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A novel physical mechanism is proposed as an explanation of intrinsic self-generated chaotic oscillations
in semiconductors under static external conditions. It is based upon impact ionization from at least two im-
purity levels, and includes trapping and dielectric relaxation. Conditions for an oscillatory instability are
derived, singling out high-purity relaxation semiconductors with low differential mobility. A period-dou-
bling route to chaos and a strange attractor of spiral type are found.

Chaotic oscillations in high-purity Ge (Refs. 1-4), GaAs
(Refs. 5 and 6), and InSb (Ref. 7) have recently been dis-
covered under a wide variety of experimental conditions,
ranging from low temperatures!'->’ to room temperature,$
and including weak infrared"” or visible’ irradiation as well
as complete shielding against external irradiation,® and, in
some cases, parallel? or transverse®’ magnetic fields.

Upon variation of the applied bias, taken as a control pa-
rameter, different routes to chaos were observed: the
period-doubling (Feigenbaum) scenario,!~*%7 quasiperiodic
(Ruelle-Takens-Newhouse) breakdown*5 and intermittent
switching (Pomeau-Manneville) between two oscillatory
states.>*® The oscillation frequencies were typically quite
low, between a few Hz and several kHz.

The physical mechanism of these chaotic oscillations
is—with the exception of the helical instability’—not well
understood, although there is strong evidence that impact
ionization from impurity levels is involved in a majority of
these experiments.!:>5-7 The onset of chaos occurred either
just below!6 or above® the threshold field for impurity
breakdown. The similarity of the mechanism in various ma-
terials is indicated by the observation of an empirical scaling
law® between the impurity level energy and the breakdown
field, which ranged from a few V/cm for shallow donor or
acceptor states at helium temperatures to several kV/cm for
deep levels in semi-insulating GaAs at room temperature.

The experiments can be divided into two classes: (i)
driven chaos,? which is induced by periodically chopped
external radiation or ac-modulated external currents or
pulsed voltage, (ii) self-generated chaos,!*4¢7 which is ob-
served under static applied electric fields and time-indepen-
dent, if any, irradiation, and is widely independent of exter-
nal circuit conditions. A theoretical model for the first class
of phenomena was recently proposed by Teitsworth and
Westervelt (TW),? using an ac-modulated driving current in
combination with impact ionization from a single acceptor
level, but the second, larger class of experiments has so far
not been explained theoretically.

In this Rapid Communication I present a novel model
which can account for self-generated chaotic oscillations in
semiconductors, as in class (ii). It is based upon impact
ionization and trapping at impurities, coupled with dielectric
relaxation. The essential innovation is that it explicitly in-
cludes the excited state(s) of the trapped carriers in the
generation-recombination kinetics, in addition to the ground
state.

Analytical conditions for the occurrence of self-oscillatory
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instabilities in a general model with two impurity levels are
derived for what is believed to be the first time, thus re-
stricting the range of material parameters for which chaotic
oscillations can be expected. This could be of potential im-
portance for the design of far-infrared photodetectors and
integrated electronic circuits where oscillatory instabilities
and broad-band noise are detrimental. For the simplest
two-level model the route to chaos is investigated numeri-
cally with typical parameters. This is to my knowledge the
first consistent theoretical explanation of impact-ionization-
induced self-generated chaos in semiconductors, as ob-
served by several groups in different materials and under
widely varied experimental conditions.!3-¢.7

For convenience, all formulas below will be given for an
n-type semiconductor, although the model can easily be ap-
plied to p-type material by making the appropriate replace-
ments. The temperature is assumed to be sufficiently low
that the impurities are not thermally ionized. This implies
helium temperatures and breakdown fields of only a few
V/cm in the case of shallow donors or acceptors, e.g., in »n-
type InSb (Ref. 7), ntype GaAs (Ref. 5), and p-type Ge
(Refs. 1-3), or room temperatures and breakdown fields
21 kV/cm in the case of deep traps, e.g., in semi-
insulating GaAs (Ref. 6). In the following we normalize all
concentrations by the effective doping density Np=Np
—N,, all lengths by the effective Debye length
Lp= (Dy7))"2, the time by the effective dielectric relaxa-
tion time 7y =e¢,/(4menoNp), and the electric field by
kT/eLp, where Np, N, are the donor and compensating ac-
ceptor concentrations, respectively, uo and D, are the low-
field mobility and the diffusion constant, and e, is the static
dielectric constant.

The basic model assumption is that the electrons can be
bound at an impurity center in M different energy levels,
corresponding to ground and excited states. The nonlinear
generation-recombination (GR) and transport processes are
governed by the continuity equations for the electrons in
the conduction band (of density v) and in the M impurity

l;vels (densities v;, i=1, ...,M), and by Poisson’s equa-
tion:
V=V j=dov, vy, ..., vy, &) ,
o=, (v, vi, ..., vp €) ,
V-e=1—-v—2v, . 1)
i

Here & is the electric field, j=vv(e) + D(e)Vv is the
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current density with dimensionless field-dependent drift
velocity v and diffusion constant D, and

¢iE EjBij(V, ‘)Vj“f' C‘(e)v; ¢OE - 2,¢[

are the GR rates. The functions By and ¢, are specified by
the GR mechanism which is effective in a particular materi-
al; they depend upon the magnitude of the electric field
through the GR coefficients, in particular the impact ioniza-
tion coefficients. The B term, which depends upon v
through trapping and impact ionization, provides the crucial
nonlinearities. The simplest GR mechanism of this type,
which employs two donor levels and impact ionization from
both levels, has been advanced previously® to explain S-type
negative differential conductivity (SNDC) and current fila-
mentation at low temperatures.

Self-generated chaos is generally preceded by an oscillato-
ry instability of the steady state. Conditions for this can be
derived from the response of the system (1) to small longi-
tudinal fluctuations proportional to exp(ikx +At) of the
field € and the carrier concentrations v,vy, ... ,vy. The
resulting dispersion relation A (k) contains a complexity of
possible diffusion-driven, mobility-driven, and GR-induced
instabilities, and has been solved for special cases else-
where.>!1® The simplest oscillatory instability, a Hopf bifur-
cation!! of a spatially homogeneous limit cycle oscillation,
occurs if two complex conjugate eigenvalues A (k =0) cross
the imaginary axis, from Re A <0 to Re A > 0, as the con-
trol parameter (for instance, the external static current den-
sity J or field €g) is varied. For a two-level model, the con-
dition for a Hopf bifurcation at ¢y becomes

v(gg) [((F— A1 — A431)80,/3e+ (V—Ap— A1,)80,/ 8¢l
+ M FADE=ADT—=2)=0, ()

where ¥ =vdv/de, and A\, \, are the eigenvalues of the
2x2 GR matrix

AU= By— Ek(aB,k/av)vk— ¢

all evaluated at the steady state. For positive differential
mobility and standard GR kinetics, impact ionization coeffi-
cients monotonically increasing with field, and trapping
cross sections nonincreasing with field, a necessary condi-
tion following from (2) is # < \;. This requires GR induced
SNDC (whence A; > 0> \,),° a low electron concentration
v on the NDC branch of the static current-field characteris-
tics, and a small differential mobility dv/de. Thus, self-
sustained oscillations and chaos are to be expected in high-
purity relaxation semiconductors, and the oscillations occur
on a very slow time scale, which is in agreement with the
experiments.!3-7 The angular frequency of oscillation near
the Hopf bifurcation is given by

ImA = [detd — 7 (A + Ay) +v(gg)dpo/0e]V? .

For the simplest two-level GR mechanism? and a choice of
typical numerical parameters, the evolution of the limit-
cycle oscillations in the nonlinear regime beyond the Hopf
bifurcation point ef!, given by (2), has been investigated.
Assuming spatial homogeneity and a time-independent
external current density J, Eqs. (1) can be reduced to a set
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of three nonlinear ordinary differential equations:
e=J—-vv(e) ,
v=Xwv+ (XT+X{v)v,— TE(N/NS+v)v
v1=—(X*"+Xpvi+ T, ,

with v;=1—v —v,. These have been solved numerically for
a series of increasing fields €y > e§/=98 (Fig. 1). The drift
velocity was modeled by the empirical saturable form!?
v(e) =arctan(0.3¢)/0.3. The (dimensionless) impact ion-
ization coefficients for ground- and excited-state ioniza-
tion were approximated by the Shockley formula®®
X, =5x10"*exp(—6E/e) and X} =10"2exp(—1.5E/¢),
with a normalized impurity ground-state energy E,=1. The
trapping coefficients were 7§ =10~2, T*=10"5, the genera-
tion coefficients Xf = X*=10-7, and the compensation was
N, A/ NI; =(0.3.

The time series v (7) and the phase portraits of v versus €
in Fig. 1 exhibit a period-doubling route to chaos. As g is
increased, the amplitude of the limit cycle grows, and oscil-
lations of period two [Fig. 1(b)], four [Fig. 1(c)], eight [Fig.
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FIG. 1. Carrier concentration » in units of 10~3N} vs time in
units of 10* 7 um (left column) and phase portraits of v vs field € in
units (k7E,)/(eLp) (right column) for the following steady-state
fields eo: (a) 102, (b) 105, (c) 105.3, (d) 105.42, and (e) 105.5.
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1(d)], and chaotic oscillations [Fig. 1(e)] are successively
displayed. Corresponding power spectra of €(¢) are shown
in Fig. 2. For a limit cycle of period one, the spectrum is
sharply peaked at the intrinsic oscillation frequency wg
=2 fo=0.57%10"*/7), [Fig. 2(a)], while in the chaotic re-
gime a high level of broad-band noise is present [Fig. 2(b)].
In Fig. 3 the local field maxima €, are plotted versus the
control parameter eg. The Feigenbaum period-doubling cas-
cade, as well as chaotic bands at gy > 105.43 and noise-free
windows of period six at €o=105.475, and of period five at
€p=105.575 can be seen. The inset shows the Poincare re-
turn map of e,,+; Vs g, reconstructed from successive maxi-
ma of e(r) at eo=105.5. It is strongly reminiscent of the
one-dimensional iterated maps studied in the theory of
discrete dynamic systems.!4 15

The physical origin of the obtained chaotic dielectric re-
laxation oscillations can be understood as follows: Injected
charge is trapped, which increases the electric field. This
enhances impact ionization of the trapped charge, which
creates more free carriers and leads to a reduced field due to
increased dielectric relaxation. Hereby the trapping rate be-
comes dominant over the ionization rate, which completes
the cycle. The fact that the present model gives chaos for
dc conditions, as opposed to the TW model,® which gives
chaos under ac drive only, is due to an essential difference
in the underlying physical mechanisms. In the absence of
an ac drive the TW model does not exhibit limit cycles or
chaos, but only damped dielectric relaxation oscillations.
Chaos is generated by the coupling of this intrinsic frequen-
cy with an appropriate driving frequency, similar to a driven
Van der Pol oscillator. In the present model the mixing of
orbits which is necessary on a chaotic attractor is provided
by the redistribution of trapped carriers between the ground
and the excited state due to the competing impact ionization
of these two levels. This causes an intrinsic instability of the
dielectric relaxation oscillations, which is absent in the TW
model. The additional internal degree of freedom of the
trap ground-state occupancy furnishes the third dynamic
variable which is required in autonomous chaotic systems.
The strange attractor is characterized by the displaced reinjec-
tion of phase trajectories in three-dimensional phase space
(e, v, v1) onto the bistable (‘‘rippled’’) slow submanifold of
dielectric relaxation oscillations. This represents a novel
physical example of ‘‘spiral-type’’ chaos.!®* As a further dif-
ference to the TW model, it suffices to use the simple
standard Shockley formula for the impact ionization coeffi-
cients, while the TW mechanism requires a more elaborate,
nonmonotonic dependence of the coefficient upon the field,
which has not yet been corroborated.!”
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FIG. 2. Power spectra S(w) of €(s) for (a) ey=103 (limit cycle
of period one) and (b) eq=105.5 (chaos). The power S is in dB,
and the angular frequency is in units of 1047 ;1.
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FIG. 3. Bifurcation diagram of the field maxima €, vs the control
parameter €. The inset shows the return map e, 4 vs €,, where
{ea} » e In is the set of successive field maxima, for gg=105.5.

The numerical parameters chosen are representative of
high-purity materials at low temperatures. Inspection of
Figs. 1-3 reveals a close similarity with experimental dia-
grams.!”” In the figures presented, all times, fields, and
concentrations can be scaled by varying the temperature, the
impurity energy, and the doping density. For p-type Ge at
42 K, with puo=10% cm?/Vs, €,=16, effective doping
~ 10" ¢cm~3, and an acceptor level at 10 meV, for exam-
ple, the physical units in Figs. 1-3 are 7, ~10~* pus,
(kTE,)/ (eLp) ~0.2 V/cm, while for semi-insulating GaAs
at 300 K with wo=10* cm?/ Vs, €,=12.5, N3=10' cm~3,
and a trap level at 700 meV, 7, ~10"* ms, (kTE,)/
(eLp) ~10 V/cm.

The condition for an oscillatory instability (2) requires a
delicate balance between the differential mobility, the GR
time constants, and the carrier density, which can be sensi-
tively controlled by the temperature, by optical radiation, or
by magnetic freeze-out due to a small transverse magnetic
field. This elucidates the role of such additional control
parameters in some of the experiments.!:35-7

The longitudinal oscillatory instability may be coupled
with a transverse filamentary instability’ if the transverse
dimension of the SNDC element is sufficiently large. Since
the dielectric relaxation occurs on a very slow timescale, as
inferred from condition (2), whereas the current filamenta-
tion is governed by the faster generation-recombination
processes coupled with transverse diffusion,® a quasistation-
ary transverse filamentary profile may form for each instan-
taneous value of the electric field, being slaved by the slow
dielectric relaxation oscillations of the field. This will result
in an oscillatory ‘‘breathing’’ of the current filaments which
shows up as slow periodic or chaotic current oscillations.

In conclusion, a simple rate-equation model with impact
ionization from two impurity levels has been advanced as a
novel explanation of self-generated chaos in semiconduc-
tors. Its validity could be experimentally tested by slightly
increasing the temperature such that the excited level, but
not the ground level, is thermally ionized. The understand-
ing of these phenomena might be useful in guiding the
tailoring of low-noise electronic devices.
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