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The structural stability of ordered 4B alloys on the diamond lattice is discussed from the point
of view of the competition between bond-angle and heterogeneous bond-length constraints. An in-
finite number of layered structures are favored in the absence of applied strain. With uniaxial
strain a special ordered structure, consistent with recent electron diffraction measurements, is sta-

bilized.

Isostructural order-disorder transitions are a common
phenomenon in metallic alloys, where below a critical tem-
perature T, different atoms preferentially occupy special
sublattice sites. In contrast, the semiconducting alloy Ge-
Si is generally regarded as a model random alloy in that no
long-range order has been observed under extremely pro-
longed anneals at any temperature,' and that the solidus
and liquidus curves are fitted very well by ideal solution
theory.? Recent work on Ge-Si/Si strained superlattices
(SSL’s), which at first indicated short-range order,? and
then true long-range order,* has thus come as a consider-
able surprise.

The SSL’s studied by Ourmazd and Bean were grown
by molecular beam epitaxy on (001) Si, consisting of 20
periods of 75 A of Geg4Sig¢ and 225 A of Si. Despite the
large lattice constant mismatch (4%) between Ge and Si,
the layers can be grown free of extended defects and pos-
sess commensurate interfaces. The strain is accommodat-
ed by a tetragonal distortion of the unit cell in the alloy
layers.> The structure inferred from the electron diffrac-
tion pattern consists of the ordering of {111} planes in the
sequence SiSiGeSeSi. . ., producing a doubling of the unit
cell. The two possible structures consistent with this or-
dering are shown in Fig. 1. The extra diffraction spots
characteristic of the ordered state could be made to appear
and disappear reversibly by annealing at 450 or 550°C,
respectively, which indicates a true order-disorder transi-
tion within this temperature range.*

Given the reversible nature of the ordering, and the ab-
sence of such behavior under similar conditions in bulk
material, Ourmazd and Bean conjectured that the transi-
tion was strain driven and strain stabilized.* In this paper,
I shall attempt to quantify this suggestion within the
framework of a simple model.

Traditional models for ordering in metallic alloys have
employed concepts such as electronegativity differences
and atomic size mismatch involving only two-body forces.
Such a model would predict that an ordered unstressed
Gey 5Sig 5 alloy would have the cubic zinc-blende structure.
The competition between stiff bond-length and softer
bond-angle forces may lead to stability for special ordered
structures with broken cubic symmetry. Such ideas have
been employed by Phillips and Thorpe to discuss the struc-
ture of covalently bonded glasses on intermediate-length
scales.” Here I show that this competition favors a novel
superlattice which is one of the two structures consistent
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with the electron diffraction measurements of Ourmazd
and Bean.*

It is instructive to imagine building an AB alloy on a
pseudodiamond lattice with rigid bonds of three different
lengths and with springs between bonds to maintain the
bond angles close to the perfect tetrahedral angle of
~109°. An inhomogeneous distribution of bond lengths
on this lattice can always be accommodated by small
bond-angle deformations; however, for certain periodic
structures, the bond angles can remain undistorted, so that
no internal strain exists in the solid. An obvious require-
ment-for such a strain-free structure is that the individual
puckered hexagonal units of the diamond lattice be un-
strained. Generally this requires that each pair of parallel
bonds in the hexagon be identical, and so there are five al-
lowed hexagonal units: AAAAAA, AABAAB, ABABAB,
ABBABB, and BBBBBB. In the diamond lattice, three
nearest-neighbor atoms occur in two different hexagons.
Consequently, the 4¢ and B¢ units will stack only with

(a)

FIG. 1. The two ordered structures consistent with electron
diffraction observations (Ref. 4).
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themselves and cannot be used in an alloy. The AABAAB
(ABBABB) units will also stack only with themselves and
the rigid constraints force them to form a planar structure
consisting of four (111) planes (two puckered layers)
where the outermost atoms are all B(A4). These are pre-
cisely the double layers seen in the structure of Fig. 1(a).
Because these double layers consist of two puckered layers
containing only AB bonds, it is now clear that all the
strain-free structures must be based on stacking with this
“AB” layer as the basic unit.

Each puckered AB layer presents one type of atom on
one side and the other atom on the opposite side; they can
be stacked with either like or unlike bonds making connec-
tions. Stacking the layers with all 4B connections pro-
duces the zinc-blende structure, and with all like bonds
connecting (i.e., alternately 44 and BB) produces the
structure of Fig. 1(a). However, arbitrary (including
aperiodic) stackings are also allowed. All of these strain-
free structures have the composition AgsBgs. We note
that the second structure which is consistent with the ex-
perimental measurements [Fig. 1(b)] is highly strained. If
solely mechanical forces are operative, the strain-free
structure will be the lowest in energy.

When a uniaxial strain is applied to this system (as in
the SSL’s), the bond angles will be deformed; if the bond-
bending forces on the atoms are different, the degeneracy
of the various strain-free structures will be broken. We
can immediately see that the applied strain will favor the
structure containing the maximum number of /ike bonds
by considering a single chain of atoms in the (110) plane
shown in Fig. 2. In the zinc-blende structure [Fig. 2(a)]
the bond-angle deformation produced by compression is by
symmetry identical on the two types of atom. In the
dimerized chain [Fig. 2(b)] the bond-angle deformations
on unlike atoms can be different. For a fixed strain, the
dimerized chain will be of lower energy, because the strain
can be principally accommodated on the softer atom.
Thus, the structure with the lowest stored mechanical en-
ergy under strain will be that shown in Fig. 1(a).

In order to quantify these ideas we employ a valence-

(a)

FIG. 2. Compressed chains of atoms in the (110) plane of the
diamond structure. Only the dimerized structure (b) allows the
bond-angle distortions produced by compression to be different
on the two kinds of atom.
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force-field model,> commonly and successfully used to
model elastic properties. We use a simplified model with
two constants a and S, respresenting the bond-stretching
and bond-bending force constants, respectively.” Then the
energy for small distortions away from the equilibrium po-.
sitions can be written

U"% Z a;j(51;j)2+-,';- Z [3,'(59]','/()2 . (n
i>] >k

The summations in Eq. (1) run over all sites i in the lattice
and 6/;;,60;; are the distortions from equilibrium of the
bond lengths and bond angles between nearest-neighbor
atoms. The equilibrium bond length can of course be
chosen to be different between different atom pairs. The
parameters a and S can be fit to the bulk and shear moduli
of the pure materials, which yields asi—si=6.14 eV,
AGe—Ge =5.34 eV; Bsi=1.6 eV; Bge=1.3 eV. For the un-
like bonds we used asi—ge=5.74 eV, the average of the
pure materials. The bond lengths were chosen in the ratio
1:1.02:1.04, assuming Vegard’s law to hold on a micro-
scopic scale.! None of our results are sensitive to small
changes in these values. The fitting of the parameters to
the bulk and shear moduli underestimates the softness of
bond bending in both Si and Ge; for example, this model
will not reproduce the pronounced flattening of the TA
phonon close to the zone boundary. Moreover, the distor-
tions here are sizeable enough that anharmonic terms will
be important, and we note that the Griineisen constant for
short-wavelength shear (i.e., L - or X-point TA phonons) is
negative in both Si and Ge.!' It is noteworthy that both
period-doubled structures of Fig. 1 can be regarded as
density waves coupled to the soft TA L -point phonon.

For small distortions away from the perfect diamond
lattice positions, Eq. (1) reduces to a quadratic form.
Given a choice of atomic configuration, Eq. (1) can be
minimized with the boundary conditions of fixed average
strain in the {001} planes (perpendicular to the growth
direction), while the strain in the z direction is a free pa-
rameter. This corresponds to the experimental situation,
where the layers are thin in comparison to their width (so
that the strain is uniform) and also that the Si layers are
much thicker than the alloy layers (so that the strain in the
x -y planes is fixed by the Si lattice constant). For numer-
ical calculations, I chose a pseudocubic unit cell containing
64 atoms with periodic boundary conditions. Equation (1)
was then minimized for different atomic arrangements,
both periodic and random within the unit cell. The results
for a number of structures are shown in Fig. 3, with energy
per atom plotted as a function of uniaxial strain. Table I
shows a list of the structures plotted in the figure, together
with calculated elastic moduli.

We force all the structures to be tetragonal, despite the
fact that some of them (e.g., those of Fig. 1) could further
lower their energy by rhombohedral or orthorhombic dis-
tortions. We suspect that the samples will be twinned on
length scales short enough that individual domains will be
unable to relax in this fashion.

Equation (1) and Fig. 3 represent only the mechanical
energy of this system. Because different crystal structures
have different arrangements of near neighbors, there
should be differences in chemical energy between different
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FIG. 3. Energy per atom of various arrangements of atoms in
a 64-atom strained cube relative to that for the zinc-blende
structure. The numbers refer to the labeling in Table I. Match-
ing to the Si lattice constant corresponds to a value of the uniaxi-
al strain of 2%.

structures. Chemical energies are almost always dominant
over mechanical energies in determining crystal structure;
only in special cases such as this where the atoms are so
chemically similar can mechanical forces play an impor-
tant role. In any case, the offsets between different curves
in Fig. 3 cannot be taken to be reliable, but of all the struc-
tures studied, the dimer structure of Fig. 1(a) (structure 2
of Table I) has the lowest energy, although only by a small
amount. Note that there is a continuum of curves lying in
between the dimer structure (2) and the zinc-blende struc-
ture (1) which are longer period orderings of the basic
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“AB” (111) layer. If chemical energies (such as the heat
of mixing which might favor Ge-Si bonds over homopolar
bonds) were large, (1) would be stabilized relative to (2)
because the zinc-blende structure has all AB bonds (see
Table I). Since the dimer structure has one less AB bond
per unit cell than the zinc-blende structure, the ionic con-
tribution to the bond energy must be less than 1 meV for
the dimer structure to be favored. No measurements of
the heat of mixing are available, but an analysis by Van
Vechten!? of the distribution coefficient of Si impurities in
Ge found the ionic contribution to the heat of mixing to be
zero (so that the solid phase should be an ideal solution).
(The estimated!2 error is approximately * 1 meV/atom).

The energy differences between different structures are
small in comparison to thermal energies at the tempera-
ture of the experiments. However, at finite temperature,
the dimer structure is further stabilized relative to the oth-
er ordered structures because it has softer phonons (see
Table I) and therefore a larger phonon entropy. We have
estimated the phonon entropy by calculating the vibration-
al modes of the 64 atom unit cell. At 300 K the phonon
entropy contributes to a lowering of the free energy of the
dimer structure (2) by about 1 meV/atom relative to the
random case, and about 0.3 meV/atom relative to the
zinc-blende structure (1).

The transition temperature to a disordered state can be
estimated from the energy differences between curves 2
and 7 in Fig. 3 (about 4 meV). Even taking the phonon
entropy into account, this yields 7.<100 K. An alterna-
tive estimate can be made by calculating the energy of an
isolated defect pair (interchanging two atoms) which we
calculate to range between 20 and 30 meV per pair of
atoms. This yields a somewhat higher estimate for T,
== 150 K, but still well below the observed T.= 750 K.
Our treatment of short-wavelength shear is not completely
adequate, and we have neglected anharmonicity (both of
which effects would raise our estimates of 7.). It is possi-
ble that inclusion of these effects might enable this model
to account quantitatively for the high observed transition
temperature, although the energy scale seems rather too
small. The model is qualitatively successful in favoring the
correct type of ordered structure (although present experi-
ments have so far failed to distinguish between the struc-
tures 2 and 3 of Table I, this should be possible with x-ray
diffraction).

In conclusion, I have shown that, in contrast to chemical

TABLE I. Bulk and shear moduli as well as the fraction of AB bonds for the structures whose energy
is shown in Fig. 3. The disordered case (7) involves an average over 10 realizations and has an rms devi-

ation of less than 5%.

Elastic moduli (10" dyncm™2)

Structure (cii+2c12)/3 (cri—c12)/2 fas
1 Zinc blende 9.20 4.64 1.0
2 Double (111) [Fig. 1(a)] 9.09 4.54 0.75
3 Double (111) [Fig. 1(b)] 10.40 4.63 0.25
4 Double (001) 9.62 4.00 4.95 0.5
5 Double (100) 9.62 495 4.00 0.5
6 Double (110) 9.83 4.63 4.72 0.25
7 Random 9.60 4.62 0.5
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interactions, the competition between bond-length and
bond-angle forces can provide special stability to a novel
ordered semiconductor alloy structure. In a 50% A4B alloy
based on the diamond lattice, a class of layered structures
is preferred, and in the presence of applied uniaxial strain
a dimerized structure is singled out.

After this work was submitted, I became aware of the
very recent work of Martins and Zunger,'® in which they
present total energy calculations of the enthalpies of for-
mation of the zinc-blende and rhombohedral structures (1
and 2 of Table I). Their conclusions are very similar to
those presented here. Remarkably, they found that the
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chemical energy of forming a heteropolar bond was posi-
tive (~4 meV/bond), which provides further stability of
the dimer structure (2) relative to zinc blende, but indi-
cates that a// mixed phases are metastable at low tempera-
tures and will tend to disproportionate.
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