) orbital
at the site of the F ion is increased relative to its value
when the 3d t orbitals are not occupied. Therefore, there
is a positive transferred hyperfine interaction due to the
overlap effects. The overlap between the occupied
2st(F ) and occupied 3d t orbitals therefore leads to a
positive transferred hyperfine interaction. The transfer of
an electron from the occupied 2s1(F ) to the empty 3d l
orbitals also leads to positive transferred hyperfine in-
teraction. However, a negative transferred hyperfine in-
teraction may also arise so that the transferred hyperfine
interaction arising from the transfer of 2s l(F ) electrons
to empty 3dl orbitals, discussed in the previous para-
graph, may be reduced in magnitude. We imagine an ar-
bitrarily small population on the otherwise empty 4s shell.
The exchange interaction between the 4s t and 3d t orbi-
tals is such that the 4s& orbital is energetically favored
over the 4st orbital. Therefore the 2st(F ) to 4st
transfer is favored rather than the 2s l(F ) to 3d l. This
leads to a net downward negative spin at the Zs(F ) site.
Therefore an excitation of the 2st(F ) electron to the
empty 4s 1 orbital leads to a reduction of the transferred
hyperfine interaction.

IV. SOFT-PHONON MODE
IN TRANSFERRED HYPERFINE COUPLING

0.01
1.8 2.2

FIG. 6. m.-electron integrals including the overlap, the split
kinetic energy and some of the charge redistribution integrals in
atomic units. (a) (2p ~d, ), (b) (2p+, ~~2p+, ) X10 ', (c)
(Zp 2p ii2p d, ), (d) (d,2p„iid, d, ), and (e) —(2p iA'V'I
2m

~
d, ). Note the scale multiplication, e.g. , at 1t =1.8 A,

(2p d, ~~2p d, ) =0.286 a.u.

We consider a sinall distortion or contraction of the F
ions which surround the Mn + ion. VA.en this contrac-
tion goes to zero, the lattice expands and we expect the
transferred hyperfine interaction to decrease in magni-
tude. The frequency of a phonon then goes to zero at a
temperature of about T, =50 K. A soft-phonon mode in
PbF2 has indeed been reported. ' %e calculate the posi-
tive transferred hyperfine interaction due to the transfer
of an electron from the occupied 2st(F ) to the empty
3d t orbital. The potential energy from the modulation of
the electron-nuclear attraction may be written as
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where V„ is the derivative of the potential with respect to
the radius vector of the ith atom and Q„ is the nth nor-
mal coordinate. The interaction (25) was first written by
van Vleck in connection with their studies of the spin-
lattice relaxation times of paramagnetic atoms in insulat-

ing materials. The transfer coefficient (10) now has an
additional term of the form,

2.0

l.Q

where the displacement operator is given by
1/2

(26)

(27)

0.0

I

50
i

lOQ {K)

- 8

7

Here
I

n
I

selects a particular normal mode of the lat-

tice ' ' at which the symmetry breaks, M is the mass of
the crystal, ~i, the phonon frequency with

I
k

I
as the

wave vector, and at and ai, are the creation and annihila-
tion operators for the phonons. We introduce an order
parameter b, which vanishes when the distortion is
released25 at a particular temperature T, analogous to the
Peierls temperature such that

&ua+u —x&
V

Sk, g (28)

where Q =ir/a is at the zone. The transferred hyperfine
interaction is then found to be,

~2 = gPJi&w l&.(0)
I

(~+1'+1'ort)
3

(29)

when ysort goes to zero, the transferred hyperfine coupling
changes by

g~uagxViv I
&s(0)

I
'l 1'sofi 2(~+1'—)1'sar~iS

1/2

—
& 2s l

I
V„ I

2s t )S)
2M' a V„

(31)

Since the matrix elements of the derivatives of the crystal
potential are difficult to estimate theoretically we give the
value as deduced from the experimental measurements
which is 5A, =3.54 G. As the distortion is relaxed at
T, =50 K, the 5A, approaches zero as shown in Fig. 8.
At zero temperature there is a finite charge-density
surplus at 3d configuration with a deficiency at F
which is released at T, where the charge is closer to that
of 3d . Thus there is a local charge adjustment associated
with a soft-phonon mode. The value of 50 K is in the
range usually expected for a Peierls distortion. At present
the measurements of A, for PbFi..Mn + are available
which we have used in Fig. S. However, good measure-
ments of the temperature dependence of A~ and A have
yet to be carried out.

FIG. 8. Soft-phonon contribution to the isotropic component
of the transferred hyperfine coupling 5A, which goes to zero at
T, =50 K. The full value of A, is also shown on the right-hand
side in gauss as a function of temperature. The dots are the ex-

perimental points taken from the work of Madrid et aI. (Ref. 3).
The tkeoretical value is ours as discussed in the text.

V. CONCLUSIONS

We have calculated the static transferred hyperfine cou-
pling at the ' F ion site in the neighborhood of Mn2+

ion from the first principles. The isotropic component of
the transferred hyperfine interaction is in reasonable
agreement with the experiments. We have also predicted
the change in the transferred hyperfine constant which
occurs at the F ion site as a result of charge transfer
from the 2s(F ) to the empty 3d orbital resulting in a
charge accumulation at the Mn + site and hence a lattice
distortion. When the temperature is varied at a particular
temperature, T, =50 K, the charge accumulation is re-
laxed. The predictions of our theory are in complete ac-
cord with the experiments.

Although the theory of the static transferred hyperfine
interaction was described by Watson and Freeman' and
Simanek and Sroubek, it had been improved by Hubbard
et al. by considering the configurational interaction
rather than one-atom orbitals for the calculation of charge
transfer. In the two-center three-orbital model, the advan-
tage is that the molecular-orbital charge transfer can be
written in terms of two-center integrals for computational
convenience. It is completely equivalent to the Hubbard
scheme except that now all possible combinations of the
wave functions can be made for determining the charge
transfer. Thus the theory of 1960s is now considerably
improved. ' ' The PbF2 lattice has a much larger lattice
constant than MnF2. %'e have calculated all the integrals
using Hartree-Fock wave functions as a function of in-
teratomic distance which suggests that the transferred hy-
perfine constant varies approximately as R . Thus the
importance of the distance dependence of the transferred
hyperfine coupling is quite clear as we can then follow the
changes in going from one lattice to another. Mishra
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et al. have considered the effect of changing ligands,
such as Cl in place of Br, on the hyperfine fields using
unrestricted Hartree-Fock wave functions in which the
basis functions are expressed as linear combination of
primitive Gaussian functions. As the size of the lattice it-
self changes in going from the chloride to the bromide lat-
tice, there is considerable change in the hyperfine field
owing to distances themselves as found by us. Thus the
two effects, namely, that of the chemical change of the
ligand ions and that of distances have to be distinguished.
Ours may be the first calculation of the changes as a func-
tion of distance.

It is of interest to point out the spin dependence of the
problem. The occupied 3d orbitals are of & spin and the
energetically favorable empty 4s orbitals are also t spin.
A transfer of an electron from the 2st(F ) to 4s( orbital
gives rise to a reduction of t spin density at F ion. This
effect has been estimated to be about six percent of the ex-

perimental value of the transferred hyperfine interaction
but plays an important role when 2s 1'(F )-to-4s t
transfer is induced by phonons in the form of a
temperature-dependent reduction.

In conclusion, we have developed the static theory of
the transferred hyperfine interaction with all the possible
diagrams taken into account. %e have calculated the in-
teratomic distance dependence of the charge transfer in-
tegrals for the first time. We have also studied the effect
of the soft phonon on the transferred hyperfine interac-
tion for the first time.
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