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Pseudopotential total-energy study of the transition from rhombohedral graphite to diamond
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The path maintaining rhombohedral symmetry in the transition from graphite to diamond which
minimizes the energy at each value of the bond length between layers is determined. The energy
barrier for this path is found to be 0.33 eV. The total energy of the solid is calculated using local-
density-functional theory with ab initio pseudopotentials. Results are presented for the charge den-

sity and density of states along the transition path. In contrast to recent extended-Huckel-theory re-

sults, throughout most of the transition the structure is found to remain semimetallic or semicon-
ducting. A final rapid opening of the gap to the insulating diamond phase develops as the interlayer
carbon-carbon bonds form. The behavior of rhombohedral graphite under conditions of isotropic
pressure is also examined. %e predict that rhombohedral graphite will transform to diamond,
without thermal or catalytic activation, at an isotropic pressure of 80 GPa if it maintains its rhom-
bohedral symmetry. Our analysis moreover suggests that, in general, cross linking of hexagonal-ring
carbon compounds leading to local tetrahedral coordination should be favored when the interlayer
distance between hexagonal rings is between 2.1 and 2.3 A.

I. INTRODUCTION

Natural graphite occurs in two crystal structures: the
more common, hexagonal or Bernal structure, ' and the
rhombohedral structure. A given sample usually con-
tains 5—15% of the rhombohedral structure intermixed
in a mosaic combination with the hexagonal form and
with disordered graphite. ' Crystals of almost pure hex-
agonal graphite can be made by heat treatment and
quenching, but the rhomobohedral form has not been ob-
tained in isolation from the hexagonal structure.

Both forms of graphite consist of planes of carbon
atoms each forming a hexagonal net with a nearest-
neighbor distance of 1.42 A, stacked with an interplanar
spacing of 3.35 A (Fig. 1). They differ, however, in the
stacking sequence of the planes. The hexagonal structure
has an AB stacking, with half of the atoms directly above
each other in adjacent planes and the other half directly
above the center of the hexagonal ring in the adjacent
plane. The rhombohedral structure has an ABC stacking;
half of the atoms are directly below atoms in the adjacent
plane and directly above hexagonal ring centers, and the
other half of the atoms are directly above atoms and
below hexagonal ring centers. The rhombohedral struc-
ture can be obtaintxl from the hexagonal structure by slip-
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ping every third plane, as shown in Fig. 1.
In this paper we will concentrate exclusively on the

rhombohedral graphite structure because of the following
simple geometrical relationship between it and the dia-
mond structure (Fig. 2): Although the diamond structure
has additional symmetries, both are cases of the more gen-
eral rhombohedral structure characterized by the bond
length between layers, R, the bond length within layers,
8, and the buckling angle, 8, between them. The dia-
mond structure is obtained when R =8=1.54 A and 8 is
the ideal tetrahedral angle, 109.47'. In this case the rhom-
bohedral bravais lattice becomes the face-centered-cubic
lattice, and the vertical direction is the [111]direction of
the usual cubic description of the diamond structure. The
rhombohedral graphite structure is obtained when 8=90',
R=3.3S A, and 8=1 42 A. In this scheme, the diamond
structure is viewed as a set of buckled planes stacked in
ABC sequence in the [111]dire:tion. We can continuous-

8= t.4ZA

(b}

FIG. 1. The crystal structure of (a) hexagonal and (b) rhom-
bohedral graphite showing the different stacking of the layers.

FIG. 2. The local structure of (a) rhombohedral graphite {b)
diamond. The dashed lines indicate the basis vectors of the
rhombohedral lattice. The [111] direction of the usual cubic
description of the diamond lattice is vertical.
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ly transform rhombohedral graphite into diamond by
reducing the bond length between layers while simultane-
ously increasing the buckling angle and the bond length
within layers. Throughout the transformation, the rhom-
bohedral symmetry can be maintained; all the intervening
structures having a rhombohedral bravais lattice and
space group, D3~.5

This transformation has recently been studied by Ker-
tesz and Hoffmann using extended-Hiickel band calcula-
tions to find the path which minimizes the energy of the
solid at each value of the interlayer bond length. The
present work uses the density-functional formalism ' and
ab initio pseudopotentials with a localized orbital basis'
to study the transformation from first principles. This
method has been used in the past to obtain very accurate
structural properties for carbon in the sohd-state environ-
ment. " A more reliable profile of the total energy of the
structure and of the variation of the structural parame-
ters, R, B, and 8, is thereby obtained. We also determine
the charge density and density of states for the crystal as
the transformation proceeds.

The path which minimizes the total energy of the solid
at each value of the interlayer bond length in the transfor-
mation is found to have an energy barrier of 0.33 eV per
atom; the energies of the initial graphite and final dia-
mond structures are very nearly equal. As the graphite
interlayer bond distance is decreased, the increase in the
buckling angle and the intralayer bond length is very slow
initially; only when the interlayer bond is 2.3 A does the
intralayer bond length begin to increase significantly. At
this point the buckling angle 8 is 97'. Analysis of the
charge density reveals that the characteristic double peak
in the density along the carbon-carbon bond does not
develop in the bond between layers until its length is
within 10—15% of its value in the diamond structure.
The density of states for the intermediate structures show
that the crystal remains semiconducting or semimetallic
for most of this path. Only when the double peak of the
carbon-carbon bond between layers forms does a signifi-
cant gap open between the valence and conduction bands
causing the structure to become insulating. In contrast to
the results of Ref. 6, a large density of states at the Fermi
level is not found for structures on the transition path.

We have also determined the behavior of rhombohedral
graphite under hydrostatic pressure. Assuming rhom-
bohedral symmetry is maintained, the graphite structure
is found to remain metastable up to a maximum of 80
GPa. At pressures above 80 GPa, only the diamond form
(i.e., the special case of the rhombohedral structure for
which R=B and 8=109.47') is stable or metastable.
Thus, as the pressure is increased from 0 to 80 GPa, the
structural parameters vary continuously from R =3.3S A,
B=l.42 A, 8=90, to 8 =2. 1 A, 8=1.38 A, 8=97. As
the pressure is further increased above 80 GPa, it is no
longer possible to maintain metastability (i.e., to find a lo-
cal minimum of the free energy, E+I'V) by continuously
varying the structural parameters, and the only local
minimum of the free energy occurs for the diamond struc-
ture. This maxiinum pressure of 80 GPa is an upper
bound for the metastability of rhombohedral graphite
since instabilities which do not maintain rhombohedral

symmetry may occur at lower pressures.
A careful examination of the band structure near the

conduction-band minimum and valence-band maximum
for rhombohedral graphite at zero pressure shows that,
unlike hexagonal graphite, it is not a semimetal but rather
a semiconductor with a small direct gap of approximately
0.05 eV. This calculated gap is probably an underestimate
since a local-density formalism is used. This finding
shows that the existence of a Fermi surface is sensitive to
the stacking of the layers, a point of general significance
for pure (i.e., undoped) graphite. It is experimentally ob-
served that in the pyrolitic form, where the layers are well
formed but their stacking is poorly characterized, graphite
behaves as a semiconductor. '

The remaining four sections of the paper are as follows:
In Sec. II we will describe in detail the calculation of the
total energy of the solid and the results obtained. In Sec.
III the results of the charge density and density of states
calculations are presented. In Sec. IV we consider the na-
ture of the bonding in the solid in three different phases
of the transformation from graphite to diamond in the
light of the results presented for the total energy, charge
density, and density of states. We also discuss the absence
of a Fermi surface in rhombohedral graphite as well as
the absence of metallic structures which were predicted
to exist on the continuous transition path from rhom-
bohedral graphite to diamond. Finally, in Sec. V, we
present the main conclusions of this study.

II. TOTAL ENERGY

The total energy per cell (two atoms) of the general
rhombohedral structure is a function E(R,B,8); that is, a
function of the three parameters used to specify it (R
equals the bond length between layers, B equals the bond
length within layers, and 8 is the buckling angle). Follow-
ing the convention of Kertesz and Hoffmann, we can
treat R as the independent variable in transforming rhom-
bohedral graphite into diamond. The parameters B and 8
are then varied for each given value of R to minimize the
total energy, E(R,B,8), while maintaining rhombohedral
symmetry. Thus we obtain three functions of R (Fig. 3):
Em;„(R) is the minimum value of E(R,B,8) for a given
value of R; B;„(R) is the value of B at which this
minimum occurs; 8;„(R) is the value of 8 at which the
minimum occurs.

To determine the effect of hydrostatic pressure on
rhombohedral graphite, we treat the ceB volume V as the
independent variable and vary B and 8 to find a local
minimum of the total energy for each given value of V.
Thus we obtain the functions, Em;„(V), Bm;„(V), and
8;„(V), as shown in Fig. 4. These functions are defined
in the same way as the analogous functions for R. Two
branches (i.e. two local minima) exist for cell volumes

D

greater than 11.0 A . One is the diamond structure, for
which 8 =8 and 8=109.47'; the other is a compressed
form of graphite with R between 2.1 and 3.35 A, B be-
tween 1.37 and 1.42 A, and 8 between 90' and 97. For
cell volumes less than 11.0 A, only the diamond branch
exists. The prcssure on either branch is given by

dE;„(V)/dV. —
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The total energy is calculated within local-density-
functional theory * using the formalism of Ihm et al'3
The electron-ion interaction is determined using ab initio
pseudopotentials generated by the scheme of Hamann,
Schluter, and Chiang and the exchange-correlation ener-

gy is evaluated with the function of Hedin and
Lundqvist. ' We express the total energy as a sum of
terms:

the electron-core interaction (determined using the ion
pseudopotential), and E, , is the electron-electron interac-
tion (Hartree and exchange-correlation terms).

We determine Eq;„+E,, +E, , as follows: The Kohn-
Sham equations,

fi V + V;,„(r)+VH(r)+p„, (r) P;(r) =e;g;(r),
2m

Et.t =Ee~+E~.+Ee-e+E.-.
where E, , is the core-core Coulomb interaction (Ewald
term), Ez„ is the kinetic energy of the electrons, E,~ is

are solved self-consistently. Here, V;,„ is the sum of the
ion pseudopotentials; VH is the Hartree potential due to
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FIG. 3. {a) Total energy per cell (two atoms), (b) bond length
within layers, and (c) buckling angle as functions of the bond
length between layers for the path which minimizes the total en-
ergy for each value of the interlayer bond length. The points are
calculated and the curves are cubic spline interpolations between
them.
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FIG. 4. (a) Total energy per cell (two atoms), (b) bond length
within layers and (c) buckling angle as functions of the cell
volume for the hydrostatic pressure path. In {a) the solid curve
is for the graphite branch and the dashed curve is for the dia-
mond branch. The diamond branch is not shown in {b) or (c).
The points are calculated and the curves are cubic spline inter-
polations between them.
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the valence charge density,

p(r)=e g ~
1(;(r)) ', (3)

where E~ is the Fermi level; and p„,(r) is the exchange-
correlation potential for the charge density p(r). The sum
of the electron kinetic, electron-core, and electron-electron
energies is given by

Ek;„+E,., +E, , = g e; ——,
' f VH(r)p(r)dr —fp,„(r)p(r)dr+ f e„,(r)p(r)dr, (4)

where e„,(r)p(r) is the exchange-correlation energy densi-
ty. Equation (4) correctly accounts for overcounting of
the Coulomb interaction between the electrons in the sum
of eigenvalues, unlike the extended-Huckel technique
where the total energy is expressed simply as a sum of
eigenvalues. Variations in the core-core interaction energy
as a function of the structural parameters are also neglect-
ed in the extended-Huckel calculations.

The wave functions are expanded in a linear combina-
tion of localized orbitals with s and p symmetry centered
on the atomic sites'0 of the form

f,im(r)=A i e ' riKI (~,P), (5)

where A I are normalization constants, and EI are
"Kubic harmonics". Sixteen orbitals per atom are used
and the values of the radial Gaussian decays, a, are
chosen for each structure to minimize the total energy. '

The potential is made fully self-consistent using the
scheme of Chan et al. ' with plane-wave components up
to an energy of 64 Ry. A uniform grid of 19 k points in
the irreducible sector of the Brillouin zone is used. '

The quantities E~;„(R), 8~;,(R), and 8~;„(R) were all
determined for eight values of R (i.e., for the ideal gra-
phite and diamond values of R and for six intermediate
values). For the values of R corresponding to the ideal
graphite and diamond structures, the values of 8~;„(R}
and 8;„(R) are within 0.1% of the experimentally mea-
sured values. We have overestimated the binding of dia-
mond with respect to graphite by 0.009 eV per atom as
compared with experiment' but this is within the uncer-
tainty in the energy due to numerical approximations in
the method. We estimate all the values of 8;„(R)and
0;„(R}evaluated in this calculation are reliable within
0.1% and the relative energies of the structures are correct
to within 0.01 eV per atom.

The energy barrier for this transition path is 0.33 eV
per atom [see Fig. 3(a)]. The maximum energy along the
path occurs at the point 8 =2.07 A, 8=1.48 A, and
8= 101.4', which is a saddle point of the energy
E(R,B,e). Assuming that this is the only saddle point, as
is likely to be the case, it follows that any continuous path
from rhombohedral graphite to diamond which maintains
rhombohedral symmetry must have an energy barrier of
at least 0.33 eV per atom. Of course, if the restriction of
rhombohedral symmetry is not imposed, it may be possi-
ble to find a path with a lower energy barrier.

The hydrostatic pressure path does not lead continuous-
ly from graphite to diamond. The graphite branch ter-

0

minates when the cell volume equals 11.0 A, at which
point R =2.1 A, 8=1.38 A, and 8=97', and the pressure
equals 80 GPa. As can be seen from Fig. 4(a), this path
does not pass through any saddle points of the total ener-

gy. At the termination point of the graphite branch, the
stationary point of the total energy function restricted to
the surface of constant volume becomes an infiection
point, whereas for greater volumes it is a local ininimum.

III. CHARGE DENSITY AND DENSITY
OF STATES

The charge density and electronic density of states
(Figs. 5 and 6) were evaluated for various structures along
the calculated path shown in Fig. 3, which minimizes the
energy at each value of R. For this calculation, a uniform
grid of 85 k points in the irreducible Brillouin zone
(equivalent to 729 points in the full Brillouin zone) was
used. The Fourier components of the ground-state charge
density are found as part of the total-energy calculation'6
and froin these the real-space charge densities in Fig. 5
are calculated. The density of states is calculated from
the eigenvalues on the 85 k-point grid using a tetrahedral
integration scheme. ' The use of 85 k points is sufficient
to obtain a reasonably good density of states. There is un-
doubtedly some noise in the results presented in Fig. 6,
hence fine details may not be reproduced exactly. Howev-
er, all the main features of the band structures of dia-
mond' and graphite are expected to be reliable. In this
study, we are concerned with the main features of the
electronic structure. In particular, whether a structure is
insulating, semiconducting, semimetallic or metallic de-
pends on the density of states in the region of the Fermi
level. %'ith only 85 k points it is not possible to distin-
guish reliably between a semimetal with a small overlap
between the conduction and valence bands and a semicon-
ductor with a small gap (at the level of 0.1 eV); but the
distinction between these two and either an insulator or a
metal is unambiguous. In general, local-density-
functional theory gives band gaps which are 20—50% too
small compared with experiment for insulators and semi-
conductors. ' However, the qualitative nature of the spec-
trum (i.e., whether a gap exists or not) is in general
predicted correctly. Furthermore, the pressure dependen-
cies of the gaps in many materials, including diamond, is
prediced correctly by local-density-functional theory.

From the results presented in Fig. 6, we see that as 8 is
reduced from 3.35 to 1.8 A the structure is always either
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semiconducting or semimetallic. As R is finally reduced
to its value for the diamond structure, the gap (initially
direct at 1 for R =1.8 A but becoming indirect as the di-
amond structure forms) opens to a value of 4.3 eV.
Analysis of the individual eigenvalues shows that, except
for diamond, in each structure (R=1.8, 1.88, 2.07, 2.5,
3.35 A) for which the density of states is calculated, the
maximum of the valence band is in the same region of the
Brillouin zone as the minimum of the conduction band.
For ideal rhombohedral graphite, this region lay close to
the Brillouin zone boundary as it does in hexagonal gra-
phite. As the interlayer distance is reduced, it moves into

the interior of the zone and finally converges on the center
of the zone for R =1.8 A.

Because of the interest ' in whether ideal rhom-
bohedral graphite is a semiconductor or a semimetal, we
calculated the band structure on a very fine mesh in the
region of the valence-band maximum and conduction-
band minimum for this structure. We find that within
the local-density approximation the structure is a semi-
conductor with a small direct gap of approximately 0.05
eV. The gap is locat& very close to the region where ear-
her two-band models had predicted touching of the
bands.

FIG. S. Charge density in the plane containing a bond located between layers and a bond lying within layers, for various points on
the path which minimizes the energy for each value of the interlayer bond length, R. The filled circles indicate the atomic positions.
The values of 8 are(a) 3.3S A, (1) 2.S A, (c) 2.07 A, (d) 1.88 A, (e) 1.8 A, (f) 1.S4A.
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increases, E„, becomes more negative initially

(dE„,/dR & 0). Then„as the intralayer bond length starts
to increase significantly and the peak in the charge densi-

ty along it starts to decrease, dE„,/dR changes sign and
E„, becomes rapidly less negative. Finally, as the struc-
ture bimomes insulating and strong bonds form between
the layers, dE„,/dR changes sign again and E„, becomes
rapidly more negative. Of course the exchange-
correlation energy is only one term in the total energy of
the solid and should not be considered to determine the
preferred bonding configuration on its own. For instance,
in the first of the three phases of the transformation dis-
cussed here, although the exchange-correlation energy is
decreasing, the total energy is increasing. The results
presented in Fig. 7 merely refiect the fact that the
exchange-correlation energy favors the inhomogeneous
charge distribution associated with the formation of local-
ized bonds. 25

Even with its restriction of rhombohedral symmetry,
the analysis presented here of graphite under hydrostatic
pressure or under constraint of the bond length between
layers provides insight into the breakdown of carbon sp
bonding and the formation of tetrahedral bonds in gen-
eral. When the interlayer bond length is constrained (see
Fig. 3), the maximum of —dE;„(R)/dR occurs at the
same point (8=2.3 A} as the start of elongation of the
bonds within layers. It is also at this point that signifi-
cant inhomogeneity in the charge density between layers
begins to develop. Clearly the integrity of the graphite
layers begins to be lost at this point, which indicates that
the sp classification of the bonding in the solid which is
appropriate for gra(hite begins to break down here. On
the other hand, sp classification which is good for dia-
mond does not seem appropriate until the interlayer bond
length is less than 1.8 A. However, the formation of
tetrahedral bonds clearly becomes more favorable than the
formation of ski bonds once R is less than 2.1 A.

Although constraint of the interlayer bond length is a
very different condition from the imposition of hydrostat-
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FIG. 7. The exchange-correlation energy per cell as a func-
tion of the bond length between layers for the path which mini-
mizes the energy for each value of the interlayer bond length.
The points are calculated and the curve is a cubic spline interpo-
lation between them.

ic pressure, in the latter case the breakdown of sp bond-
ing also seems to occur when the interlayer bond length is
approximately 2.3 A. It is clear from Figs. 4(b) and 4(c)
that the graphite layers start to change drastically in the
region between V=12.0 A and V=11.5 A . In this re-
gion, the interlayer bond length has values between 2.3
and 2.4 A. Furthermore, the fact that the graphitic
branch of the hydrostatic pressure curve becomes unstable
at V=11.0 A, when 8=2.1 A, is again consistent with
the idea that the tendency to form tetrahedral bonds dom-
inates when the interlayer bond length is less than 2.1 A.
These facts all suggest that local bonding properties
govern the course of the transformation in the highly
compressed regime and that, in general, cross linking of
hexagonal-ring carbon compounds leading to local
tetrahedral coordination should be favored when the dis-
tance between hexagonal rings is between 2.1 A and 2.3

12

Contrary to the results of Kertesz and Hoffmann, we
do not find metallic behavior for any of the structures
along the transition path, which minimizes the total ener-

gy at each value of the interlayer bond length from rhom-
bohedral graphite to diamond. As pointed out by these
authors, the symmetry of the wave functions at the I
point for graphite and for diamond forces an accidental
degeneracy of the conduction and valence bands at I for
some structure along the transition path. We observe this
degeneracy in our calculation when 8 is approximately
1.85 A. In general, the maximum of the valence and the
minimum of the conduction bands need not occur at or
near I, so that degeneracy of the bands at this point
would force metallic filling of the bands. However, we
observe that in the present calculation, the maximum of
the valence and the minimum of the conduction bands do
indeed occur at or near I" when the bands are degenerate
at I'. This is why there is no significant density of states
at the Fermi level for the structures examined.

The two-band tight-binding calculations of Haering
and McClure indicated the presence of a Fermi surface
in rhombohedral graphite in approximately the same re-
gions of reciprocal space where the Fermi surface of hex-
agonal graphite lies. In the hexagonal structure the crys-
tal symmetry forces a degeneracy of the valence and con-
duction bands at points on the six vertical edges of the
Brillouin zone; dispersion of the bands along these edges
then gives rise to the Fermi surface. No such symmetry
in the rhombohedral structure forces the existence of a
Fermi surface and the accidental degeneracy which causes
one to occur in the two-band model is lifted in a calcula-
tion which allows for hybridization between the p, orbi-
tals (which are the main components of the m bands) and
the s, p» and p~ orbitals. We see then that modifications
of the stacking sequence in graphite may alter or destroy
the Fermi surface and in turn significantly affect the elec-
trical conductivity. It has been observed' that single-
crystal hexagonal graphite has a conductivity 2—10 times
that of pyrolitic graphite at room temperature. This ef-
fect could be explained either by alteration or destruction
of the Fermi surface leading to a lower carrier concentra-
tion in the pyrolitic form or by a shorter mean free path
due to a higher concentration of scattering defects in the
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crystal. However, the fact that the temperature variation
of the conductivity is semiconductorlike in pyrolitic gra-
phite while it is semimetal-like in the pure hexagonal
form is explicable only in terms of band structure effects.

V. CONCLUSION

We have presented an analysis, from first principles, of
a continuous transition path from rhombohedral graphite
to diamond. The path maintaining rhombohedral symme-
try which minimizes the total energy of the solid for each
value of the interlayer bond length is determined. The
graphite layers are found to maintain their essential in-
tegrity, with little change in bond length within the layers,
until the interlayer bond length is reduced to 2.3 A. After
that point the bond length within the layers increases rap-
idly to its value in the diamond structure as the bond be-
tween layers shortens. The energy barrier for this path is
0.33 eV per atom.

The charge density shows that as the interlayer bond
length is reduced, although charge begins to build up in
the bond between layers at about the same time as the
bond length within layers begins to increase substantially,
it is not until the length of the interlayer bond is within
10—15%%uo of its value in the diamond structure that the
characteristic double peak of the carbon-carbon bond
develops there. The density of electromc states reveals
that the structure is semimetallic or semiconducting dur-
ing most of the transition from graphite to diamond.
Only as the double peak of the charge density in the bond
between layers develops does the gap open to that of the

insulating diamond structure. The rhombohedral graphite
structure is found to be semiconducting with a small
direct gap of 0.05 eV.

The behavior of rhombohedral graphite under hydro-
static pressure is also determined. Assuming rhom-
bohedral symmetry is maintained, a graphiticlike struc-
ture is found to be metastable up to approximately 80
GPa, at which point the density is 60%%uo greater than gra-
phite at zero pressure and 2% greater than diamond at
zero pressure. Above 80 GPa we find that the only stable
or metastable structure with the rhombohedral symmetry
assumed here is the diamond structure. Our results sug-
gest that, in general, cross linking of hexagonal ring car-
bon compounds leading to local tetrahedral coordination
should be favored when the interlayer distance between
hexagonal rings is between 2.1 and 2.3 A.
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