Low-temperature thermal expansion of glassy solids

A. C. Anderson

Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801 (Received 27 January 1986)

A summary is presented of thermal-expansion measurements on disordered solids at temperatures $T \lesssim 1$ K, where two-level states dominate or influence most properties. The expansion coefficients are in quantitative agreement with the tunneling model of two-level states.

Localized excitations in amorphous solids, and in certain disordered crystals give rise at temperatures $T \lesssim 1$ K to a specific heat C which is roughly linear in T and a thermal conductivity κ , roughly proportional to T^2 . The magnitudes of C and, especially, κ are approximately the same for various materials.¹ It was initially speculated that the thermal-expansion coefficient α , likewise would be an anomalous, universal property of glasses with α being large and negative.² These speculations, however, were based on data obtained at T > 1 K. When expansion measurements were extended below 1 K, such a universal behavior was not found.² What has been observed is the subject of this report.

As a normalized expansion coefficient, it is convenient to use the Grüneisen parameter defined as $\Gamma = 3\alpha B/C$ $= \sum_i \Gamma_i C_i / \sum_i C_i$. Here *B* is the elastic bulk modulus and Γ_i and C_i are the contributions from excitation *i*. The experimental data at $T \leq 1$ K may be fitted in the conventional manner,³ i.e., $\alpha = aT + bT^3$ and $C = cT + dT^3$, where the terms linear in *T* are related to the localized excitations generally identified as two-level states (TLS). A Grüneisen parameter appropriate to the TLS is therefore $\Gamma_{TLS} = 3aB/c$. Measured values of Γ_{TLS} for several materials^{2,4-6} are summarized in Table I. Clearly a universal

TABLE I. Grüneisen parameters Γ_{TLS} attributed to two-level states. The (KBr)_{0.5}(KCN)_{0.5}, Na β -alumina, and ZrO₂:Y₂O₃ are crystalline solids having the same properties as amorphous solids at $T \lesssim 1$ K.

Material		
(amorphous solids)	Refs.	Γ_{TLS}
SiO ₂	2	-(34-65)
SiO ₂ :K ₂ O	5	-4
РММА	2	-1
As ₂ S ₃	2	-2
Pd-Si-Cu	2	- ≲0.6
Epoxy SC5	2	+0.4
Teflon ^a	4	≲ 1
(crystalline orientational glass) (KBr) _{0.5} (KCN) _{0.5}	6	+1
(crystalline fast-ion conductors)		
Na β -alumina	2	+8
$ZrO_2:Y_2O_3$	2	+7

^aThe Teflon sample was $\approx 60\%$ crystalline. Therefore, Γ_{TLS} for the amorphous portion alone would be $\lesssim |2|$.

behavior is not evident, and a statement like⁷ "as a rule, Γ_{TLS} is negative, and the absolute values of Γ_{TLS} are very large, i.e., of the order 10²," does not receive support from the experimental results. Rather, Γ_{TLS} can be either positive or negative, and can be as small in magnitude as the value $\Gamma \approx 1$, typically found for thermal phonons and conduction electrons.

A phenomenological model for the TLS assumes some entity tunnels between two neighboring potential-energy wells. This tunneling produces a ground-state manifold having two levels separated by an energy $E = (\Delta^2 + \Delta_0^2)^{1/2}$, where Δ is the asymmetry of the two wells and Δ_0 is the energy splitting caused by tunneling.¹ The coupling of a TLS to a strain field *e* is represented by a deformation potential,

$$D = dE/de = (\Delta/E)\partial\Delta/\partial e + (\Delta_0/E)\partial\Delta_0/\partial e.$$
(1)

The second term is generally believed to be small, and so $D = (\Delta/E) \partial \Delta/\partial e = (\Delta/E) \gamma$, where γ is a constant.^{1,8,9}

It is assumed that each TLS can have different values of the independent parameters Δ and Δ_0 , and so for the sample as a whole there is a distribution over Δ and Δ_0 . The distribution $n(\Delta)$ within the energy range of interest (i.e., $E \leq 1$ K) is assumed to be constant, $n(\Delta) = n_0$, with Δ ranging over both positive and negative values⁸ so that the averaged quantity $\langle \Delta \rangle = 0$. A more complicated distribution is assumed for Δ_0 . These distributions in Δ and Δ_0 predict dispersions, in both the ultrasonic and dielectric response, which are in remarkable agreement with experiment over a factor of $\approx 10^{12}$ range in frequency.^{1,10}

The expansion data of Table I provide another test of the form of $n(\Delta)$ assumed in the tunneling model. A Γ_{TLS} can be obtained readily from the tunneling model¹ by recalling that, for a two-level state, C_i is a Schottky peak centered near $T \approx E_i$. Therefore, since only TLS having $E \approx T$ need be considered, and since $\Gamma_i = \partial(\ln E_i)/\partial e$ $= D_i/E_i$,

$$\Gamma_{\text{TLS}} = \sum_{i} \Gamma_{i} C_{i} / \sum_{i} C_{i} \approx \langle \Gamma_{E} \rangle \approx \langle D_{E} \rangle / E \approx \langle \Delta_{E} \rangle \gamma / E^{2}.$$
(2)

Both Γ_{TLS} and γ have been measured. From ultrasonic measurements¹ it is known that $\gamma/E \gtrsim 10^3 - 10^4$ for $E \approx T \lesssim 1$ K and, from Table I, that $|\Gamma_{\text{TLS}}| \approx 0.5 - 50$. Therefore, using Eq. (2), one obtains $|\langle \Delta_E \rangle/E| \lesssim 10^{-2}$ for those glassy materials that have been measured. For vitreous silica explicitly,¹¹ $|\langle \Delta_E \rangle/E| \lesssim 5 \times 10^{-3}$ and, for polymethylmethacrylate or epoxy,¹² $|\langle \Delta_E \rangle/E| \lesssim 5 \times 10^{-4}$.

As noted above, the tunneling model assumes $n(\Delta)$ is

constant for Δ both positive and negative, so the quantity $\langle \Delta \rangle$ is zero. Because Δ and Δ_0 are taken as independent parameters, this assumption about $n(\Delta)$ also gives $\langle \Delta_E \rangle / E = 0$. By contrast, since Δ can be as large as E, an *asymmetric* distribution could give an average as large as $|\langle \Delta_E \rangle / E| = 1$. Therefore, the experimental result that $|\langle \Delta_E \rangle / E| \approx 10^{-3}$ is consistent with a symmetric $n(\Delta)$ and is in excellent agreement with the tunneling model as orig-

- ¹For a review of the subject, see *Amorphous Solids*, edited by W. A. Phillips (Springer, Berlin, 1981).
- ²D. A. Ackerman, A. C. Anderson, E. J. Cotts, J. N. Dobbs, W. M. MacDonald, and F. J. Walker, Phys. Rev. B 29, 966 (1984), and references therein.
- ³It is not essential to assume a term linear in T. The limit of $3\alpha B/C$, as T becomes small, would give essentially the same value for Γ_{TLS} .
- ⁴J. N. Dobbs and A. C. Anderson, J. Non-Cryst. Solids **69**, 429 (1985).
- ⁵W. M. MacDonald, A. C. Anderson, and J. Schroeder, Phys. Rev. B **31**, 1090 (1985).
- ⁶J. N. Dobbs, M. C. Foote, and A. C. Anderson, Phys. Rev. B 33, 4178 (1986).

inally formulated.¹³ The small Γ_{TLS} that is observed (see Table I) could arise from a slight asymmetry in $n(\Delta)$, or from the term¹⁴ (Δ_0/E) $\partial\Delta_0/\partial e$ in Eq. (1) which heretofore has been assumed to be negligible.

This work was supported by the National Science Foundation, Low Temperature Physics, under Grant No. DMR83-03918.

- ⁷Yu. M. Galperin, V. L. Gurevich, and D. A. Parshin, Phys. Rev. **B 32**, 6873 (1985).
- ⁸W. A. Phillips, J. Low Temp. Phys. 7, 351 (1972).
- ⁹A. C. Anderson, J. Non-Cryst. Solids (to be published).
- ¹⁰See, for example, S. Hunklinger, in *Phonon Scattering in Condensed Matter*, edited by W. Eisenmenger, K. Lassmann, and S. Dottinger (Springer, Berlin, 1984), p. 378.
- ¹¹J. E. Graebner, L. C. Allen, B. Golding, and A. B. Kane, Phys. Rev. B **27**, 3697 (1983).
- ¹²P. Doussineau and W. Schon, J. Phys. (Paris) 44, 397 (1983).
- ¹³The model as originally formulated appears not to be in quantitative agreement with all experimental data obtained for certain glasses. See Refs. 5 and 10.
- ¹⁴W. A. Phillips, J. Low Temp. Phys. 11, 757 (1973).