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Destruction of phase coherence by electron-phonon interactions in disordered conductors
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%e present a novel formalism for calculating the destruction of phase coherence in ~eak localization and

apply it to the case of electron-phonon interactions. The calculation demonstrates that in the present case
quasielastic collisions are negligible, leading to the result that the phase-breaking rate due to electron-

phonon interactions is identical to the inelastic collision rate.

There are moderately disordered conductors ~here locali-
zation of the electronic wave function has only a weak
though measurable influence on conductivity. This weak-
localization effect can be understood in terms of quantum-
mechanical interference within a quasiclassical theory, ' ' as
follows. The set of classical electronic paths which return to
the starting point in a given time to includes pairs of paths
which differ only in that they are traversed in the opposite
direction of time and so interfere constructively in case of
time-reversal invariance. In correspondence to this en-
hanced localization, there is a decrease in conductivity
which can be calculated according to2

2eho — D dtoWt4&

where D is the diffusion constant and v the elastic collision
time, and where 8't is the interference term between pairs

of paths, as referred to above.
In case of time-reversal invariance, 8't is equal to the

classical probability 8't that an electron at the Fermi level

returns to its starting point in time to. If this invariance is
broken, a phase difference between pairs of time-reversed
paths appears, and the constructive interference is partially
destroyed. This destruction of phase coherence leads to an
extra factor [exp( —ro/r~)] in the expression for li', ,too

where 1/r~ may be called the phase-breaking rate. The pur-
pose of this Rapid Communication is to present a calcula-
tion of the phase-breaking rate due to electron-phonon in-
teractions using the simple interference picture outlined
above.

%e start from the one-electron Lagrangian which is given
by

L - ~m v2 —
each

—V~m~,
1 (2)

where V; p is the impurity potential. Furthermore, the de-
formation potential

e$- "V u (3)

where u-u(r, r) denotes the lattice displacement field, and
where (we assume one electron per ion) n and No are the
electronic density and density of states per spin, respec-
tively.

It is important to note that the impurities move in phase
with the distorted lattice; hence, the impurity potential has
the form V; «(r)=x,u(r-(R&~+u)) where R~o denotes
the equilibrium position of the ith impurity. Consequently,
the impurity scattering is only elastic in the reference frame
that locally moves along with the lattice. Therefore, we
shift to this moving reference frame by changing the elec-
tronic coordinate according to r x+u and the impurity
scattering then becomes static. 4

Neglecting terms of relative order m/M (m the electronic
mass, M the ionic mass), the transformed Lagrangian may
be written as L Lo+ L~, where

Lo —v2 —V
rn 2

imp

(4)
L&-mv (v V)u —Tmv'V u .1

Note that in the last line we have expressed ett according to
(3) and that we have used the relation n/2No = mb)/3.

The quantity of interest is the phase difference between
pairs of time-reversed paths. According to Feynman, each
path carries a phase factor exp(iS[r, ]/ir), where

p to/2
S[rg] - l, dl L(r, , r', , r) (5)

is the action. In the expression above we have for conveni-
ence chosen the path to start at time —lo/2 and end at
to/2. Therefore, this phase difference is equal to tp[r, ]- [S[r,]—S[r,]}/lr. Note that a substantial cancelation
occurs in this phase difference since Lo is an even function
of the velocity and independent of time. Hence, it is a
small quantity given by2

t to /2

p[r, ]-—,, [L~(r„r„r)—L&(r, , —r„—r) ], (6)
v —to 2

~here, in the last term, we have replaced the integration
variable t by —t. 8'e recognize that Lq, though small, plays
an important role here since it breaks the time reversal sym-

rnetry. Considering the specific form L~ as given by (4), we
obtain the phase difference

I to/2
tu[r, ]-—~, &,

dr[VPu (r„l)—V&u (r,, —r)]

x [Tr rf —TS~prg ]
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where summation over repeated Cartesian indices is im-

plied.
In case of random impurity positions, there will be many

classical paths that return to the starting point. Therefore,
we introduce the probability w, [r,] that an electron at the

0
Fermi level returns in time to to its starting point for any
realization of the impurity positions. Then

geneous Boltzmann equation

dQ„—+v ~ + —I —— "I'
v~ 4m

= 5 ( t —t') 8 (r —r')8 (v —v') (10)

~here 8 is a spherical 8 function. The Fourier transform of
the solution of (10) is given by'

w, [r, ] exp(iq [r,])
Irt

where the summation includes all possible paths. Evidently,
W, is obtained from Eq. (8) by putting p 0.

It is necessary to average W', as given in Eq. (8) with

respect to the lattice vibrations. Since the Lagrangian of the
lattice vibrations is a quadratic form and p[r, ] is a linear
form in u(r, t), the phonon average can be computed ac-
cording to

&exp(ie [r ])}»-exp[ —~&(q [r,])'}»} .

Concerning the summation with respect to the classical
paths, we will resort to an approximation which can be ex-
pressed as follows:

0', - ~, exp — w [r ] & (y[r ])'},h (9)

Since the exponential is a convex function, the approxima-
tion (9) is of the form of an inequality where the right side
is less than or equal to the left side.

It can be shown2 that for most problems of weak localiza-
tion, adequate expressions for the probabilities above are
obtained by considering the classical paths as realizations of
Brownian motion. Presently, however, the phase difference
(7) depends very sensitively on the velocity, which is a
meaningless quantity in Brownian motion. This makes it
necessary for us to consider paths which are realizations of
Boltzmannian motion. By this we mean motion along
straight lines which happen to be terminated by random
scattering events.

At a given time, a Boltzmannian path is completely speci-
fied by its position and by its velocity (of which only the
direction of v is important since the scattering is elastic).
Since we are dealing with a Markovian process, a basic
quantity is the conditional probability F(r, v, t;r', v', t')
d3rd0„ that there are paths having Anal position r and velo-
city v in the indicated range for given initial conditions. In
case of isotropic scattering, this quantity obeys the inhomo-

l

F(v, v';k, tp) —IQP+ /V 'k+ 1/~

x '/, ' L(k, ~)+S(v-v')—itp+iv' k+ I/T

(11)
In the expressions above, Ivl- Iv'I-uF is the Fermi

velocity and

L(k, t)p= ( I —(kl) 'arctan[kl(1 —itpr) '] }

~here l-~F~ is the mean free path. In the region kl,
cur & 1 we have L (k, au) r '( —itu+ Dk2) ', where
D T~~/is the diffusion constant. In the following, we will

also make use of the notion that an angular average of F
with respect to one of its velocities is indicated by a bar.
For instance, we have W, -F(r O, tp', r'-0, 0), and one

finds from Eq. (11) that W, - (4rtDtp) 3i2 for tp » ~.

Concerning the argument of the exponential in (9), we
note that

m'
T&(p[r,])'}»-, dt dt' X lD»'(r, —r, t g t')

x [vpup —Tg~v)2][u&vp —TS~v2]

(12)
~here the phonon correlator

D~+(r, t) - &'7Su (r, t)'7'u&(0, 0)}»
is an even function of t. On account of the Markovian
property, the four-point correlation function (two end points
and two intermediate points) required in (9)—see also
(12)—may be expressed as a product of three conditional
probabilities of the type (11). Furthermore, it will be con-
venient to chose a definite sequence of times, say
—tp/2 & t' & t & tp/2, which can be done by supplying an
extra factor of 2. Since we expect that only thermally excit-
ed phonons contribute, we conclude that Da'»(r, t + t') is
essentially zero for I t + t'I ~it/ks T. This allows us to ex-
tend to infintiy the domain of the integration with respect to
t k t' provided that tp »/kirs TIf this is the case, we ob-
tain

dO„dA„2m d kd k'dcudca' 1 2F( .k )F( .k+k + )a'w ~ (2~)' ~ (4~)'
co

t

x [F(v,;k, tp) e
" —F(v2 ,k, a)+ 2'') e . p] ~+(—k', —o)') [v(s) T's~vj] [—v(s) —T'S„,v)]

We expect that the argument of the exponential above increases linearly in tp for tp ~. Since W; '~ tttt2, this means

that the integral above should not decrease faster than tp t2. Such a slow decrease is obtained from the (k, co) integration
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only from the combination E(vt, k, «l)E(v2, k, «l) which
features a singular behavior =(—/«l+Dk') ' for small
(k, «l). In fact, it is easy to see that it ls just this com-
bination which leads to a time dependence proportional to
to '~. Compared to that, all other contributions may be
neglected. Therefore, we are allowed to approximate
E(vt, v2,k+k, «l+«l ) by E(vt, v2,'k, «l ). In addition, the
second term in the square bracket may be omitted, as we
show in a moment. Thus, @', - IV,,exp( —t«/r»), where

1 2m d k'd«l'
E(vi, v2', k, «l )

where the result in the last line is obtained since
eL, k && vqk. Using this result, we obtain the phase-

breaking rate due to longitudinal phonons

1 mh2 1

6m/lect, " « inh(/tcL k/ks T)

In limiting cases, this rate is equal to

(7~g(3)/12) (k, T)'/(a. mMc,')
for

/tct. kp » k sT » /rc t//

xD +(k', «l')(vfg —T8«/tv/)

x (y2rv) —78~vj) (14)

A

where k k/k and N is the number of iona in the normali-
zation volume. Observe now that

( Q„(t) Q,(t') )p„-8„„,(/t/M«l«) H(«lt, ) cos[«lt, ( t —t') 1

where coq eL, k. Thus, we obtain for the Fourier transform
of the phonon correlator

Dg R(k «l) k ksktk H(«ill)
n'og
x [8(«l «l«) +8(«l+ «I«) ] (15)

Strictly speaking, we have H(«l) N(«l) + T, where N is
the Bose distribution function. However, the present
single-electron theory does not take into account the Pauli
principle which forbids scattering of electrons into occupied
states. General considerations lead to the conclusion that
the Pauli principle can be incorporated by the replacement
H(«l)-N(«l)+ f(/t«l) I/sinh(/t«l/ksT), where f is the
Fermi function.

Upon inserting (15) into the expression (14) for I/r», we
encounter directional averages involving expressions of the

k ka(v ~s 8~v'/3) - k—'[(k v)' —(k') (-v')/3) .

Altogether, these averages appear in the combination

~ (k/) 18, L(k)
' dIIv (k.v)' —(k')(v')/3

nvpk & 4~ —i«l+iv i+ I/r

dIIv [(k v)' —(k')(v')/3l',
4n —/«l+iv ~ k+ I/r

F

2 kl arctan(k/)
kl arctan(kl ) kl— (16)

In order to proceed further, we have to specify details of
the lattice vibrations. For simplicity, we take an isotropic
model without dispersion which is specified by the density n
and the mass M of the ions, and by the longitudinal cL, and
the transverse cq sound velocities. In case of longitudinal
vibrations, the representation in normal modes is of the
form

u(r, t) iN ' 'XkQa(t) exp(ik r),

(rt4/30) l(k T)4/(/t'mMcg)

for ksT« /tet, //. We note that the result (17) for the
phase-breaking rate is identical to the inelastic electron-
phonon collision rate. 6 7

The expression (16) for $t. demonstrates in a direct way
the important compensation that takes place in the case of
longitudinal phonons between the two mechanisms con-
tained in Ll. First, the term (k v)' corresponds to
mv (v V)u and represents the coupling of the electrons
to the vibrating impurities. Second, the term —T(k )(v )
is connected with —Tmv'V u and originates from the in-

teraction of the electrons with the lattice vibrations.
%'ithout this compensation, each of these mechanisms
would appear to be enhanced in an impure metal and would
lead to an enhanced phase-breaking rate proportional to
(ksT) /(mMcg/), It may be worthwhile to mention that
there exist several papers ~here such enhanced rates have
been proposed. Such statements, ho~ever, are merely an
indication of an incomplete analysis of the problem.

The physical meaning of the second term in the square
bracket of Eq. (13) is as follows. It is appreciable only if the
lattice deformation stays approximately constant during the
time the electron spends on its path and leads, in this case,
to a cancellation of the first term. This effect can be incor-
porated quantitatively in the present threory if we introduce
a lower cut-off k«- I/ct, r~ in the integral of Eq. (17). This
is of importance in the case of electron-electron interac-
tions. In the present case, however, there are no realistic
models of phonon spectra where this effect is of importance.

In case of transverse vibrations, we should note that
DP + is of similar form (15) where, however, k'k~ has to
be replaced by (8 „—k kr) with an additional factor of 2
which accounts for the multiplicity. Eventually, we obtain a
phase-breaking rate I/r~r which is similar to Eq. (17) with

ct, and $t, replaced by cr and

yr(k/) 3g '(k/) [2(k/) +3ki —3(k2l +1)arctan(kl) I,

respectively. In limiting cases, this rate is equal to
(n /2)(key T) /(mMctl/) for /tcrkp » ksT » /ter// and
(n4/20)/(ksT)'/(tt2mMc)) for ksT « ttcT// Again, we
have the expected identity with the inelastic collision rate. 7

Note that in the high-temperature region, the transverse
contribution is negligible in comparison with the longitudi-
nal one if eT- cL. On the other hand, the transverse rate
dominates in the case ~here the transverse sound velocity is
much smaller than the longitudinal one. Such a situation
may quite well be realized in some amorphous metals;9
then, it is possible to observe I/r~~ T /l at intermediate
temperatures. '0
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In conclusion, ~e have developed a formalism that allo~s
a transparent calculation of the phase-breaking rate in the
case of electron-phonon interactions. This is of importance
in vie~ of the present disagreement' bebveen theory and
experiment and the formalism vnll therefore be a valuable
tool in further theoretical investigations on phase-breaking
rates.

This cwork has been initiated during a stay of one of the
authors (A.S.) at the Qrsted Institute and at NORDITA.
Therefore, he cfishes to express his gratitude for their hos-
pitality. Both authors have benefited from valuable and
stimulating discussions ~ith %'. Eiler, P. E. Lindelof, and
H. Smith. Financial support from the Deutsche For-
schungsgemeinschaft is also acknow&ledged.

'D. E. Khmelnitskii, Physics B 126, 235 (1984); Yu. V. Sharvin,
ibid. 126, 288 (1984).

2S. Chakravarty and A. Schmid, Phys. Rep. (to be published).
For a general review, see also G. Bergmann, Phys. Rep. 107, 1

(1984).
~A. B. Pippard, Philos. Nag. 46, 1106 (1955).
5A. Schmid, Z. Phys. 243, 346 (1971).
sA. Schmid, Z. Phys. 2$9, 421 (1973); B. Keck and A. Schmid, J.

Low Temp. Phys. 24, 611 (1976).
7A. Schmid, in LocaligatIon, Interaction and Transport Phenomena,

edited by B. Kramer, G. Bergmann, and Y. Bruynseraede,

Springer Series in Solid-State Sciences, Vol. 61 (Springer-Verlag,
New York, 1985).

IB. L. Altshuler, A. G. Aronov, and D. E. Khmelnitskii, J. Phys. C
1$, 7367 (1982); W. Eiler, J. Low Temp. Phys. $6, 481 (1984).
The lower cutoff can also be understood in terms of the uncer-

tainty principle which implies that the electronic energy is a mean-

ingful quantity only on a scale of order S/r~, .
%. Dietsche, H. Kinder, J. Mattes, and H. %@hi, Phys. Rev. Lett.

4$, 1332 (1980).
tsSee also the discussion in Sec. 6 of Ref. 3.


