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A procedure for obtaining potentials for covalent solids ~here many-body terms are important
is presented. The potential is based on a variation of the chemically intuitive valence force field
formalism. %e have incorporated, in a systematic manner, the proper energetics for the dissocia-
tion of the solid. For silicon, the model accurately predicts the experimental phonon dispersion re-
lations, cohesive energy, room-temperature Debye-%'aller factor, and stabilization energy of the
l1001 symmetric dimer reconstruction.

Computer simulations of atomic and molecular motions
have offered scientists a microscopic view of chemical and
physical processes. The limiting feature, however, is often
our knowledge of the interaction potentials or forces
among the atoms. For large ensembles of species, where
many interactions are evaluated during the course of a
classical simulation, the most commonly used potential is
one that is pairwise additive. Although tremendous insight
has been gained from simulations using these potentials,
the vast majority of systems require potentials which are
not pairwise additive. For example, a diamond lattice
structure like silicon, where there is directional bonding,
cannot be reasonably treated by single-minimum radial
pair potentials. In such systems there is a need for short-
ranged many-body potentials which are quickly and easily
evaluated.

One chemically intuitive formulation for conceptualiz-
ing directional covalent bonding is the valence force field
(VFF) approach where the interactions are expressed as
bond stretches, bond bends, and interactions between
bends and stretches. ' The limitation of this prescription is
that, in general, these expansions are only valid for small
atomic displacements of the atoms from equilibrium
values. In many cases we are interested in modeling pro-
cesses, e.g., molecular beam epitaxial crystal growth,
where the energetics of configurations far from equilibri-
um are required.

We present in this Brief Report a new formulation of
the intuitive VFF approach of chemical forces which in-
corporate in a relatively straightforward way the proper
dissociation energetics. We start with Keating's VFF for-
malism which expands the distortion energy in scalar func-
tions 1,. of the dot products of the vectors connecting
nearest neighbor atoms. %e then rewrite his original ex-
pansion so that only two parameters are needed to fit the
phonon dispersion relations of silicon. The key of our
model is to parametrize the A,,j, not as dot products, but
rather as functions of interatomic distances such that the
proper energetics, e.g., cohesive energies, are described. A
constraint is applied to maintain the same force constants
for the new il, , as for the Keating ones; thus the fit to the
dispersion curves is maintained.

Keating's approach has been treated in detail previous-
ly. Briefly, it was shown that the energy of a crystal can
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where the vectors connect nearest neighbors and the num=

bers under the summation sign refer to the number of
terms in the summation. The approximation originally
made for silicon was to truncate the expansion after the
first two terms. This two-term truncation did not describe
well the phonon dispersion relations, especially for the
transverse acoustic modes [Fig. 1(a)]. Furthermore, Eq.
(2) as written implies that there are seven force constants
(k, -k7), when there are only five independent nearest-
neighbor force constants for the diamond structure. '

By rearranging the terms in the expansion so that five
independent force constants are apparent, we can extract
the dominant two terms. The expansion is now

2e-a, g (k,, +1,,)'+a,g (1,, +1k)'
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(3)

~here the five independent force constants are a, -a5.

be written as a function of the scalar products of the vec-
tors connecting nuclear positions. Keating defined these
functions for a diamond lattice as

(x„(x „—Xk( X „)/2a,
where a is defined as R,/J3, R, is the scalar nearest-
neighbor distance in the undeformed lattice, xk( is the vec-
tor connecting atoms k and l, and Xk( is the vector con-
necting the positions of atoms k and l in the undeformed
lattice. Furthermore, since these Zs are small near equi-
librium, it was assumed that they could be used as a basis
for a series expansion for the distortion energy for small
displacements. Using the assumption of nearest-neighbor
interactions, Keating expressed the energy per unit cell 4
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already been fit by the choice of a, and az, the new il, ,
must have the same second derivatives, with respect to po-
sition at equilibrium, as the Keating k,". The two-body po-
tential is made dissociative by rewriting Eq. (4) as

V2a 3(a, +a2)(A, ,
—D, /4a )+Aexp( BR—

, ), .

where rl, , in the 1,, terms is given by

(6)
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and R; is the scalar distance between the two atoms,

y (R,„—3a )/D, , R,
„

is the potential cutoff, and D,
is a parameter fit to the energetics. A value of zero for the
pair energy at infinite separation is attained in Eq. (6) by
subtracting the constant 3(a, +a2)(D2/4a2) from Eq.
(4). Also, the last term in Eq. (6) was added to increase
the short-range repulsion. Neither correction changes the
strain energy expansion about equilibrium and, hence, the
predicted dispersion relations. The added constant term,
however, accounts for part of the cohesive and sublimation
energies.

The chosen form of the three-body interactions is

V a il, ,J(A,.J+2,, +HAJJ)+a, (ll, ,HAJJ

—D /4a ),
where
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FIG. 1. Vibrational dispersion re1ations for the high-sym-
metry directions in bulk si1icon. (a) Keating's original model
with k, and k2 of Eq. (2) fit to the bulk compressibilities (from
Ref. 2). The filled triangles are the experimental data of Ref. 3.
The dotted lines show the experimental crossing of the optic
modes in the (100& direction. (b) Vibrationa1 dispersion rela-
tions for a, and a, in Eq. (3) fit to the values of the frequencies
at the zone boundaries.
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~here again the summation is over nearest neighbors.
While Eqs. (4) and (5) are valid representations for the

strain energy of a diamond lattice near equilibrium, they
are not suitable for dynamics calculations where other
geometrical configurations are required. We thus redefine
the iL," terms so that the proper dissociation energetics
are described. Since the phonon dispersion relations have

Whereas the original two-parameter fit does not reproduce
well the phonon dispersion relations, the first two terms of
Eq. (2) do incorporate the essential interactions for
describing the phonon dispersion relations of silicon [Fig.
1(b)1. Equation (3) can now be rewritten for a single
atom rather than a unit cell with strictly two-body (2B)
and three-body (3B) terms as

The functional form proposed for 3,, is

&;J -3a(R; R,/R;R, + —,
' )D(R;)D(R, )/2. (12)

The functional forms in Eqs. (6)-(12) combined with
the parameters in Table I have been chosen to reproduce
the phonon dispersion curves, the bulk cohesive and the
surface sublimation energies, and to insure that the dia-
mond lattice is the most stable structure at all densities as

where Q, „

is a cut-off parameter for 1,, and y here is

Q,„/D2. Again, a value of zero for infinite atomic
separation is attained in Eq. (8) by subtracting the con-
stant a~De/4a2 from the three-body interactions. Note
that this term also contributes to the cohesive and sublima-
tion energies.

A functional form for 3, . is developed by first defining
damping functions for the i and jbonds as follows:

(R —3a )exp, R, & R,„, (1 la)
D(R,.) - ~ R,4 —R',.

0, «,.=«,„. (1 lb)
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TABLE I. Potential parameters for use in Eqs. (6)-(12).

D,
D2

+max

1.357 A
30034 A'
1.2S77 A'
3.65 A

97013 eV

8
Qual

01
02

3.33 A '
6.73 A'
0.399 eV/A2

o.»7 eVQ.'

— l2QQ K

compared to face-centered cubic, body-centered cubic, and
simple cubic lattices. Furthermore, Eqs. (11) and (12) do
not predict a barrier for addition of a third atom to a pair
of atoms if the angle of approach is 109.5'. Thus there
should not be a large potential barrier for the addition of a
single silicon atom to a silicon surface so as to produce
close to a unit sticking coefficient, as is observed experi-
mentally. ~

Using the above potential, we have examined the sym-
metric dimer reconstruction of the Sij100j surface and
found it to be more stable by 2.1 eV per dimer than the
bulk terminated surface. This value is in excellent agree-
ment with the experimental estimate of 2 eV per dimer. '
Preliminary results from molecular dynamics simulations
show that the mean-square displacements of the atoms
from equilibrium agree well with estimates derived from
the room-temperature Debye-Wailer factor assuming a
completely harmonic lattice (Fig. 2).s For the 300-K re-
sults, the only real discrepancy is in the first shell of neigh-
bors, where the simulation result exhibits a first peak
which is too sharp. Since the other peaks match very well,
the difference is most likely due to anharmonicities in the
potential with the overall fit being excellent. The 1200 K
results show all of the neighbor peaks being sharper than
predicted by a harmonic solid. This again shows the ef-
fects of anharmonicities becoming greater at higher tem-
peratures. There is also the question as to whether har-
monic m'odels are valid at high temperatures. The poten-
tial is short ranged, thus it is tractable for computer simu-
lations. Furthermore, the values of the potential, force and
the acceleration at the cut-off distance are all zero, which
is an advantage when performing molecular dynamics
simulations.

To date, several many-body potentials for silicon have
been introduced. Each of these have been developed with
emphasis on different aspects of silicon. The simplest of
these potentials has been used by Pearson, Takai, Hali-
cioglu, and Tiller to model Si and SiC surfaces. 7 The
two-body potentials used were of the familar Lennard-
Jones form, s while the three-body interactions were
modeled by an Axilrod-Teller potential. 9 As stated by the
authors, the potential forms were used because they
favored open crystal structures and not because of any
direct theoretical justification. Stillinger and Weber have
introduced another model potential which was developed
to study the local structure of both solid and liquid silicon
around its melting point. ' While this potential accurately
describes the structure of silicon, it was not developed nor
parametrized to yield an accurate description of other bulk
properties, such as the vibrational dispersion relations.
Biswas and Hamann have also recently introduced a
many-body potential which yields an excellent description
of the structural energies of silicon arranged in several lat-

4 5 6 7 8
R (E)

FIG. 2. Radial distribution from two different temperature-
constant volume simulations of 216 atoms with periodic boun-
dary conditions in all directions. This function represents the
average number of neighbors a given distance from a central
atom. The area under the peaks gives the relative number of
neighbors in each shell. The vertical lines indicate the positions
of the peaks in an undeformed lattice. The dotted lines show the
expected result derived from the experimental room temperature
Debye-Wailer factor (Ref. 6), assuming a harmonic lattice.

tices. " The potential forms used, however, were not in-
tended for temperature-dependent classical dynamics
simulations. Furthermore, the authors report that the
dynamical properties of bulk silicon are not well repro-
duced, with some phonon frequencies being as much as
25% to 50% too high. Recent calculations by Noorbatcha,
Raff, and Thompson' have shown that the diffusion of
single silicon adatoms on a silicon surface is surprisingly
dependent on the bulk force constants. This seems to indi-
cate that an accurate description of the bulk dispersion re-
lations is essential in order to model dynamic processes on
silicon surfaces.

The dissociative valence force-field potential for silicon
presented here contains virtually all of the features that we
believe are necessary for modeling dynamic processes.
The vibrational properties and energetics are well de-
scribed. The symmetric dimer reconstruction of the
Sif100j surface is predicted. The appeal of this dissociative
VFF potential is that it is based on a prescription that fits
our chemical concepts of bond stretches and bends. Furth-
ermore, while this potential was parametrized for silicon,
the dissociative properties of the expansion functions, Eqs.
(6)-(12), should be applicable to other systems where
VFF potentials have traditionally been used. Work is
currently underway using these potential forms to model
heteroatomic solids where the Keating functions have al-
ready proved successful. '
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