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Low-temperature thermal expansion of glassy solids
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A summary is presented of thermal-expansion measurements on disordered solids at tempera-
tures T <1 K, where two-level states dominate or influence most properties. The expansion coeffi-
cients are in quantitative agreement with the tunneling model of two-level states.

Localized excitations in amorphous solids, and in certain
disordered crystals give rise at temperatures T<1 K to a
specific heat C which is roughly linear in T and a thermal
conductivity x, roughly proportional to 72. The magni-
tudes of C and, especially, x are approximately the same
for various materials.! It was initially speculated that the
thermal-expansion coefficient a, likewise would be an
anomalous, universal property of glasses with a being large
and negative.? These speculations, however, were based on
data obtained at T > 1 K. When expansion measurements
were extended below 1 K, such a universal behavior was
not found.? What has been observed is the subject of this
report.

As a normalized expansion coefficient, it is convenient
to use the Griineisen parameter defined as '=3aB/C
=¥.I;C;/Y;C;. Here B is the elastic bulk modulus and I';
and C; are the contributions from excitation i. The experi-
mental data at 751 K may be fitted in the conventional
manner,’ i.e., a=aT +bT? and C =c¢T +dT>, where the
terms linear in T are related to the localized excitations
generally identified as two-level states (TLS). A
Griineisen parameter appropriate to the TLS is therefore
I'ris=3aB/c. Measured values of I't.g for several ma-
terials>*~% are summarized in Table I. Clearly a universal

TABLE I. Griineisen parameters I'tLs attributed to two-level
states. The (KBr)os(KCN)os, Na g-alumina, and ZrO,:Y,0;
are crystalline solids having the same properties as amorphous
solids at T <1 K.

Material

(amorphous solids) Refs. I'ris
SiO; 2 —(34-65)
Si()z:KzO 5 —4
PMMA 2 -1
AS:S] 2 -2
Pd-Si-Cu 2 -] 06|
Epoxy SCS5 2 +0.4
Teflon® 4 st
(crystalline orientational glass)
(KBr)os(KCN)gs 6 +1
(crystalline fast-ion conductors)
Na B-alumina 2 +8
Z2r0,:Y,0; 2 +7

2The Teflon sample was = 60% crystalline. Therefore, I'rs for
the amorphous portion alone would be S |2].

behavior is not evident, and a statement like’ “as a rule,

I'tLs is negative, and the absolute values of I'r g are very
large, i.c., of the order 102, does not receive support from
the experimental results. Rather, I'ris can be either posi-
tive or negative, and can be as small in magnitude as the
value I' = 1, typically found for thermal phonons and con-
duction electrons.

A phenomenological model for the TLS assumes some
entity tunnels between two neighboring potential-energy
wells. This tunneling produces a ground-state manifold
having two levels separated by an energy E =(A2+ A%)'/ 2
where A is the asymmetry of the two wells and Ay is the en-
ergy splitting caused by tunneling.! The coupling of a
TLS to a strain field e is represented by a deformation po-
tential,

D =dE/de =(A/E)dA/de + (Ay/E )0Ay/de. 1)

The second term is generally believed to be small, and so
D =(A/E)8A/de =(A/E )y, where 7 is a constant.!®?

It is assumed that each TLS can have different values of
the independent parameters A and Ao, and so for the sam-
ple as a whole there is a distribution over A and Ag. The
distribution n(A) within the energy range of interest (i.e.,
E <1 K) is assumed to be constant, n(A) =ng, with A
ranging over both positive and negative values® so that the
averaged quantity (A)=0. A more complicated distribu-
tion is assumed for Ay. These distributions in A and Ay
predict dispersions, in both the ultrasonic and dielectric
response, which are in remarkable agreement with experi-
ment over a factor of == 10'? range in frequency."'°

The expansion data of Table I provide another test of
the form of n(A) assumed in the tunneling model. A I'tig
can be obtained readily from the tunneling model' by re-
calling that, for a two-level state, C; is a Schottky peak
centered near T == E;. Therefore, since only TLS having
E =T need be considered, and since I'; =9(InE;)/de
=D,/E;,

I‘TLS=Z,I‘,-C,~/Zf C,-z(l“,;)z(DEVE z(Ag)}’/EZ. ()

Both I'rts and y have been measured. From ultrasonic
measurements' it is known that y/EX103-10* for
E=TXl K and, from Table I, that |I'r.g| = 0.5-50.
Therefore, using Eq. (2), one obtains |{Ag)/E | <1072 for
those glassy materials that have been measured. For vitre-
ous silica explicitly,!! |{Ag)/E | S5%1072 and, for poly-
methylmethacrylate or epoxy,!? |{Ag)/E | S5%x10™4.

As noted above, the tunneling model assumes n(A) is
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constant for A both positive and negative, so the quantity
(A} is zero. Because A and Ay are taken as independent pa-
rameters, this assumption about n(A) also gives
(Ag)/E =0. By contrast, since A can be as large as E, an
asymmetric distribution could give an average as large as
[{Ag)/E | =1. Therefore, the experimental result that
[(Ag)E | = 1073 is consistent with a symmetric n(A) and
is in excellent agreement with the tunneling model as orig-
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inally formulated.'* The small 't that is observed (see
Table I) could arise from a slight asymmetry in n(A), or
from the term'* (A¢/E )dAo/de in Eq. (1) which heretofore
has been assumed to be negligible.
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