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The possibility of characterizing the traps of the oxide layer near the Si/SiO, interface using
deep-level transient spectroscopy (DLTS) is pointed out. By use of the so-called saturating-pulse
DLTS, an unusual increase of the DLTS spectrum is observed. This behavior is interpreted by tak-
ing into account tunneling emission from oxide traps situated near the silicon dioxide—silicon inter-
face (=10 to 30 A). By introducing a model for the derivation of the DLTS signal amplitude, we
show here how the deconvolution between interface states and oxide traps is allowed. Then, from
the experimental study of the filling kinetics the concentration of these oxide traps is obtained (~ 10’
to 10° cm~2) as well as their associated tunneling capture cross section (=10~ to 10~%' cm?.
Moreover, by variation of the emission rate window, it is possible to measure the concentration pro-
file of these oxide traps. The validity of the model and measurements are extensively discussed.

I. INTRODUCTION

Deep-level transient spectroscopy (DLTS) (Ref. 1) is a
tool used to characterize insulator-semiconductor inter-
faeces.>~* In metal-oxide-semiconductor (MOS) struc-
tures, the DLTS technique allows an estimate of the der-
sity of localized states at the oxide-semiconductor inter-
face with better accuracy’ than the capacitance voltage
technique® or even than the conductance technique.” The
technique basically consists of filling all the interface
states during the pulse, then analyzing the emission rate
during a temperature scan. In these conditions, the DLTS
spectrum saturates when the pulse amplitude increases,
because the interface states are completely filled. In the
use of this saturating pulse DLTS (Ref. 2), we have ob-
served in Si-SiO, MOS structures an unusual increase of
the spectrum amplitude when the filling pulse amplitude
or the pulse width increases, each independently of the
other experimental parameters. The measurements are
made on state-of-the-art MOS capacitors which exhibit a
very low density of interface states (N;=~3Xx10°
cm~2eV~! at mid-gap).

We shall demonstrate here that this behavior can be un-
derstood by taking into account the possibility of tunnel-
ing between the oxide traps and the semiconductor. The
DLTS technique allows a determination of the small con-
centration of these oxide traps (Ng~10"—10®° cm™2).
Moreover, by monitoring the DLTS signal amplitude
versus the pulse width, it is also possible to measure
the associated tunnel capture cross section (o,
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~1072-102! cm?) and determine the localization of
these traps in the oxide (~10—30 A from the interface).
Presumably, the traps originate from the strained thin
layer of the SiO, film near the interface.

In Sec. II, we show the experimental evidences of the
tunneling effect. Section III gives the model and the cal-
culation of DLTS response with tunneling. From these
calculations we present, in Sec. IV, the procedure used to
obtain the oxide traps characteristics. The results are
given in Sec. V and discussed in Sec. VL.

II. EXPERIMENTAL EVIDENCES

The samples are made on a (100) oriented n-type
6—15 Qcm Si substrate. The oxide, 1200 A thick, is
thermally grown at 950°C under wet atmosphere, followed
by a N, annealing. The backside faces are degenerated by
phosphorous implantation followed by annealing at 950°C
for one hour in order to yield a perfect ohmic contact.
Before DLTS measurements, C(V) characteristics have
been performed on each sample to verify their good elec-
trical behavior and to determine the conditions of applica-
tion of the DLTS technique.

The use of the saturating pulse DLTS requires two con-
ditions. The pulse amplitude must bias the MOS capaci-
tor in accumulation, so that all the interface states are
below the Fermi level (Fig. 1). Second, the pulse width
must be larger than the capture time constant, so all the
interface states are filled at the end of the pulse. The cap-
ture time constant is given by
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FIG. 1. Bias of a MOS structure during saturating pulse
DLTS measurements and corresponding energy scheme.

Te=(0,0,n)" ", (1)

where o, is the capture cross section of the interface
states, U, the average thermal velocity, and n; the electron
concentration at the interface. Typically, in weak accu-
mulation (surface potential Y, about 5kT/e) with o,
about 10! cm? (the lowest reasonable value), the capture
time constant varies from ~3 us at 70 K to 0.3 us at 250
K. If these conditions are satisfied, the DLTS response
saturates when the pulse amplitude and pulse width in-
crease.

We have observed an unusual behavior of the samples
described above. Figure 2 shows typical DLTS spectra
obtained when the filling pulse voltage varies from 2.5 V
to 8.5 V. The C(V) characteristic, in the inset of Fig. 2,
clearly reveals that the MOS structure is strongly in accu-
mulation in this filling pulse range. Though the pulse
width (chosen to be 20 us) is larger than the capture time
constant, the DLTS response does not saturate. The same
behavior is observed when the filling pulse voltage is kept
constant but when the pulse width varies. The amplitudes
of the DLTS spectra, at various temperatures, as a func-
tion of the filling pulse voltage and of the pulse width are
given in Figs. 3 and 4, respectively. Two kinds of
behavior are shown in Fig. 3. Between O and a threshold
value ¥, the rapid variations of the DLTS signal are due
to incomplete filling of the interface states. Above this
threshold, we have not observed the usual saturating
behavior (dotted line on Fig. 3) but a slow increase of the
DLTS response. The role and the temperature depen-
dence of the threshold value V,, will be discussed later in
Sec. IV. Figure 4 shows the behavior with the pulse
width. As in Fig. 3, we observe an increase of the DLTS
response instead of the expected saturating behavior. For
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FIG. 2. Variation of the DLTS spectra vs the filling pulse
amplitude ¥Vp. The inset gives the C (V) characteristic.

t, smaller than 20 us, we have not measured the filling ki-
netic of interface states. This limitation is due to our
DLTS apparatus. Above 500 us, the divergence is not
significant because the ratio ,/P of the pulse width over
the period is in the range where the DLTS signal ampli-
tude increases due to the behavior of our apparatus.® The
pulse period is 0.1 s (i.e., the low frequency limit of our
DLTS apparatus).

We shall explain such a behavior, by taking into ac-
count the effects of capture and emission of free carriers
by defects in the oxide layer near the Si/SiO, interface
and more precisely into the corresponding strained transi-
tion layer. These oxide traps are also historically called
“slow interface states.”® Section III is devoted to the tun-
neling model and the calculation of the modified DLTS
response takes into account tunneling.
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FIG. 3. Determination of the threshold-filling pulse voltage
above which the oxide traps contribution is not negligible. Dot-
ted lines correspond to the values without oxide traps, i.e., show-
ing the saturation of interface states. The DLTS parameters are
Ve=—1V, tp=20pus,and P=0.1s.
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FIG. 4. Variations of the DLTS spectra amplitude vs the filling pulse width at various temperatures.

III. RESPONSE OF A MOS STRUCTURE
WITH TUNNELING

In the saturating pulse DLTS, the transient capacitance
in the temperature range where only the majority carriers
dominate, is given by'°

Et
AC()=A [, °Ny(E)f(E0dE , 2
where N;(E) is the interface states density at an energy E
between valence (E,) and conduction (E,) band extrema,
f(E,t) the majority carriers occupancy function, and ¢ the
time. The constant A4 is equal to

C3

A=—r——, (3)
6sCox‘ND

where C is the capacitance under bias voltage, €, the per-
mitivity of Si, C,, the oxide capacitance, and Ny the sub-
strate doping concentration. Using an analysis of the
transient by a double phases lock-in,!! the DLTS response
during a temperature scan is (see Appendix A)

R;(T)=0.48 A N,(E,)KT , 4)

where k is the Boltzmann’s constant, T the absolute tem-
perature, and E, the location of the DLTS energy win-
dow in the band gap. This energy window, for which the
interface traps respond within the lock-in period P at the
temperature T, is given by

T,0,N,
E,—E,=kTln |——= J (5)
€no
with the emission rate window e, equal to
eno=172/P, (6)

U, and N, are, respectively, the electron thermal velocity
and the effective density of states in the conduction band.
The capture cross section o, of the interface states must

be known in order to deduce the spectroscopic informa-
tion from the temperature scan. In the saturating pulse
DLTS, the temperature shift of the DLTS spectra with
the emission rate window does not allow a correct deter-
mination of o, because these measurements do not
separate the temperature dependence from the energy
dependence of the capture cross section.!” Energy
resolved DLTS should be applied to solve this problem,'?
but it was not used in this work because an accurate deter-
mination of the capture cross section of the interface
states is not necessary in the study of the oxide traps.
Consequently the correspondence between the temperature
and the trap location in the Si band gap is usually made,
assuming an average and constant capture cross section of
10~'3 cm?. This value is the mean value of the published
results for about ten years.

We now introduce the possibility of electron tunneling
between the oxide traps and the Si conduction band. We
have chosen the simple case of tunneling through a tra-
pezoidal barrier (Fig. 5). We have neglected the slope of
the SiO, conduction band. This slope depends on the
electric field across the oxide. In our case, the maximum
applied field is 8% 10° V/cm. The slope amplitude is
eFz ~80 meV (with z=~10 A) and this value is negligible
compared to the barrier height. The emission rate associ-
ated with such a tunneling process from a level located at
E; below the SiO, conduction band (Fig. 5) to the sub-
strate through a distance z is given by (see Appendix B)

(zm TE,-)I/Z
e ve—4

-2
#i

e,(E;,z)=aexp , (7

where m?} is the SiO, electron effective mass, h the re-
duced Planck’s constant. The exponential term corre-
sponds to the tunneling through a square energy barrier
with a height of E;. The pre-exponential factor is (see
Appendix B)
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FIG. 5. Schematic representation of a tunneling effect
through the the trapezoidal potential barrier of a Si-SiO, struc-
ture. The model used is a square barrier of height E;.
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where m3 is the Si electron effective mass. The wave vec-
tors K;, k; are defined in Appendix B.

Let us consider the simplest case of a single level E;
(Fig. 5) with a distributed concentration in the depth of
the oxide Ny (E;,z). Because the filling pulse width is
generally smaller than the capture time constant of oxide
traps (see numerical values in Sec. V), they are not com-
pletely filled. We have a concentration ng (E;,z) of
trapped electrons during the pulse width, which are then
re-emitted from these oxide traps. Assuming that the tun-
neling emission from oxide traps and the emission of the
interface states are independent, the DLTS response be-
comes the sum of two contributions

R(T)=Ry(T)
) P
+4 [ nolEz) [ T(T)expl —e(E;2)ildt dz .
9)

The first term is the contribution of interface states given
by Eq. (4), and the other one is due to tunneling from the
oxide trap, ['(¢) being the correlation function of the dou-
ble lock-in detector. Then, we obtain (see Appendix C)

R(T)=R;(T)+0.723 A no(E;,zp) , (10)

where z,, is the position of the maximum of the probe
function (see Appendix C)

P
J(2)= [ T() exp[ —e,(E;,2)t)dt (11)
and is related to the lock-in emission rate window e, by
#i a
Zp=——"7—In |— 12
™= 22miE) " | eno 12

Thus, if we consider oxide traps located at a single energy

level E;, the tunneling emission induces a shift of the
DLTS spectrum independent of the temperature (if the
term A is independent of the temperature, see below in
Sec. V). From this shift we can deduce the concentration
of electrons trapped on the oxide traps ny(E;,z,,) and, if
E; is known, the depth z,, where the contribution of these
traps is maximum. Varying the emission rate window e,
allows, in principle, the determination of the concentra-
tion profile. The assumption of a single energy level will
be discussed in the next section.

This model will be used in the following to calculate the
DLTS response with tunneling from oxide traps. The
limitations will be discussed in Sec. VI. From these calcu-
lations, we present in the following sections (i) the pro-
cedure used to obtain the oxide traps characteristics (Sec.
IV), and (ii) the experimental results (Sec. V).

IV. DATA ANALYSES PROCEDURE

We obtain the concentration of electrons trapped on ox-
ide traps no(E;,z,) from Eq. (10). For that, it is neces-
sary to know the interface states contribution R;(T).
That is done from the experimental results of Fig. 3. As
explained in Sec. II, the threshold value ¥, of the filling
pulse amplitude separates two kinds of behaviors. Conse-
quently, it is reasonable to consider the DLTS response at
Vp =V, as due to the interface states only. Indeed, all
the interface states are filled and the contribution of oxide
traps is negligible. These conditions minimize the oxide
traps response but also allow a correct determination of
the interface states density. The values of N, are given in
Fig. 3. We also give the energy of the interface states
analyzed by the DLTS measurements [Eq. (5)]. This al-
lows us to explain the variations of the threshold value
Vpo- According to Eq. (5), the interface traps near the
conduction band (which respond at low temperature) re-
quire the largest band bending variation to be completely
filled, and consequently the largest threshold filling pulse
amplitude.

Normally the same procedure should be used to choose
the optimal pulse width in order to determine the inter-
face states contribution. From Fig. 4, we cannot see a
threshold value of the pulse width. So we have chosen the
smallest pulse with (#, =20 us) as the reference value to
measure the interface states contribution. This leads to an
error in the determination of the trapped electrons con-
centration ng, (E;,z) which will be discussed in Sec. V.
As a consequence, we take the interface states density
determined above from Fig. 3 as the “reference values” to
estimate R;(T) in Eq. (10) using Eq. (4).

The last point concerning the measurement parameters
is the choice of the bias voltage V,. The value of bias
voltage V), is chosen at the boundary between weak and
strong inversion. With this condition, the minority car-
riers response!* and the cutoff effect!? occur above 260 K,
and the DLTS measurements will be valid. From the
C (V) characteristic (inset of Fig. 2) we deduce V= —1
V.

After the preliminary determination of the interface
states contribution we obtain, from the experimental re-
sults of Fig. 4, the filling kinetics of the oxide traps, i.e.,
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the curve no(E;,z) versus t,. We assume that all the elec-
trons trapped on oxide traps during the pulse width z, are
re-emitted during the transient regime. This assumption
is valid when the period of the pulse P is larger than the
time constant of the emission ¢,”!. From Appendix C,
we see that a limitation occurs for z=z, where
e,(z,,)=e,0=1.72/P. Indeed, from Eq. (7) giving the
variations of the tunneling emission rate, it can be seen
that the assumption remains valid for all the traps located
between the interface and the depth z,, given by Eq. (12).
With this assumption, the measured concentration ng,
(E,z) is, in fact, the concentration of trapped electrons (or
a partial concentration if the previous assumption is not
valid). From the filling kinetics, we can deduce the oxide
traps concentration N, and the capture time constant (1)
of these oxide traps. Indeed, if the behavior of the filling
kinetics follows the classical kinetic rate equation, we
have

n0,=NO,[1—exp(—tp/T)] . (13)

The capture occurs when the MOS structure is biased in
accumulation and the corresponding electron density at
the interface is

T | (14)

ny=Np exp

where N, is the doping concentration. The ratio ey /kT
of the surface potential over the thermal energy unit
kT /e is measured at various temperatures by the C(V)
analysis. This ratio is found fairly constant for a given
filling pulse ¥, and for any temperature. Then, to define
an associated tunneling capture cross section o,,, we use
the well-known classical expression of a capture time con-
stant

T=(0pDyns) ", (15)

where the electron thermal velocity 7, of SiO, is obtained
with an effective mass of 0.64 m, with m the electron
mass.!> Then the fit of Egs. (13) to (15) with the experi-
mental kinetics allows the determination of Ny, and o,.
The experimental results are given in the next section.
Finally, how we can deduce the energy and depth local-
ization of the oxide traps? This localization is given by
the maximum of the probe function J(z) [Eq. (11)]. The
maximum occurs when the tunneling emission is equal to
the emission rate window of the DLTS apparatus (see Ap-
pendix C). Thus we obtain the locus of oxide traps for
which V/E;z,, is constant. The deconvolution between
energy and depth is not obvious and in order to have a nu-
merical value of z,,, we have assumed a single value of
E;. Then, the depth localization will be evaluated by Eq.
(12). We have chosen several values of E; between the
SiO, conduction band and the limit E; =3.25 €V, i.e., the
validity range of our model (see Sec. VI). The value of
3.25 eV is the barrier height from the Si and SiO, conduc-
tion bands. It has been measured by electron photoinjec-
tion and photoemission.!® The simplifying assumption of
a single energy level arises from the will to obtain an easy
numerical evaluation of the tunneling effect. It is prob-
ably not an accurate physical description of the strained

transition layer. Improvements of this model will be pro-
posed in Sec. VI. Following the procedure described
above, we present the experimental results in the next sec-
tion.

V. EXPERIMENTAL RESULTS

The filling kinetics are given in Fig. 6. The full lines
are the best fits of Eq. (13) obtained by the least-squares
method. The two fit parameters are N, and o,,. Table I
summarizes the results of the fits. The temperature varia-
tions shown on Fig. 6 are not significant because they are
smaller than the experimental error bars. These error bars
are deduced from the experimental errors on the DLTS
spectra amplitudes (AR /R ~0.01—-0.03 with our ap-
paratus), from the uncertainty in the capacitance measure-
ments (AC/C =0.02 with our capacitance meter) and
from the uncertainty on the doping concentration
(AN /N =0.05) deduced from the C (V) analysis. The re-
sult is about ANy /Ny, =~0.2 to 0.5. Moreover we have
shown in Sec. IV that the choice of #,=20 us for the
determination of the interface states contribution probably
induces an error in the filling kinetics but this error is
negligible compared to the previous ones. Thus, we con-
sider only a mean value for Ny and o,. They are,
respectively, No,=3.5% 107 cm—2 for the oxide traps con-
centration and o, =5.6x10"2? cm? for the associated
tunneling capture cross section.

In order to validate our previous model [Eq. (10)] the
difference between the spectrum amplitude R (7T) and the
interface states contribution R;(T), i.e., the oxide traps
contribution, must be temperature independent. From
Eq. (10), this difference is temperature independent only if
it is also the case for the term 4. With conventional
DLTS, the base line capacitance C varies slowly with the
temperature, as a consequence of the variation of the met-
al semiconductor work-function difference, so the term A
is slowly varying [see Eq. (3)]. To overcome this problem,
without the use of constant capacitance DLTS, we have
directly calculated the concentration of trapped electrons
from the data of Fig. 2. The variations of this measured
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FIG. 6. Filling kinetics of the oxide traps deduced from the
data of Fig. 4. The error bars are given for T =100 K. The full
lines are the best fits of Eq. (13).
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TABLE 1. Concentration, time constant, and associated tun-
neling capture cross section of the oxide traps obtained by fitting
the experimental kinetics with Eq. (13).

T N(), T Om
(K) (cm~?) (us) (cm?)
100 3.83 107 179 6.6 1072
150 3.52 107 183 5.5 10-%
200 33 10 180 4.6 1072
Mean 3.5 107 181 5.6 10-%
value

concentration versus temperature are given in Fig. 7 for
different filling pulse amplitudes. Taking into account
the error bars, the temperature independence seems to be
verified. A more accurate discussion will be given in Sec.
VL

Following the procedure given in Sec. IV, we have es-
timated the depth localization of the oxide traps charac-
terized by the filling kinetics of Fig. 6 with several values
of E;. The pre-exponential factor of the tunneling emis-
sion rate [Eq. (8)] is about 10'* s~!. From Eq. (12) we ob-
tain the values reported in Table II. In order to obtain the
profile of these oxide traps, Fig. 8 shows the variation of
the DLTS spectrum amplitude at a given temperature
when the emission rate window e, varies. According to
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FIG. 7. Variations of the trapped electron density vs the tem-
perature for different filling pulse amplitudes deduced from the
data of Fig. 2. The error bars are given for Vp=3.5 V and
Vp=8.5V.
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TABLE II. Depth localization in the oxide for different deep
trap levels.

E,' zgn
(eV) VEizy, (A)
2 36.6 26

3 35.3 20.4
32 327 18.3

Eq. (12) we expect to obtain the oxide traps profile. Such
a variation of the amplitude cannot be explained by the
increase of the DLTS response when the ratio ¢, /P in-
creases® because this ratio is kept smaller than 10“5 s with
t, =20 us. The validity of the profile measurements will

be discussed in the next section.

VI. DISCUSSION

The oxide traps filling kinetics are fitted by the classical
kinetic equation. These filling kinetics explain easily the
unusual variations of the DLTS spectra with the pulse
width. Moreover, they also explain the variations with
the pulse amplitude (Figs. 2 and 3). Indeed, this effect is
not taken into account, in our model, by a field-enhanced
tunnel emission (Poole-Frenkel effect). From Egs.
(13)—(15) it is obvious that the filling kinetics are depen-
dent on the filling pulse amplitude. This modulation
occurs by the modulation of the carriers density n; at the
interface. Figure 9 shows the theoretical behavior of Eq.

8
T 7r Vp==1V ; V,=2.5V
<£ L
< rF tp=0‘02msec
-
o L T=125K
c ¢
o 6
o i
o | ; ]
— | i
_—I 5 f—
A L %i
L
44‘A‘l|||leLLnl1|.|
@] 50 100 150 230C

Emission window (sec™' )

FIG. 8. Behavior of the DLTS response when the emission
rate window varies.
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FIG. 9. Comparison between the experimental data obtained for various filling pulse amplitudes and a simulation of the filling ki-

netics given by Eq. (13).

(13) calculated with the values of Ny and o, given in
Sec. V, and at T=150 K. The data of Fig. 3 (obtained
with ¢, =20 us), reported on Fig. 9, clearly explain the
evolution of the measured values n, versus the filling
pulse amplitude. In order to improve this experimental
verification, the study of the complete filling kinetics with
the other values of V, is under investigation.

The same way can be used to explain the experimental
results given in Fig. 7. As explained in Sec. V, we now try
to see if the tunnel emission is temperature dependent or
not, in order to validate our model. The observation of
the oxide traps filling kinetics (Fig. 6) seems to lead to the
validation of a temperature-independent tunneling
phenomenon (not phonon assisted) as we have assumed in
Sec. III. From Fig. 7, the temperature independence
seems to be verified (taking into account the error bars),
but a small increase with the temperature is still possible.
The data of Fig. 7, measured with a pulse width £, =20
us, are very sensitive to the change of the capture time
constant (7) of the oxide traps because #, is smaller than
7. When the temperature increases, it is obvious from Eq.
(15) that the tunneling capture time constant decreases. If
we assume that the associated tunneling capture cross sec-
tion is temperature independent, this variation is only due
to the dependence of the thermal velocity U,. Thus, we
have the same kind of behavior as for ny, vs V,. At a
given pulse width, smaller than the capture time constant,
the measured value of ng, must increase with the tempera-
ture. Figure 10 shows the comparison between the experi-
mental results and a simulation performed using, as pa-
rameters, the mean values of Ny, and o, deduced previ-
ously. The agreement is good; this seems to prove the va-

lidity of an independent temperature tunneling emission.
The low temperature variations are only due to the tem-
perature dependence of the electron thermal velocity.

The conclusion of the above discussion is that in the
tunnel emission from oxide traps we can neglect the
phonon-assisted effect and the electric field enhancement
(Poole-Frenkel effect).

We now discuss the validity of the profile measure-
ments. From Fig. 8 and Eq. (10), the variation of the
trapped electron density Ang, is equal to 4X 107 cm™2
The corresponding depth variation is given by Eq. (12); we
have Az, =1.6 A. The slope of the profile is 2.5%x 10~
cm~2 A, a reasonable value. For example, taking the

5}, Vy=-1V 1 P=0lsecy t,=0 02 mec

Parameters of simulation i 22 2
Not=3.5x107cm 2 ; oy =66x107 "~ cm

4+ Experimental points ¢

8 V=85V T
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Trapped electr n densi(y( 107cm'2)

T T 3,5v
1t 1"
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FIG. 10. Comparison between the theoretical temperature
dependence of the trapped electron density [given by Eq. (13)]
and the experimental measurements.
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interface states density at z=0 (N;,; =5x10° cm 2 eV~!)
and two other values of the trapped electron density de-
duced from Fig. 8 for (e,o=17.2 and 172 s~!), the fit of
an assumed exponential depth variation shows that the
density of oxide traps vanish at z=30 A. This value,
which can be regarded as the strained layer depth of SiO,,
is a good size order.!” If the oxide trap profile seems to be
possible, two limitations occur. First, we can observe only
a small region, due to the frequency limitation of the
DLTS measurements (typically P =0.1—0.01 s). Second,
we cannot deduce directly the oxide traps concentration
profile from a simple curve, such as the one given by Fig.
8, because we have not the oxide traps concentration N,
but the trapped electron density n(, at a given pulse width
(here 1,=20 us). We need complete filling kinetics (as
given in Fig. 6) at various emission rate windows.

In view of all these results, several remarks are neces-
sary. For a depth about 30 A the highly disordered atom-
ic structure should be evident on such a scale. Conse-
quently, from a theoretical standpoint, the model used
above must be regarded as too primitive. A more ela-
borate model must take into account a spatial and energy
distribution of the traps in the oxide layer and in the sil-
icon band-gap, respectively. Such a model has been intro-
duced by Hasegawa and Sawada.!® Meanwhile, their
model is not useful in our case. Several points must be
improved. The distinction between the interface states
density N;, and the oxide traps concentration is not al-
lowed because they use a fictitious density:

N=[" Np(Ezdz, (16)

where Nr(E,z) is the spatial and energy distribution of
the traps, and z,, the maximum depth explored in the ox-
ide at given experimental parameters. Moreover, their
model is developed for the case of weak-amplitude filling
pulses. A more elaborate model would include a distinc-
tion between two energy regions. For oxide traps located
between the SiO, conduction band and the Si conduction
band (i.e., E; <3.25 eV in Fig. 5) our previous model
remains valid. But, for E; > 3.25 eV, it would include a
cascade emission through the interface states. The first
phenomena is a tunnel emission through the square bar-
rier height from the oxide traps to interface states. The
second is the thermal emission from interface states to the
Si conduction band. In this case, the DLTS time constant
window e, allows us to select the locus of V'E .z for the
tunnel emission and the energy value for the thermal
emission. Thus, the energy and depth location of oxide
traps would be possible. This model is under study.
Another question is related to the observation of such a
tunneling effect using the classical conductance measure-
ments. Attempts were made by Heiman and Warfield®
and later by Preir'® to explain the frequency dispersion in
conductance measurements by a tunneling effect, but
these attempts were not successful. However, tunneling
effects were detected in case of large oxide traps concen-
tration (~10'°—10'"" cm~2) produced by electron irradia-
tions?® or for amorphous carbon on silicon structures.?!
In our state-of-the-art metal-oxide-silicon structures we

have been unable to detect any tunneling effect by the
conductance technique. This fact is an additional illustra-
tion of the sensitivity of the DLTS technique over the
conductance technique for the characterization of
insulator-semiconductor interfaces.

Finally, a similar tunneling effect is not observed on p-
type MOS capacitors. A reasonable explanation for this,
as well as for the carriers injection phenomena?? from the
silicon substrate into SiO; is the larger energy barrier that
holes have to overcome, as compared to electrons, to be
injected into silicon.

The low density of oxide traps obtained by this analysis
naturally raises questions regarding possible artifactual or
alternative physical origins of this unusual behavior of the
DLTS response. For example, could MOS capacitor edge
effects (i.e., fringing fields) play any role? It is not the
case because such effects are independent of the substrate
(n or p type) and we have observed a crucial dependence
as explained above. In fact, the exact nature of the Si-
Si0, interface is not yet fully understood. An appealing
picture from XPS results” suggests a stoichiometric
strained layer that extends to 20 at 40 A into the oxide.
This should be considered as a substantiated basis for a
defect model. In our samples the total oxide charge, in-
cluding mobile ionic charges, oxide trapped charges, and
fixed oxide charges, deduced from the flat-band voltage
on the C(¥) curve (see Fig. 2), is 3.6 10*'° cm~2. This
value is a good and classical low density, essentially due to
ionic and oxide trapped charges, but it is not possible to
know, from the flat-band voltage, the exact contribution
of the fixed oxide charges in the strained layer. So, there
is not an obvious correlation between the oxide traps that
we have observed by DLTS and the fixed oxide charges,
hence the physical origins cannot be better understood at
this stage.

VII. CONCLUSIONS

We have used the DLTS technique to characterize the
oxide traps in SiO, film which interact with the silicon
substrate by tunneling in state-of-the-art MOS structures.
Incorporating a simple model of this effect in the deriva-
tion of the DLTS signal, we have been able to obtain the
filling kinetics of these traps; we have deduced their con-
centration which, in the case of the structures under
study, is 10’—10% cm —2, their associated tunneling capture
cross section (~10722—10~%! cm?), and their localization.
These traps are located at 10 to 30 A from the interface,
i.e., in the strained layer of the SiO, film. We have shown
that the tunneling emission is not phonon assisted and not
electric field enhanced. Further measurements and
models are under study in order to improve the DLTS
characterization of the first layers of the SiO, film.
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APPENDIX A

In this appendix, we establish the theoretical expression
of the amplitude R (T) of the DLTS spectrum for an in-
terface state distribution in the case of a double phase
lock-in analysis. The response of a lock-in detector to a
transient signal AC(?) is

P
R(T)= [ T(nAC(ndt (A1)

where AC(¢) is given by Eq. (1) in the text and I'(¢) is the
correlation function of the double lock-in detector. P is
the period of the transient signal. The I'(¢) function is de-
fined by

R(T)="T4 [77 fEE‘ Ny(E)

\/._7.P /e exp(—e,t)—exp

—en

0 forO<t<P/4,

)= 7/V2P for P/4<t<P/2,

0 for P/2<t<3P/4, (A2)
—m/V2P for 3P/4<t<P .
Thus we must calculate the following integral:
P E,
R(D=4 [[TW [ "NJE(EndEdt,  (A3)

where the constant A is defined in the text. The occupan-
cy function of a level at an energy E below the conduction
band is'®

f(E,t)=exp[ —e,(E)t] . (A4)
The emission rate is well known:
. E.—E
e,(E)=e, exp T (AS)

with the pre-exponential factor e, =0,0,N,. Then Eq.
(A3) is rewritten

where the integral over the time period (3P /4,P) is easily reduced to (P/4,P/2). Inverting (A5) we can rewrite

TAKT P72

R(T)= vap Jen fe (E,) Ni(E)

exp( —e,t)—exp

Because the integrand is a narrow peaked function the bounds in the integral can be taken from e, =0 to e, =

_en

since we assume that N, (E) is slowly varying over the integrand, we obtain

k
ROD="2LN 8 [, [,

lexp( —eut)—exp

where E, is the energy position of the maximum of the
peak, given by e,(E,)=e,q, i.e, by Eq. (5) in the text.
The results is**

TAkT P/2 t+P/2
R(1)="5-Nu(Ey) [, Jln | =75 e, (A9)
and the integral is easily obtained:
T/'AN,',(Ew)kT t+P/2
R(T)= V5P p
P P P2
+=In|t+— . (A10)
2 2 )]s
Finally, we obtained the following result:
R(1)=0.48 A N, (E, kT . (A11)

We now derive the expression of the energy window,
i.e., the energy localization of the traps which contribute
to the DLTS response R (T) at a given temperature. For

._e"

t+ —g‘ dEdt , (A6)
d
t+ L . (A7)
2 e,
o, and
c R 1%y (A8)
2 e,
I
this, Eq. (A3) is rewritten
E
R(D=4 [ NyEVJ(E)E (A12)
with
P
J(E)= [ T(f (E,ndt . (A13)
The calculation of J(E) is obvious and we obtain
3e, P
J(E)=——o —e,P)—exp | ——
(E) V2Pe, exp(—e, P)—exp
—exp ——;— +exp | — EnP .
(A14)

This function is the energy window and a computer simu-
lation is given in Fig. 11 at 77 and 250 K. The maximum
of J(E) occurs at the energy E,, given in the text by Egs.
(5) and (6). The solution of Eq. (6) is not analytical but is
derived from a computer simulation. We have also veri-
fied the validity of the analytical solution of the DLTS
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FIG. 11. The energy window given by Eq. (5) and Eq. (A14)
in the case of a double lock-in analysis.

response given by Eq. (A11). Substituting Eq. (A14) for
J(E) into Eq. (A12) and using a computer integration
with the trapezoidal rule, we have obtained the same re-
sults with Eq. (A11). Finally, the energy resolution of the
DLTS method is given by the half-height width of the en-
ergy window function J(E). From Fig. 11 we obtain 17
meV at 77 K and 55 meV at 250 K. Note that these cal-
culations are valid in the range ¢, /P < 10~2 s, where the
influence of the pulse width is negligible.®

APPENDIX B

In this appendix we evaluate the transition probability
from oxide traps to the substrate. It is well known that
this probability must decrease exponentially with z, the
distance between the oxide trap and the interface, but at
least the pre-exponential factor is not well defined. We
develop here a simple model using the effective mass ap-
proximation to calculate the tunneling transition probabil-
ity from an initial state |i) (energy E;) eigenstate of a
spherical square-well potential of depth ¥, to a continu-
um of free state |f) in the substrate conduction band.
Figure 12 gives the energy diagram along the z direction.

The initial wave function | ;) is easily obtained by as-
suming a spherical symmetrical state (s state) of the elec-
tron in the square well. The radial solution of the
Schrédinger’s equation inside the well of width a is
172

sin(k;r) (B1)

i

Yilr)= 2m(1+K;a)

and the wave numbers are given by

AEnergy

_vlsice

+ 4+
cwwme N |ceae o«
)

ol i

L

-

:
]

3 V2
]

FIG. 12. Energy diagram used in the calculation of the tun-
neling transition probability.

,  2mji .
kf =—ﬁ—(V0—~E,~) in region 1, (B2a)
2m?
K?="—"E; in region 2, (B2b)

#

where m 7T is the effective mass of electron in the SiO,.

The same method is used to treat the Si-SiO, interface.
The one-dimensional problem is exactly the same, but
now the semiconductor thickness L is greater than a. At
zero, we have taken an infinite barrier height to quantify
the continuum of states at the backside of the Si substrate.
Along the z direction, the solutions of the Schrodinger
equations are

172
¥y(z)= 1 + K mi exp[—K(z —L)] (B3)
27L K | m?
in region 2, and
172
Pi(z)= ey sinkz (B4)

in region 3 (Si substrate). Let us consider an electron at
energy E, we have

, 2mi

K= E in region 2, (B5a)
) 2m3 o

k“= P (Vi —E) in region 3 , (B5b)

where m 73 is the electron effective mass in the Si and in
the z coordinate, V', is the barrier height between the con-
duction band of Si and SiO,. In Eq. (B3) we define
K'*=k?+K2 The normalization constants of ¥, and 93
are obtained using the approximation KL >>1 and assum-
ing a continuity condition of the wave functions at the in-
terface (z =L) and of the terms 1/m *8/8z of these wave
functions.

From the Oppenheimer approach,? the transition prob-
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ability per unit time is

=27”§ | (i | V| 6p) | B(E—Ey) . (B6)
The above result can be transformed to a more convenient
form. Writing Vy=V;+H;—H; where Vj, V; are,
respectively, the final and initial potentials and H; and
H; are the Hamiltonians in the final and initial states, we
obtain

=27ﬂ§ | <%i | Vi | %) +(Ep—E){ti | ) | 2

1181

W=27"2 | <¥; | Vi|¥y) | *8(E;—Ef) , (B8)
f

where V;= —V) is the potential barrier corresponding to
the initial state. The initial wave function is given by Eq.
(B1) and the final wave function is obtained, with this for-
malism, from the wave function in the region 2 given by
Eq. (B3). The final free-electron wave function in this
case is

exp(ik 1))

Ve (B9)

Uy =1s(2)

assuming a Bloch’s wave propagation in x and y coordi-

. B7
X8(E; —Ey) B7) nates. S is the area of the Si-SiO, interface. Thus, we can
ie., rewrite the matrix My=(y; | V; | ¢;)
|
p) . 172
a | _ K; explik'r) | 1 k |mt
My=—V, [ rsink 60d0dd ! L = —K(z—
y=—"Vo [, rsink,r Joosin 27(1+K,a) Vs 2L K |mt exp[—K(z L] .

Such a triple integral is easier to evaluate in the limit of
an initial Dirac one-dimensional potential well, i.e.,
K;a—0. In this case we must have

2
Voal— > -g— : (Blla)
m
k,-la-—»% . (B11b)

After elementary calculations, including these results, the
matrix element reduces to

3
V' Kik
Mif=-6_-§£2~: 12’-— ETV—%’—CXP(—KZO)’ (B12)
mj;

where V is the silicon volume. Then, the summation over
the final states is transformed into a triple integral in k
space. The energy of final states is E,=E, —¢; with
E, = —E to respect the notation of Fig. 12 and Eq. (BS).
Using the densities of states

L m}
n(El)=;ﬁ2k2 , (B13a)
m3
(e)=—7, (B13b)
€ 2

we perform the integration on the energies and obtain

W=——L— Sﬁ fm k exp(—2Kzy)dE
184 K'tJ-7

s
2

x [7 8B —E, —€)de; .
(B14)

The integral over E; is reduced from V; to — E; (see Fig.
12), and taking into account the 8 function the integral
over ¢, is reduced to unity. Using a variable change from

(B10)

r
Eq. (BS), we rewrite
5

K; (kK
-7 3 J, e~ 2Kz)dk . (B1S)

T 18m?

s
2

where

2m3}
7 (V,—E;) .

k"2= (B16)
If z, is sufficiently large so that Kzy >>1, the major con-
tribution to the exponential comes from the smallest K,
i.e., K; given by Eq. (B5) with E =E;, and the exponential
rapidly decreases as K deviates from K;. Then, a good
approximation to the integral in Eq. (B15) is obtained by
approximating the argument in the exponential by its
first-order expansion. Calling x the quantity k-k; we
write

k;
[,k exp(—2Kz,)dk

k.
~k? folexp(—2K,~zo)exp dx (B17)

2k
— Ki ZpX
which is easily integrated.
Finally, the transition probability per unit time becomes
5 > K2 1—exp(—2k2zy/K;)
36m3} K} +k? Zp

T

W= >

Xexp(—2K;z,) . (B18)

In the general case, 2k?z/K; will be greater than 1 and
Eq. (B18) will reduce to

5
#i

- A
36m3

2

K} K
— exp(—2K;z;) .

(B19)
Ki2+k|'2 z()
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This equation gives a rigorous theoretical expression of
the pre-exponential factor in a simple & function potential
limit. Several assumptions must be verified. In the range
of interest (deep oxide traps, i.e., E; > 0.1 eV) two of them
are always valid: KL >>1 and Kz >>1 with 2, in a range
greater than a few A. The main problem is due to the use
of the effective mass approximation especially in the SiO,
region, but unfortunately it would be a formidable task to
go beyond this problem.
APPENDIX C

Now, we introduce the tunneling effect in the calcula-
tion of the DLTS response. We start by rewriting Eq. (9)
given in the text with the definition of the lock-in correla-
tion function I'(¢) given in Appendix A. We have

R(T)=Ri(D+4 [~ nolE;,2)J (2)dz , (1
where
- P/2 P
J(Z)_—\fZ_P [fp/4 exp(-—e,-t)dt—f3p/4exp(—e,»t)dt] .
(C2)
The integrals are easily deduced, and we obtain
J(2)=—=— |exp(—e -P)—exp —ie -P
V2Pe, ! 4
t t
exp > +exp | — 4 (C3)

This function is similar to the energy window given in Eq.
(A14) in the case of interface states. But here we have
taken into account the tunneling emission rate e,(E;,z)
given by Eq. (7). For a given energy barrier E;, as we
have assumed in Sec. III, expression (C3) only depends on
the depth z, and J(z) is the probe function with which the
DLTS technique analyzes the oxide traps. A computer
simulation is given in Fig. 13. This simulation shows that
the maximum z, is given by \/E-zm =33.26 with
a=10"%s~! (with E; in eV and z,, in A). This maximum

0.2

- =10 sec

7 \ P-Clsec

1(2)

FIG. 13. Plot of the probe function with which the depth
analysis of the oxide traps is performed by the DLTS technique.

occurs when the tunneling emission time constant e,(E;,z)
is equal to the emission time constant window e, experi-
mentally fixed by the DLTS apparatus: e,=e,q=1.72/P.
Thus, with Eq. (7) we have

% a
VE;z, = —o=In-", (C4)
v amt eno

The application of this formula agrees very well with the
result of the simulation. In this way we have a determina-
tion of the localization of the oxide traps.

Then, the DLTS response is obtained by a numerical in-
tegration of the probe function J(z). This integration is
made by the trapezoidal rule method, and if we assume
that ny(E;,z) is slowly varying over the range where J(z)
is not zero, we obtain the final expression from Eq. (C1):

R(T)=R;(T)+0.723 A no(E;,z,) . (C5)

This expression is valid to any values of E;, a, and P.

It is interesting to note, that this derivation of the
DLTS response is similar to the one of interface states.
But now the energy spectroscopy is transformed in depth
spectroscopy because the tunneling emission rate is
strongly depth dependent.
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