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We have studied theoretically the magnetoconductance oscillations in a quasi-one-dimensional

electron gas with a parabolic transverse confining potential. The solution to Schrodinger s equa-

tion is that of a hybrid harmonic oscillator with a frequency e that depends on both the parabolic

potential and the magnetic field 8. At 8 0, co equals the classical oscillation frequency of the

parabolic potential. In the high-field limit, m approaches the cyclotron frequency. The result is a
nonlinear fan plot for the magnetoconductance minima, which should help to clarify the origin of
conductance oscillations in narrow-channel metal-oxide-semiconductor field-effect transistors.

There has been much activity recently in the study of
the quantum-mechanical properties of ultranarrow con-
ducting systems. Much effort has been spent in fabri-
cating narrow-channel metal-oxide-semiconductor field-
effect transistor (MOSFET) structures in which an elec-
tron gas, which is typically confined to (but free in) the
x-y plane [two-dimensional electron gas (2DEG)], is con-
fined in the x direction as well. ' ~ The aim of much of this
work has been to observe the effects of the quasi-one-
dimensional (Q ID) density of states on the conductance of
these devices. However, the existence of universal conduc-
tance fluctuations5 and sample inhomogeneities has result-
ed in marginal demonstrated success until recently, s when
structure was observed in the conductance of many QlD
lines measured in paralleL

There has been substantial controversy concerning the
interpretation of the available data in devices producing
single Q1D lines. We suggest that magnetoconductance
measurements be made on such devices in order to clarify
the relationship between the observed conductance oscilla-
tions and the Q1D density of states. In this Rapid Com-
munication, we propose a simple theory of the magneto-
conductance of a narrow Q1D line. We demonstrate that
a mixing of the Q1D states and the two-dimensional Lan-
dau levels occurs. By correctly taking into account the
Q1D density of states, we obtain a nonlinear fan plot for
the magnetoconductance minima that should be observ-
able.

We model the transverse confining potential V(x ) with
an harmonic approximation. Although this model is not
applicable to confinement due to a physical boundary, 2

simulations67 and analytic calculationss have shown it to
be a reasonable approximation for many realizable struc-
tures. Here we demonstrate that a parabolic transverse
potential also has the advantage of allowing an exact solu-
tion to Schrodinger's equation. We assume that only the
lowest electric subband of the electron gas in the i direc-
tion is occupied, and we neglect spin and valley splitting.
We also do not explicitly include the effects of scattering,
which primarily serve to broaden the magnetostructure, as
in the usual case with Shubnikov-de Haas oscillations.

The quantum-mechanical solution follows the treatment
given for the two-dimensional electron gas in a magnetic

field. 9 The Hamiltonian for an electron with effective
mass m' is given by P &~+&2, with

'2

Pl ~ p+ —81 e

2m

and

P2 V(x ) ,' m'ro$x—',

where coo is the classical oscillation frequency in the trans-
verse parabolic potential. The symmetry of the problem
suggests that the vector potential A be represented in the
Landau gauge, A A» Bx. Schrodinger's equation may
then be expressed

h2 8%'+ 8
2m 8x

ie8 1x 4' +—m'ro)x2'P E%' .2

E'-E ——'(a'P'/m')(1 —a') .

This is the equation of an harmonic oscillator with level
spacings hoi and center coordinate g Plga3i . The full
eigenstates are given by

II

q (r) exp(ipy)X~
&alp

With the ansatz

0 (x,y) -U(x) exp(iPy),

Eq. (1) becomes separable in x and y. Here p is the
momentum variable for the y direction, which is quantized
in units of 2rr/I. , where I. is the sample length. We change
the variable x to the dimensionless unit g, where g2

x /Qle, c co,/I,
ro (al$+ Ng ) '

ro, eB/m' is the cyclotron frequency, and le h/eB. U
is then foud to obey the one-dimensional equation

2U I

+(g —g)'U(g) - U(g),
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and

XN( )- 1

a2 N'f Jell

r/2

exp( —g')0 (g),

where Hlv(g) is the Hermite polynomial of integer order
N. The eigenenergies of the system are given by

Oe-

A
Q. 4

I hPE (P)-hm(N+ ,')+——,(1 —a'), (3)

5 coo
piD(E)-gpo EE —E~

where
&/2

gsg v 2m*
Po

2n tt3cno,

' 1/2

and where g, and g„are the respective spin and valley de-
generacies. We ean define the change in number density
per unit length to be dna' ~n(E~) —n(E~ —i). By in-
tegrating Eq. (4), it can be shown that for the equally
spaced energies of an harmonic oscillator,

an/'n -2Poh cooN'"

(see Fig. 1). To convert this to an area density, we assert
that the appropriate length is simply the oscillator ampli-
tude x~ which also goes as N' 2. %'e then have that
hn dna' /x~, which is just nt'coo/h, independent of N.
In a similar fashion, for hybrid levels we find that the

where the hybrid oscillator frequency co is a mixture of the
bare harmonic oscillator and cyclotron frequencies. This
has the proper asymptotic behavior since at 8 0, cn is
equal to coo, the classical oscillation frequency in the para-
bolic potential, while as 8 increases, co smoothly ap-
proaches the cyclotron frequency cu, . It is also clear that
the density of states for each hybrid level must vary
smoothly from the WE behavior of a 1D system to the b
function of a Landau level. This is important since it is the
variations in the density of states that lead to oscillations
in the magnetoconductance. In addition to the hybrid os-
cillator contribution to the energy, we see that the kinetic
energy contribution due to the QID motion in the y direc-
tion scales toward zero as 8 increases (cs 1). It should
also be noted here that a simple semiclassical calculation
of electron motion in a magnetic field perpendicular to a
parabolic confining potential results in elliptic trajectories
with an oscillation frequency identical to the quantum-
mechanical result in Eq. (2).

In order to connect such an energy spectrum to mea-
sured magnetoconductance oscillations, one must relate
the level spacings to an electron density spacing through
the density of states, and hence to the gate voltage VG

through the oxide capacitance C,„. In a purely 2D system
(with no transverse confining potential), the density of
states per unit area per Landau level is just nt'co, /h, so
that VG is proportional to 8 for each index N. A plot of
the locations of the magnetoconductance extrema in Vo-8
space is known as a fan plot. In QID system with no mag-
netic field, the density of states per unit length for each
level is given by

E E

FIG. 1. The @ID density of states p&n normalized to po (see
text), plotted vs energy E. The changes in number density per
unit length d,ng'n are the integrated areas between the eigen-
values E~ and E~- ~, and are labeled for N 1-4.

spacing in number density per unit area is simply nt'co/h,
so that when the Nth level is completely occupied, the
change in number density is

N~n-N ' " (8'+8()'"
h

where Bo=nt'coo/e With. this, we can use

Nehn
h, Vg

to obtain a simple expression for the rays of the fan for the
conductance minima in terms of the measured quantities
VG and 8:

gsg vev, -v, +N ' " (8'+8))'",
h «o

(5)

where d is the gate oxide thickness, e is the oxide dielectric
constant, and VT is the threshold voltage. The key point
here is that VG is no longer proportional to 8 (as in the 2D
case), except in the limit of 8 »Bo.

Using this result, predictions for a realistic system can
now be made: The frequency coo is determined mainly by
the available space charge through the Poisson equation.
For a fixed space charge of 5ic 10's electrons/cm, energy
level spacings of order 2 meV are possible. This results in
a value of Boof -3 T. A fan plot of Eq. (5), using Bo 3
T, VT 0.1 V, and d 30 nm, is shown in Fig. 2, including
the first 10 levels. The dotted lines illustrate the corre-
sponding fan plot for a wide 2DEG (Bo 0). The inter-
cepts of the solid lines at 8 0 are the strictly Q I D states
with no mixing with Landau levels. This result is similar
to numerical calculations performed previously for a mag-
netic field applied parallel to a square-well heterostruc-
ture. ' In that case the 8 0 energy-level spacings were
quadratic, as expected for electrons confined to a square
well, but the density of states problem prevented a
straightforward connection to gate voltage. It is also relat-
ed to calculations by Mikeska and Schmidt" concerning
electrons in a 2DEG with localized-state potential wells
modeled as harmonic oscillators. They obtained a dif-
ferent hybrid mixing (because their wells were circular),
and related the contribution of a statistical distribution of
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FIG. 2. The solid lines represent a fan plot for the magneto-
conductance minima from the equation

Vo Vr+(4Ne /h)(d/ssoh)(82+8$)'~2

for a Si MOSFET, where 80 3 T, the gate oxide thickness
d 30 nm, and for energy levels N from 1 to 10. The dotted
lines represent the solution for the 2DEG (80 0).

such wells to an observed increase in the cyclotron mass at
low electron densities.

The implication of Eq. (5) is striking in that it shows
clearly how the application of a magnetic field may be
used to clarify the origin of conductance oscillations in
QlD systems at 8 0. In multiple-line systems the rela-
tively clear oscillations observed at 8 0 should shift visi-

bly in position and spacing for easily accessible fields
(0-10 T). For single-line systems where the presence of
strong universal conductance fluctuations has obscured the
Q1D oscillations, ' it may be possible to track levels from
the strong-field regime toward low field and determine
what structure at 8 0, if any, is actually due to the Q1D
states.

In conclusion, we have considered the effect of a mag-
netic field on the electronic energy levels of a quasi-one-
dimensional electron gas. The energy levels for the case of
a parabolic transverse potential were found to be hybrids
of the bare Landau levels and the Q1D states. This sug-
gests that the Q1D energy levels at zero field may be iden-
tified by tracking the magnetoconductance maxima along
a nonlinear fan plot. In the case of nonharmonic confining
potentials, the only significant difference will lie in the lev-
el spacings at 8 0.
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