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Based upon a superlattice model for graphite intercalated compounds (GIC's), we present in this

paper a detailed calculation of the lifetime of a conduction electron in a stage-l, acceptor-type GIC.
Both intraband and interband processes, as well as intervalley processes, are included in this calcula-
tion. %'e find that it is very important to include the dynamic screening in the scheme, because the
Coulomb interaction can generate plasmons that provide an efficient way for electrons to decay.
The calculated electronic lifetime is then applied to the examination of the broad edge structure
found in optically induced interband transitions. There, only partial success is found, possibly be-

cause of inaccurate determination of the Fermi energy. Improvements of our present calculation are
suggested.

I. INTRODUCTION

Recently, Hoffman and co-workers' carefully studied
optical reflectance of acceptor-type graphite intercalation
compounds (GIC's). By carrying out a Kramers-Kronig
phase-shift analysis, they obtained the optical dielectric
function e(to)=e~(to)+iez(to). This measured e(co) was
successfully interpreted in terms of the two-dimensional
(2D) model of GIC's proposed by Blinowski et al.z How-
ever, the measured result has a broad interband transition
edge at to=2eF (eF denotes the Fermi energy) —a profile
not readily explained by the 20 model, In this work, we
want to examine the lifetime effect on the edge structure.
This problem will be made clearer below, after we outline
the results from the calculations of Blinowski and co-
workers.

In the 2D inodel, Blinowski et al. treat a stage ncom--
pound as a collection of an infinite number of slabs, each
of which contains n graphite layers that are confined by
two intercalate layers. In this roodel, every graphite slab
is equivalent to, but independent of, another; hence, one
only needs to take one graphite slab to calculate the band
structure. Let us confine ourselves to the n =1 case here,
because stage-I compounds have the simplest band struc-
ture and are believed to be well described by the 2D
model. The band structure of one graphite layer is cal-
culated by a straightforward tight-binding method, and
main features from this calculation are shown in Fig. l.
Close to the hexagonal corners (U or U'), energy bands
are linear in k =

~

k
~

(k being measured from one of the
corners):

vacant and the Fermi level is lowered from the degenerate
U (or U') point into the valence band, as shown in the fig-
ure.

The optically induced interband transition (v —+c) is in-
dicated by the upward arrow in Fig. 1. Clearly, the
minimum energy required for the interband transition is
2sF (with broadening effects neglected). Let us denote the
part of the dielectric function from the interband transi-
tion by e„(co).From the 2D model, it was foundz that
(fi= 1)

Ime„,(to) =

fx dk
COk 6)—COp + l'g

1

N+COk + l f)

p'i

(2)

where I, is the distance between two adjacent graphite

= +UFk (1)

=3 0

where UF ———,yob; yo ——2.4 eV and b = 1.42 A; the latter is
the distance of neighboring carbon atoms. Vr"e used the
superscript c ( v) to indicate that the electron is in the con-
duction (valence) band. We shall keep this practice, and
when the superscript is missing from an energy expres-
sion, we mean its absolute value, e.g., c& ——u~q. For
acceptor-type GIC's, the valence band becomes partially

FIG. 1. Two alternative ways to choose the first Brillouin
zone are shown on the left. The linear band structure in the vi-
rinity of the symmetric point U (or U') is shown on the right.
For acceptor-type GIC*s, the Fermi energy is lowered from the
degenerate point to a level within the valence band, as indicated
in the figure. As a result, the optically induced interband transi-
tion (the upward arrow) has a minimum energy of 2c~.
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layers (I, =9.42 A},' cok ——ek —@=2U+k, i) is an infini-
tesimal positive number, nk is the Fermi distribution
function (1—nk =1 for all k}, and the integration is done
over the Brillouin zone. Again, we used the superscripts u

and c to indicate the band the electron is in. If the elec-
tron lifetime is neglected, Eq. (2) has a simple result,

(3)

where T is the laboratory temperature. %hen T is not too
high, this result suggests a sharp edge at co =2eF. Howev-
er, it was found' that this expression could not describe
the measured interband transition edge unless a very high
effective temperature —1000 K is used, while in fact
T =300 K. Blinowski et al attr. ibuted this large
broadening effect to scattering associated with the inter-
band transitions, although they did not provide details.
Hoffman and co-workers, using a modified 2D model,
have considered the broadening effects due to the c-axis
dispersion. There, extra parameters are needed to explain
the experimental data.

Our object in this work is to examine the broadening ef-
fect due to the inelastic Coulomb scattering experienced
by the excited electron, which is now in the conduction
band. The width of the hole left in the valence band is
neglected because of the phase-space restriction. We can
also neglect phonons in this problem since the broadening
has been shown to be temperature insensitive. In the cal-
culation of the electron lifetime, it is important to use a
screened potential for the Coulomb interaction. An ap-
propriate dielectric function that describes the screening
mechanism for low-stage GIC's has been evaluated by the
author in a separate paper. In that work, the dielectric
function is calculated according to a superlattice model, in
which (a) a GIC is a system composed of an infinite num-
ber of identical graphite layers, (b) each graphite layer is
described by the 2D model of Blinowski et al. , (c}electron
tunneling between different layers is neglected, (d) elec-
trons on different layers can interact via the Coulomb in-
teraction, and (e) the only effect due to intercalants is re-
stricted to the determination of the Fermi energy. Based
on this model, the dielectric function has been analytically
evaluated, and can thus be applied here directly. More
discussions on this superlattice model can be found in
Ref. 7, and a summary of the results from that work is
given in the Appendix. Note that, by neglecting the inter-
layer tunneling, we can still use Eq. (2) to describe the op-
tically induced interband transitions. The inclusion of the
broadening effect is achieved by simply replacing ri in Eq.
(2) with our calculated electron width. We found that the
electron width is large enough to explain a major part of
the large broadening effect at the interband transition
edge. This means that other broadening effects, e.g. , ef-
fects due to the c-axis dispersion, are probably not very
important.

In the next section we present the theory of the lifetime
calculation for electrons in the conduction band. The nu-
merical results are demonstrated and discussed in Sec. III.
The calculated inverse lifetime is then used in See. IV for
the calculation of the interband transition spectrum, i.e.,

Ime„,(co). Finally, Sec. V contains the concluding re-
marks.

II. THEORY OF THE LIFETIME CALCULATION

In this section we follow closely the method of Giuliani
and Quinn in calculating the lifetime of an electron in
the conduction band. But unlike the 2D electron gas of
Giuliani and Quinn, a GIC is composed of a periodic ar-

ray of graphite layers and each layer contains both a con-
duction band and a partially filled valence band. Because
of the complicated band structure, there exist various de-

cay channels for a conduction electron. Note that there
are two valleys in the system (U and U'). As a result,
electrons can decay through both intravalley and interval-
ley processes. Since the two kinds of processes provide
equivalent densities of states for decaying, both should be
kept in the lifetime calculation. For the reason that the U
and U' points are well separated, we can study the intra-
valley processes first and include the intervalley processes
afterwards.

Allowed decay processes are plotted in Fig. 2. Dot-
shaded regions represent the electronic excitation
spectrum —including a plasmon band, and line-shaded re-
gions are possible decay channels from phase-space
considerations —the region a from the intraband transi-
tions and the region b from interband transitions. In or-
der to keep the energy and the momentum conserved, only
the deexcitations which are inside the overlapped regions
(between the two shading patterns) are actually allowed
decay processes. One special feature of the system is that
only interband deexcitations can decay into plasmons.
Since plasmon modes provide an efficient deexcitation
channel for the electrons, we can expect that interband

CI
d

FIG. 2. The excitation spectrum of the system is shown by
the dotted regions, which include both the electron-hole excita-
tions (as indicated) and the plasmons (shown by the densely dot-
ted band). Also shown is the 2D plasmon curve (the dashed
curve) for a single graphite layer. Line-shaded regions demon-
strate possible deexcitations for a conduction electron with the
energy sk ——0.75cp. The regions denoted by a and b correspond,
respectively, to the intraband process and the interband process.
Only the deexcitations in the regions that overlap with the
electron-excitation spectrum are actually allowed. It is obvious
from this figure that only through interband processes can an
electron decay into a plasmon.
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transitions contribute the most important part to the life-
time calculation.

Detailed calculations of the electron lifetime are given
in the following subsections.

A. The intraband process

Following the practice of the Appendix, we denote gra-
phite layers by an index I, which corresponds to the layer

position at z =II, (I, is the distance between graphite
layers). In our superlattice model, the number of the gra-
phite layers is infinite, i.e., —ao &I &+ ao. In this case,
all surface effects are ignored; thus we can consider that
the decaying conduction electron ck is on the layer Io ——0.
To calculate the lifetime due to intraband deexcitations,
we use the golden rule, ' and obtain (fi= 1)

—2irg gn, i(1 n
(

— (, l)(1 n (k+q~, l )
I Vi(p k q) I'&«1 — (, i+et~+ (, i, —e",I ski ) (4)

In this expression, n~'i" is the occupation function for the

p state in the valence (conduction) band of the layer l; the
energy of the state is denoted by s~f

'' Sin.ce all layers are
identical to each other, ~e only need to keep the layer in-
dex in Vi(p, k, q), the matrix element of the Coulomb in-

teraction. As will be shown below, the major task in
evaluating Eq. (4) is that the Coulomb interaction is l
dependent and, meanwhile, this interaction must be prop-
erly screened.

We find that the calculation of the matrix element can
be done easily in the h, space, which is defined according
to the Fourier transformation expressed by Eq. (A3}. In
terms of Parseval's theorem, the summation over l in Eq.
(4) can be carried out in the h, space. Then, by using Eq.
(A4), we get

2

~n, ui', "(p,k, q)
gl &i~y, &,q) I

'= f
I 2' ~/ c E q~hz&co c cd)=zk —z

~
i ~

(5)

The dielectric function e(q, h„co)is known from Eq. (A5),
and ui', "(p,k, q) is the unscreened matrix element which we

can analytically evaluate in terms of the Bloch states ob-
tained from the 2D ealeulation of Blinowski et al. The
matrix element of Coulomb interaction has been evaluated
in Ref. 7 and has the result

ut'"(p, k,q)= —,'»'(q) 1+

where uq 2n'e /q, P——is the angle between k and q, and
I (q) is a factor very close to one for intravalley processes
[e.g., I (kF)=0.993 if sF ——1 eV; see Ref. 7 for details].
By performing a Fourier transformation for ui'"(p, k, q)
and using the results of Eqs. (5) and (6), we have

1
dry uqI (q) 1+ (1—

tin; ~+)q5(co
—ek+etg+q~ ) /t dh, S(q,hz)Im, (7)2

—1

where S(q,h, ), e(q, h„tu), and X'(q, co) are defined in the Appendix. The integration over h, has been exactly evaluated
and the dimensionless result is denoted by Im[ —I/e'(q, co)] and given by Eqs. (A9) and (A10). After carrying out the in-
tegration over the angle of q, we finally obtain

+k

2 2 1/2
e2 'k ~'k " I'(q) (2ek —~) —sq —1

GEq Im
"lTUp Cq

—QP e'(q, co }
(8)

Equation (8) needs to be numerically evaluated and this
can be done easily because all terms in the integrand have
been analytically derived.

is convenient to express the inverse lifetime due to inter-
band processes as the sum of two terms,

8. The interband process
+k

, intcrbaod ~k b

As we mentioned earlier in this section, a conduction
electron, through interband deexcitation, can decay either
into an electron-hole pair or into a plasmon. Therefore, it

w'ith the obvious subscripts indicating the two decay inter-
band channels. The calculation here is very similar to
that of the interband process, and hence me only present
the result:
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Tk

1/2
1 e 'k+'F ~ I (q) &q

—(~—2ek ) —1
dao des Im

'7TUp ~k k i ek cd —
e& E (q, co)

The integration limits are determined by the requirement
that the final state (k+q) stays above the Fermi level.
The line-shaded region b in Fig. 2 represents the allowed
deexcitations confined by these integration limits for the
case ek ——0.75eF. It is clear from this figure that (1/rk)q
and (1/rk )» correspond, respectively, to the regions where
co p2E~ —

F& and m &2Ep —E&.

Regarding plasmons, we have the following three re-
marks: First, plasmon resonances in the region
co & 2eF —se, despite the fact that they are damped due to
interband excitations, constitute a major structure of
Im[ —1/s'(q, rv)1 and therefore provide important contri-
butions to (1/rk)i„second, the plasmon decay channel is
closed, i.e., (1/vk)» ——0, if the initial state has an energy
ek greater than eF (this can be easily seen from Fig. 3);
and third, because plasmons provide very efficient decay
channels, the interband processes are the most important
ones for the deexcitation of an conduction electron in
GIC's. These remarks will be numerically examined in
the next section, after we study the intervalley processes.

C. The interva11ey process

The intervalley processes are deexcitations in which a
conduction electron is scattered from a state close to the
U point to a state near the U' point. Because the band
strpcture near one corner is identical to that near another,

we find that the lifetime calculations are similar to those
of intravalley transitions. It is clear that, for an intraval-
ley transition from k to k+q, there is a corresponding in-

tervalley transition from k to k+hU+q, where the vec-
tor b,U links U and O'. With the large momentum
transfer (EU+q), the anisotropic nature of the system is
now involved, i.e., the lifetime is k dependent. Neverthe-
less, the anisotropic effects are small and we can eliminate
them by applying a proper approximation.

We now proceed to formulate (1/~k), and (1/rk)q-
the inverse of the electron lifetime due to intervalley intra-
band transitions and intervalley interband transitions,
respectively. Let us consider the intraband transitions
first. It is found that we can use Eq. (4) to calculate
(1/~k), with only the modification of using an appropri-
ate matrix element Vi (p, k, b U+ q) in the place of
Vi(p, k, q) therein. The evaluation of this matrix element
follows closely that shown in Eqs. (5)—(7), but before the
calculation one requires a dielectric function for large
momentum transfer, so that the Coulomb interaction can
be properly screened. For this purpose, we can approxi-
mate fb,U+q f

by fb,U f, since fb, U
f

(4m/3~3b,
b =1.42 A) is much larger than the average of q-kF
(e.g., for sF ——1 eV, a typical value for GIC's,
fbU

f
/kF ——8.7). With this approximation, we can im-

mediately write

2 &F 2&F —a)

dL0 desrk, eve o ~ fhU f

(12)

Similar arguments can be applied to intervalley interband transitions. By doing so, we readily obtain

2 1/2I'(
f
sU

f ) &q
—(~—2&k)

CO —E,
2 2

'a+'F
ddt cf E,7k, ~F ~k ~2~k-~~ ' fbU

f

Im
—1

(13)
e'(

f
q+AU f, co)

Equations (12) and (13}are not suitable for numerical calculations.

E(
f
bU+q f, /Ig, co)=ev —v[aU[5( f

bU f,h, ) i [y (q, co)+X (q, co)],
I2( fbU

f ) (10)
2I (q}

where v
~
aU

~

2rre /
f
hU f——, I (

f
bU

f
) =0.63, and X' (q, co) are, as defined in Eq. (A2'), the response functions for the

momentum transfer q—not for hU+q. Equation (10) follows directly from Eq. (A5) and the relation that

X' (
f
4U+q f, rv) =— I'"(q,co) .a, b 1 I ( f

EU
f )

I'(q)
The factor of —, on the right-hand side of (11) is due to the fact that the number of possible excitations at the momentum
transfer (AU+q) is exactly one-half that at the momentum transfer q. Now that the dielectric function is determined,
the rest of the calculation parallels that of Eqs. (4)—(8) and yields the result

' 1/2I (
f
bU

f
) (2~k —~) —eq —1

Im
e~ —co e'(

f q+ hU f, co)

III. THE CALCULATED LIFETIME

The total of the inverse lifetime is the sum of Eqs. (8),
(9), (12), and (13). This sum is related to the imaginary
part of the self-energy of a conduction electron, Xi(k), by
the relation '

X2(k) =—
2

', +k
L

fa*

1+
. P

+k

+k
b

(14)
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Superlettice--- 2 D Model

a.o 1.0

FIG. 3. %e show in this figure the calculated width (the
thick solid curve) of a conduction electron, as a function of its
energy cI, . In this calculation, we use c~——1 eV, a typical Fermi
energy for a stage-1 compound. Accumulated contributions
from various decay channels are also shown, by the thin solid
curves which are denoted according to the subscripts of Eq. (14).
Between the curve b' and the total width is the part due to the
plasmon channel. Because of the plasmon mode, the width has
a maximum at cq ——0.5@~. The dashed curve is the width calcu-
lated for a single graphite layer. Note that there is no qualita-
tive difference between the two calculations —meaning the 20
model is a good approximation for the 30 system of GIC's.

Since this is the only broadening effect that we intend to
investigate here, we can set

I"k ——X2(k),

where I k denotes the width associated with the interband
transition from ek to ek.

Before we can calculate I k, we need to determine eo for
GIC's. From the measurement of Taft and Philipp, 9 it
can be inferred that eo is 2A for pure graphite. We as-
sume that high-energy excitations are not appreciably af-
fected by intercalation, and thus will use eo ——2.4 in the
following calculation for intercalated graphite systems.

After eo is determined, the calculation of I'k is numeri-
cally straightforward. Figure 3 demonstrates the results
from such calculations for a system with eF 1 eV——. In
addition to the width I k (the thick solid curve}, the accu-
mulated contributions from different deexcitation chan-
nels are also shown (the thin solid curves). The curve a
denotes (I/rk)„and other thin curves are denoted in a
similar fashion. The most outstanding feature found in
this calculation is the structure due to plasmons —the
"hump" at ek-0. 5eF. As we have explained earlier, this
structure is the result of interband transitions, in which a
conduction electron can either decay into an undamped
plasmon, i.e., (1/rk)~i, or into a damped plasmon; the
contribution of the latter is contained in (1/rl, )t, . Due to
the special band structure of the system, the plasmon
channel is most active when @k=0.5eF, as can be seen
easily from Fig. 2. Also according to Fig. 2, we find, if
ek &eF, not only that undamped plasmon modes are no
longer available for decaying [i.e., (1/~i, )zi

——0], but also
that damped plasmons are less and less involved in the de-

cay process as ck becomes larger. This observations ex-

plains why I k reaches a maximum at ak -0.5@~ and then
decreases at larger ek. This feature can be understood
only when dynamic screening is included, since, as ck in-
creases, one would actually expect I k to increase for the
reason that there would be more vacant states available
for decaying. It should be noticed that the increased
number of vacant states as ek increases are accessible only
through intraband processes, in which the plasmon modes
are not involved. Therefore, only the part due to intra-
band deexcitations (the curve a) increases concurrently
with ek. At energies higher than 1.5c~, intraband transi-
tions might become the dominating part (depending on
eF}; then, I k would increase with ek. From Fig. 3 it is
clear that intervalley processes are not important com-
pared with their intravalley counterparts —they are about
an order of magnitude smaller.

The dashed curve in Fig. 3 is calculated for a system
with only one graphite layer. This calculation is per-
formed according to relations similar to Fqs. (8) (9), (12),
and (13), but by substituting Im[ —1/e'(q, co)] therein with
Im[ —I/e (q, co)]. e (q„ni) is given by Eq. (A2). This
2D calculation is interesting because, for a layer system
like a GIC, we would like to know how important the
presence of other layers, or the 3D behavior, is. In the
weak-coupling limit ( qI, » 1), one can easily show that

Im[ —1/e'(q, ni)] = Im[ —1/e (q, co)],

i.e., 30 characteristics disappear. In the strong-coupling
region (qI, &&1), the plasmon spectra of the two systems
are very different (see Fig. 2); thus, different results are
expected Our . calculation shows that the 2D result is
only quantitatively, not qualitatively, different from the
3D result. In fact, only the detailed structure at
ek -0.5eF, i.e., the part that depends on plasmons, differs.
For ek & sF, where the effects due to plasmons are dimin-
ishing, the 2D result is practically undistinguishable from
its 30 counterpart, %'e notice that a typical momentum
transfer in electron-hole excitations is —kF and
kFI, =1.8 if eF is 1 eV. This means that electron-hole ex-
citations are mostly in the weak-coupling regime, or, put
differently, that they are dominated by the 2D behavior.
Since the typical Fermi energy of a low-stage GIC is
about 1 eV, we can conclude, according to our calculation,
that, except for plasmons, electronic excitations of a low-

stage GIC can be well approximated by using a 20 model.
The present theory only depends on the charge density

in graphite layers. Therefore, it can be applied easily to
systems with different Fermi energies. Figure 4 demon-
strates results from such calculations with eF between 0.5
and 1.5 eV. We find the similar structure in all curves —a
"hump" at ek ——0.5eF, obviously due to plasmon excita-
tions. The magnitude of I k is larger for systeins with
higher Fermi energies, as may have been expected based
on a phase-space consideration.

As has been discussed, I k is determined principally by
the in-plane properties of a graphite layer. The presence
of other graphite layers only results in minor modifica-
tions; these modifications are mostly due to plasmons and
are in the region c.k & ez. For optical transitions in GIC s,
only states with ck & cF are involved, and hence the asso-
ciated lifetime effect is mostly determined by the in-plane
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properties and not appreciably affected by the intercala-
tion. Based on this finding, we thus expect that our
theory should not be restricted to the application of
stage-one GIC's, but should describe other low-stage sys-
tems as well, at least qualitatively. In the next section we
will apply the present calculation to investigate the edge
structure of optically induced interband transitions —for
stage-1 as well as for stage-2 GIC's.

Pl0

IV. THE EDGE STRUCTURE 0.6 1.0 1.6

We have calculated the width I'q associated with the
interband transitions in GIC s. Replacing this 1 k with q
in Eq. (2), we can evaluate the spectrum of interband
transitions according to the relation

FIG. 4. A calculation similar to that of Fig. 3 is repeated
here for different Fermi energies. Notice that the maximum at
ck ——0.5aF, which is a feature due to plasmons, is found in all

curves.

4e' k~k 1
ImEp. q (co ) = dcok (cok =2ek ) .

I, [( 2 )2+1 (I 2+2 2+ 2 )] (2cF—u k)/2 gkT
(16)

Note that the temperature-broadening factor, which has
been kept in the formalism, is not too small an effect,
since the thermal broadening is doubled (to 2k+ T) in the
interband transitions. For example, at T =300 K, 2k+T
is about 0.05 eV, or nearly one-half the size of I k, for
k =kz and e~ ——1 eV (see Fig. 3). In what follows, we
will calculate the spectra for the stage-1 (n =1) and
stage-2 (n =2) GIC's, and compare them with the mea-
surement by Hoffman et al. '

Our calculated results are given by the solid curves, and
the measured ones by dotted lines in Fig. 5. In this calcu-
lation, we have used the Fermi energies that would pro-
duce the correct edge positions, i.e., s~ is 0.98 eV if n =1
and 0.89 eV if n =2.' One should notice that these Fermi
energies differ from those obtained by using a different
method' (see below). Froin Fig. 5 it is obvious that the
broadening is not fully explained by our calculation in the
n =1 case, although the edge structure is very well repro-
duced in the n =2 case. The comparison can be made
more specific if we convert all the broadening factors into
an effective temperature, and compare it with the effec-
tive temperature that is needed in order to describe the
measured edge structure. The latter has already been ob-
tained by Hoffman et al. ' For the n =1 system, we find
that I k/2kii+T =950 K at k =kF, while the measured
effective temperature is 1400 K, i.e., the present calcula-
tion has only explained two-thirds of the broadening
found experimentally. For the n =2 system, we find that
I k/2k&+ T=850 K, which is slightly larger than the es-
timated effective tern. perature of 750 K. In order to make
direct corn.parison with the measurement, the calculated
results have been multiplied by constant factors (e.g., for
n =1, the factor is 1.8). Other calculations' based on
Eq. (3), or its equivalent, also find similar disagreement
regarding the magnitude of the interband transitions, and
there is no explanation for it so far.

Although our calculations have been able to explain a
large part of the broadening found at the edge of inter-

The Imaginary Part of r.„,(~)

0.5 1.5

FIG. 5. The calculated spectra of opticaHy induced interband
transitions (the sohd curves) and the measured spectra (the dot-
ted line) are shown in this figure. %e find a better agreement
for the stage-2 case than for the stage-1 case. See the main text
for ways to improve our present calculation.

band transitions, the existing discrepancy between the cal-
culation and the measurement needs some explanation.
I.et us confine ourselves to the n =1 system in this re-

gard, because this is the system where a large discrepancy
is found, and also because this is the system our theory is
built for, although the theory can be applied to other
low-stage GIC s for qualitative investigations. Firstly,
about the edge position, we note that the prediction that
the edge should be at 2eF (Fig. 1) is based on a picture for
a noninteractive system, in which the electron-electron in-
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teraction is excluded. In fact, an optical transition is a
two-body problem since an electron and a hole are created
in the transition, and the two can interact via the
Coulomb force (the exciton effect). It has been shown '
that this attractive force tends to lower the edge position
of an interband transition. In the experiment with GIC's,
Hoffman et al. used a relation between the Fermi energy
and the plasmon energy, w'hich is directly measurable, and
found that the Fermi energy is 1.28 eV. This value is con-
siderably higher than the one we used according to the
edge position (0.98 eV). If we use this alternatively
determined sF to calculate I q, we find that
I'k/2k++ T =1250 K (see Fig. 4), which is now much
closer to the expected value of 1400 K. Second, besides
the scattering mechanism which we have considered in
our calculation, there are other scattering channels which
also can contribute to the edge-broadening effect. Some
of those uncounted channels, like the initial-state broaden-
ing and the phonon scattering, are probably not important
for the edge spectra, as we have explained in the Introduc-
tion. However, the scattering of electrons by intercalants,
which we did not include in the calculation, might be im-
portant, since the intercalants now carry net charges and
the Coulomb potential is strong and long ranged. In-
clusion of this effect could help to better explain the edge
structure.

It should be pointed out here that the exciton effect and
the lifetime effect are not unrelated effects in the optical
transition. The former causes a singularity at the edge,
while the latter smooths, or even suppresses, this anomaly
at threshold. ' It can also be inferred from Ref. 10 that
the larger the electronic width the stronger the downshift
of the edge from the position which would be expected
from using a single-particle picture. Experimental evi-
dence shows no anomaly at the edge (see Fig. 5), suggest-
ing that the electronic width is large enough to suppress
it. Recent measurement" also shows that there is a con-
sistent downshift (-0.5 eV) of the optical transition edge
in various n =1,2 GIC s, indicating that the exciton ef-
fect is important. Therefore, it is clear that, in order to
interpret the threshold structure, we need to evaluate life-
time accurately and study its effect concurrently with the
exciton effect.

From our calculations shown by Fig. 5 and from our
discussion given above, it can be concluded that the edge-
broadening effect found in the interband spectra is princi-
pally due to the scattering of the final-state electron in the
conduction band. To improve our theory, we need to
closely examine the exciton effect in GIC. This is possible
now because a reliable dielectric function for the system is
available, which is needed in describing the screened
Coulomb interaction between the electron and the hole.
Also of importance is the inclusion of other scattering
mechanisms, especially that due to intercalants, into the
scheme. Modification of our theory in these directions
will be studied in a planned future work

V. CONCLUSION

In this paper, we have presented a detailed calculation
of the lifetime of an electron, which is in the conduction

band of a stage-1, acceptor-type GIC. These calculated
results were than applied to explain the edge structure of
optically induced interband transitions. The edge struc-
ture of both the stage-1 and the stage-2 compounds have
been examined. In both cases, the lifetime broadening of
the final-state electron was found to be the main reason
for the edge-broadening effect.

Twa notable features from the lifetime calculation are,
first, that because of the efficient decay channel due to
plasmons, the inverse lifetime reaches a maximum at
sk -0.5sz, and second, that the lifetime can be quite well
approximated by a 2D calculation. This latter finding is
somewhat surprising since the plasmons of the systein
show explicit 3D characteristics. One can conclude ac-
cordingly that, for an intercalated graphite system, the
presence of neighboring graphite layers is not important,
unless one is looking at plasmons specifically.

For the broadening effect at the edge of interband tran-
sitions, we can improve our treatment by taking into ac-
count the exciton effect and by including other scattering
mechanisms. Both of these suggested modifications
should increase the inverse lifetime of the final-state elec-
tron, and would thus help better explain the edge struc-
ture.

One last point we would like to address concerns the
generalization of our theory. One example in this regard
has been demanstrated in the calculation of the spectrum
for stage-2 GIC's. There, we have found close agreement
with the measured result. Another category of the gen-
eralizatian of our theory is to extend it to donor-type
GIC's. In practice, we do not even need to change the
formalisms that we have developed for acceptor-type
compounds [e.g., the dielectric function, the electron
width, and Ime„,(co)] in order to describe the donor-type
compounds. The reason for this is that, by replacing the
electron states in one system with the hole states of the
other, our theory remains unchanged. Accordingly, our
theory predicts that the spectrum of the interband transi-
tions from a donor-type compound should be identical to
the one from an acceptor-type compound, if the two com-
pounds have the same stage of intercalation and the same
Fermi energy. Camparing these two spectra experimen-
tally, therefore, should reveal valuable information on the
basic assumption we have made, which is also the as-
sumption that is generally made that is, except for the
position of the Fermi level, it is assumed that intercalants
do not affect the electronic structure and its properties.
This kind of experiment should be a crucial test of our
theory.
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APPENDIX

We summarize in this Appendix the results from Ref.
7, where we have calculated the dielectric function of
GIC's. We will first describe the dielectric function of a
single graphite layer (the 2D model} in subsection 1, and
then the dielectric function of three-dimensional GIC s
(the superlattice model) in subsection 2. The calculation
of the loss function of the superlattice model,
Im[ —I/e'(q, ru)] (to be defined below), is contained in
subsection 3.

1. A single graphite layer

With the presence of highly mobile charge carriers in
the system, an external potential u'"( qco) is accompanied
by an induced field. As a result, electrons in the graphite
layer fo:1 a screened potential

vex
v (q&co}= (A1)

(q,ai)

This expression defines the dielectric function e2D(q, e2),
~here the superscripts 20 indicates that there is only one
graphite layer in the system. Because there are both intra-
band and interband transitions, the dielectric function can
be expressed by

~here eo is the background screening constant, the second
and the third terms, respectively, describe the intraband
and the interband transitions, and ve =2me /q is the 2D
Coulomb potential. The response function X'(q, co) is de-
fined by

I'(q, co)=4+
f (k;u fe 'q'fk+q;u) f'

tial uf "(q,co), and the screened potential ui (q, co) are, as
indicated by their notations, layer dependent. We define
the Fourier transform of these potentials as follows,

g vi'"(q, co)e ' '=u'"(q, h„co)
l

u'"(q, h„co)
u "(q,h„r0}=

q& g

and can be expressed compactly:

(A4)

e( q&hg&ru)=eo ueS—(q,h, )[X'(q&e2)+&b(q&co)] . (A5)

Compared with e (q, co) of Eq. (A2), (eq, h„co)contains
an extra structure factor S(q,h, ) that describes the layer
structure:

—q ~
I

~ I, +ii'&~I1, sinh(ql&: )
S(q h, )= e

cosh(qI, ) —cos(h, I, )

The effect of this structure factor is to modify the
Coulomb interaction. In the small-q limit, we find

lim lim [veS(q, h, )]= (A7)
q oa o ~ q~l

which means the interaction is three dimensional.

3. The calculation of Im[ —1/e'{q, &v)]

The energy-loss function of GIC's is defined by

gu~"(q, co)e * '=u (q, h„co),
I

where h, is confined to the first Brillouin zone, i.e.,
f
h,

f
& n./I, . The dielectric function of the superlattice is

defined, similarly to Eq. (A2}, by the relation

Pl Z+q
—/l Z

EZ+q —Fj —67+ l 'Q

(A2'}
Im

1

e'(q, ai)

/I

f dh, S(q, », )

with obvious notation, and the factor of 4 accounts for the
spin and the two valleys; Xs(q, co) is defined similarly.
These two response functions have been analytically
evaluated, and are given in Appendix A of Ref. 7. Two
points worthy of notice are, first, that our calculation is
essentially exact according to the band structure from the
2D model, and second, that, basically, e (q, co) only de-
pends on the density of the free charges in the system (or
equivalently, depends on s~)—i.e., no adjustable parame-
ter is needixl in the formalism.

—1
Xrm

e(q, h„ru)
(A8)

Im
1

e'(q, co)

2nd
vfs2 —1

f

which has two separate contributions from electron-hole
excitations and from plasmons. The part from e-h exci-
tations [where e2(q, h„co)&0]is analytically evaluated:

2. The superlattice model of GIC's

This IDodel has been described ln the IntroductloIl. Ac-
cording to the model, there are infinitely many graphite
layers in the system, and each is denoted by a layer index I
( —ao & I & + ao ). With this structure, the external poten-

fs —1
f

—p2+v +1
X

a&here

f

s2 1
f [(y 1)2+4+]i/2

The variables in this expression have the values

(A9)
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Us+2(q, co)sinh (qI, )A=
27'6'O

For the plasmon part [where e2(q, h„co)=0], we found in
Ref. 7 that

u~X ~(q, co )P= —2p = —2 cosh(qI, ) ~ sinh(qI, )
po

—l
Im

e'(q, co)

n sinh(qI, )

rosin(h, I, )

vqX2(q, ru)
v= sinh(qI, ) .

(A10) where h, satisfies the relation co=co~(q, h, ). The plasmon
energy co&(q, h, ) is determined by the zeros of e(q, h„co).
The background screening factor eo now includes the con-
tribution due to the interband transitions and hence varies
as a function of q, h„and co (see Ref. 7).
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