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Image potentials and an inverse dielectric response function for a semiconductor slab
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%e report an inverse random-phase-approximation dielectric response function e '(r, r', e) within
an extreme tight-binding model for a semiconductor slab of any thickness d. %'ith the use of
e (r, r', u) the image potentials for a charged particle have been calculated in the long-range in-

teraction limit for various possible cases.

I. INTRODUCTION

There is a great deal of interest in the properties of a
semiconductor slab from the standpoints of both technol-

ogy and physics. The dielectric response function of any
system provides considerable information about the sys-
tem. A number of properties such as the image poten-
tials, the response of a system to varying external fields,
the screened impurity potential, collective excitations, en-

ergy loss of charged particles, optical properties, self-
energies, and the phonon spectrum can be studied by
knowing the dielectric response function. ' ' During re-

cent years, calculations have been done for a dielectric
function e(q, to) for a semiconductor slab. ' ' However,
unfortunately, most of the above-mentioned properties de-

pend on an inverse dielectric response function. Obtain-
ing the inverse dielectric response function is a major
problem, even for a perfo:t crystal. In principle, it in-

volves an infinite matrix. In the case of a slab, additional
complications are introduced by the finite geometry of the
slab, which reduces the crystal symmetry. In an earlier
communication, we showed that e(q, co} of a slab has a
more complicated form than that of a semi-infimte or in-

finite solid, even in q~o hmit. '

Other classical or semiclassical methods have been used
to study the surface excitations and the image potentials
in a slab. ' These methods borrow from classical electro-
dynamics and the bulk response function and are based on
various matching conditions. Using these methods, one
can obtain a reasonable solution of the problem, but since
these methods involve large numbers of quantities, they
sometimes appear quite confusing and unphysical. Thus,
it seems worthwhile to develop an alternative approach,
i.e., to develop an inverse dielectric response formula
based on well-known physical and mathematical concepts
starting from a microscopic treatment.

In the past, significant progress was made in obtaining
an inverse dielectric response function for the perfect
crystal in certain approximations. ' ' '" ' ' It has
been shown that an inverse dielectric response function
for a perfect crystal can be obtained in both Fourier space
and real space, even including local-field effects and exci-
tonic effects, for example, because of the complete crystal
symrDetry. Sinha et al. obtained an inverse dielectric
response function in Fourier space by making a general
ansatz for the form of the dielectric response function.

The various existing models for dielectric matrix can be
derived froin the work of Sinha et al. for different kinds
of perfect solids. For systems with finite geometry and
crystal defects, the real-space formulation has major ad-
vantages. Keeping this in mind, we calculate an inverse
random-phase-approximation (RPA) dielectric response
function in real space, e '(r, r', co), for a semiconductor
slab.

Although the detailed numerical calculation of
e '(r, r', to) has many advantages, its use for other investi-
gations is very difficult. Thus, for practical applications,
one requires a conceptually convincing and simple formu-
lation. In view of this, we report in this article a compact
form of e '(r, r', tu) for a semiconductor slab, using the
extreme tight-binding (ETB} model. With the use of
e '(r, r', tu), we then calculate the image potentials of a
charged particle for various possible cases in the long-
range interaction limit. The potential usefulness of tight-
binding approximations for semiconductors and insulators
have been demonstrated by Sinha. i Further extension of
our calculation beyond the ETB model, in order to obtain
more detailed information, can be done easily. This will
be done in forthcoming work. The main aim of this arti-
cle is to show that a unifying approach, successfully used
for perfect crystals, can also be used for more complicated
systems with lower symmetry. Also, our calculations sug-
gest that this method can be easily applied for small clus-
ters and heterostructures. The outline of our article is as
follows: In Sec. II, we report the calculation of
e '(r, r', to). The image potentials of a charged particle
are reported in Sec. III. We discuss and conclude our re-
sults in Sec. IV.

II. INVERSE DIELECTRIC RESPONSE FUNCTION

Within the ETB model, the real part of the inverse
RPA dielectric response function is given by

e '(r, r', cu) =5(r—r')+No(cu}

X g f d r" u(r —r")A„(r—R)
v, v'

R, R'
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with

QRR ——5RR —No(co) f f d A, d pA„(A, —R)v(A, —p)

X Ap(p —R'), (2)

and

d„=e f pA„(p)d p

4(R—R')=1/i R—R'
i

(10)

where

No(co) = 4E—s/(Ez Ar—a )

A, (A, —R) =P„"(A.—R)P'„(A, —R) . (4)

Equation (8) carries summation on v" and R". For a par-
ticular R" sum over v" yields a mean-square dipole mo-
rnent d . Thus, we have

CC=d gd„.VIV"4(R—R") V"
RJ ~

In these equations, Ez is the energy band-gap parameter,
v(r —r') is the Coulomb potential, and
4"„(r—R)4'„(A,—R) are the localized valence- and
conduction-band orbitals at atomic site R with orientation
index v. The other symbols have their usual meaning.

The physical basis of this model is that the system is
composed of polarizable bonds. Each bond is character-
ized by bonding and antibonding orbitals separated by
constant energy Ez. Application of an external perturba-
tion polarizes the bonds. These bonds interact self-
consistently through multipole-multipole (in the long-
range interaction limit, dipole-dipole) interactions. These
interactions are included in ( QRR )

The inversion of e(r, r', co) depends on the inversion of
the matrix QRR,' let us write

Q '=(1—NOC)

=1+NOC+NvC C+Nvg C C+
where

g= f f d'A, d'pA„(k —R)v(A, —p)A&(p —R') .

Thus, Q
' is a sum of the terms involving the matrix

products. The series given by Eq. (5) is a converging
series, as we will see later on. Let us consider the matrix
product

CC= g f f d A, d pA„(Ap)v(A, —o)A„-(n, —R")—
X f f d crd pA~(rr R")v(cr —p)—

X [d~ V'4(R" —R')] [ .

The sum on R" can be converted into an integration over
R". With the use of a vector identity and the divergence
theorem, Eq. (11) can be separated into two terms, one
having surface integration and the other having volume
integration:

CC=d nod„V

X fds V"4(R—R")d& V'4(R" —R')

—f d'8 "(V")'4(R—R")dg V'4(R" —R')

(12)

where no is the atomic density and ds is the vector area
along the outward normal to the surfaces. Looking at Eq.
(12) we notice that as

(V") 4(R—R")= —4n5(R —R"),

the second term involves pure bulk effects. This has noth-
ing to do with finite-geometry effects. The finite-
geometry effects emerge in first term. It can easily be
shown that the first term is zero for an infinite geometry.
We now evaluate the integrals of Eq. (12) for a dielectric
slab. We define the slab as extended to infinity along the
x-y plane and having finite thickness d along the z axis
with boundaries at

~

z
~

= (d/2 ~, as shown in Fig. 1.

XA„(p—R') .
axis

C involves both long-range as well as short-range interac-
tions. The internal summations in C C are averaged over
the volume of the slab, and long-range interactions make
a dominant contribution, since they fall off slowly. Thus,
in order to make the calculation simple and to obtain
practically applicable results, one can safely ignore the
short-range effects. In the long-range interaction limit, C
reduces to a dipole-dipole interaction matrix, and C C can
be written as

z d]r

CC= Q Id„.V[dg"V"4(R—R")]I
pl Rlt

X I dy" V"[dy V'4(R" —R')] I

where FIG. 1. Geometry of the slab.
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The surface integrals in Eq. (12) can be evaluated easily by
using the Fourier transforms of 4(R—R") and
4(R"—R'). We obtain

(14)

CC=a(C —, D i—),

where we defined

(13) D i
——d„V(+ V'4i), (15)

2 2
(RII Rll)~+ R& + R

'2 il/2

(Rll —Rll) + Ri+ —+ Ri+—
2 I 1/2

(16)

We now consider the next matrix product C C C in Eq. (5),

CCC=a(CC —'CD i) .—

The new matrix product we have to evaluate is CD i. Performing the calculation similar to that of C C, we obtain

QCD i
—— (D i

—Dp), —

where

(17)

D g ——d„V(dp V'4g),

with

42 ——1

r

(Rll —Rll) + Ri+ —+d+ Ri ——2 d d
2 2

2 1/2 ' 2 1/2
~ 2 d

(Rll —Rll) + Ri ——+1+ Ri+—
2 2

(20)

In order to evaluate the next matrix product in Eq. (5},we have to calculate CD z. Performing the calculation similar to
that for CCand CD i, we obtain

CX

CDg —— (Dp —D3)— (21)

where D 3 is defined similar to D q with

(Rll —Rll) + Ri ——+2d+ Ri ——
2 2

'2 ' 1/2

(Rll —RII)'+ R, +—+2d+ R, +—
' 2 1/2

Looking at Eqs. (15)—(25), we can generalize

CD „= (D „D„+,),— —

where

D„=d, V dg V'4„
L

(23)

(24)

Here, we note that C gives the dipole-dipole interaction
between real dipoles while D i,Dz, . . . ,D„yield the
dipole-dipole interactions between the real dipole and the
image dipole. D „ involves the image of the order „. Sub-
stituting the values of various matrix products in terms of
D, ,Dz, . . . , D„,C, into Eq. (5), weobtain

Q '=1+ROC(1+Noa+Noa +. . .
)

2%pa 7 2 2D i(1+—,Eoa+ ,Noa +.. . )—
where

+(n —1)d+ Ri+( —1)"—d ~d
2 2

(26)

3 2&o 11D p(1+2Xoa+ —,Noa + . .
)

N a
5

8
—3 p 0D (1+—Sa+ . . )+. . .

Summing up the various series, we obtain

~a= Rz+ —+(& —1)d+ Ri —( —1}"—„d
(27)

'n
No(co) ~ e(~)—1

e(co) „, e(~)+ 1
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orientation indices v and v' are situated at R and R',
respectively, inside the slab. These dipoles form various
images from the two surfaces of slab. The real as well as
image dipoles interacts self-consistently with each other
via long-range interactions. It can be easily checked that
Eqs. (2) and (29) satisfy the matrix property Q Q

—'=1.
It is obvious from Eq. (29) that the serious expression of
Q

—' is convergent. Substituting Eq. (29) into Eq. (1), we
obtain an inverse dielectric response function for a slab:

where

e(pi) =1+Np(pi)a= 1 +4 cop/(Ez A—pi }

is the "long-wavelength" bulk dielectric function. As we
mentioned before, Q ' includes various screened dipole-
dipole interactions between real dipoles and between the
real and image dipoles. One can draw a physical picture
of the dipole interactions as follows; two dipoles with

e '(r, r', ai)=5(r —r')+Np(co) g I d r"u(r —r")A„(r—R)A~(r' —R')

(30)

On the right-hand side of Eq. (30), the second term is an
on-site term while the third term and the terms under the
summation are interaction terms. The second and third
terms, which have been obtained before, zs have nothing to
do with the finite geometry of the slab. The finite-
geometry effe:ts emerge in the terms under summation.
We should note, here, that although we have neglected the
short-range interactions in obtaining Q ', e '(r, r', co)
contains a great deal of information about the short-range
interactions. This information can be obtained with the
use of appropriate bond orbitals in Eq. (30). In order to
demonstrate a simple application of our model
e (r, r', co), we calculate the image potentials of a point
charge using Eq. (29) in the long-range interaction limit.

Here, we note that, depending on the positions of field
point and the charge, we get four values of Eq. (34), ac-
cording to the cases (i) (

z
~

&d/2 and
~

a
~

&d/2, (ii)

(z (
&d/2 and

(
a

(
&d/2, (iii)

(
z

(
&d/2 and

(
a

(
&dl2, and (iv)

]
z

[
&d/2 arid

[
a

]
&d/2.

Evaluating the summation over R, we obtain, for case (i),

vi(r) =Np(ai)Ze [4(r—a) ——,
' 4i(r)], (35}

and for cases (ii)—(iv),

vi(r)= z Np(ai)Ze@i(r)a, (36)

' 2 1/2
d

r~~+ z ——+ a ——
2 2

4i(r) =1
III. IMAGE POTENTIALS

OF A CHARGED PARTICLE ' 2 1/2
d d

r~I+ z+ —+ a+—
2 2

(37)
The image potentials can be calculated as

v„,(r,co)= f d r'e '(r, r', ~)u,„,(r, pi) . Utilizing our knowledge of the calculation of gD„,
ui(r), uz(r), and ui(r) can be calculated easily. We ob-
tain, for case (i),

Np(pi)
vz(r) =Zea [4(r—a) ——,

' 4i(r)+ —,
' 4i(r)]

e(pi)

%e consider a charge situated at z axis at a distance z =a,

u,„,(r')=, =Ze@(r' —a) .Ze
(32)

Substituting Eqs. (30) and (32) into (31), we can write
and

n
Zea' No(~) " e(co) —1ui(r)=

4 e(co) „, e(co)+ 1

u„,(r) =u,„,(r)+ u i {r)+ uz(r) + ui(r), (33)

where ui(r), ui(r), and ui(r) correspond to the second,
the third, and the terms under the summation, respective-
ly, on the right-hand side of Eq. (30). We can define u, {r)
as the on-site potential, and uz(r) and ui(r) as the interac-
tion potentials. As our intention is to demonstrate a sim-
ple application of our model e '(r, r', pi), we calculate
ui(r), ui(r), and ui(r) again, neglecting the short-range
interactions.

In the long-range interaction limit, u, (r) can be written

X [4„(r)—2Ci„+,(r)+4„+z(r)].

For cases (ii)—(iv), we obtain

i Np(pi}
ui(r) =Zea [4,(r) —4z(r}]

e(co)
(40)

vi(r) =Zed'g VC(r —R).VC(R —a) . (34)

pf 2 'n

d r" u (r —r")A „(r—R)A &(r' —R') (CRR ) + g (D„RR )

p(~)
3 II Ir e(ai) —1

e(pi) e(co)+ 1
R,R'
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Zea &o(ai } " &(ru) 1—
us(r) =

4 e(co) „, &(~)+1

(41)

where

4„(r)=1/(r~~+P„)' + I/[r~~+(P'„) ]' (42)

P = z ——+(n —1)d+ a+( —1)"—
5 2

(43)

and

P,'= z+ —+(n —1)d+ a —( —1)2—
2 2

(44)

Combining Eqs. (33)—(44) and then summing the various
series, we get, for case (i),

u„,(r) = u,„,(r)+ g @„(r)
e(co) —1

For cases (ii)—(iv), we obtain

n=i ~~ +1 (46)

In Eqs. (45) and (46},the image potentials of various order
appear under summation on the right-hand side. The
magnitudes of these image potentials greatly depend upon
the width of slab and the bulk dielectric constant e(co).
Higher-order image potentials have smaller magnitudes.

IV. DISCUSSIONS AND CONCLUSION

Equation (30) yields a model inverse dielectric response
function for a semiconductor slab. The surface and
finite-dimension effects emerge in terms under summa-
tion. Equation (30} includes an infinite number of image
dipole terms. This shows that our model e '(r, r', co) con-
tains the basic characteristics of a slab. Let us examine
the two hmiting cases of e (r,r, co): (i) d is large and (ii)
d is small. We see from Eqs. (24} and (25) that as d be-
comes larger and larger, the matrices D &,D 2,D 3, . . . , D „
become smaller and smaller. This shows that as the slab
becomes increasingly thicker, the finite-geometry correc-
tions to'e '(r, r', co) become increasingly smaller. At a
very large value of 1, the finite-geometry effects become
negligible, and Eq. (30) reduces to a bulk dielectric
response function, as it should. On the other hand,
as d becomes increasingly smaller, the matrices
D ~,D 2, . . . ,D „become increasingly larger. At very
small values of d, the terms under the summation com-

pletely dominate over the rest of the terms in Eq. (30).
This clearly shows that in a thin slab finite-geometry ef-
fects are more important than the bulk effects. Equation
(30) demonstrates how the two effects, finite-geometry
and bulk effects, dominate over each other as the thick-
ness d varies. As it was our primary aim, we have shown
that like the cases of infinite or semi-infinite solids, a
compact form of e '(r, r', co), which includes all basic
characteristics of the system, can be obtained for a slab, a
more complicated system with reduced symmetry. %'e
note here that the earlier expressions of e '(r, r', co) for in-
finite and semi-infinite solids directly follow from Eq.
(30) by applying the appropriate liinits of d. s' Although,
in obtaining g ' we have neglected short-range interac-
tions, Eq. (30) still contains a great deal of information
about the short-range variations. The neglect of short-
range interactions is not very crucial unless the slab is
very thin, since the internal summations over the atomic
sites go over the entire volume of slab. The short-range
interactions can be included in g

—' in a perturbation ap-
proach, however, for a numerical work. As we are con-
fined to giving the simple analytic results in this article,
Eq. (3) yields a good model e '(r, r', co) for a slab.

As an application of our model e '(r, r', co}, we calcu-
lated image potentials of a charged particle in the long-
range interaction limit. Our results are exactly the same
as those that had been obtained prior to the use of classi-
cal electrodynamics. This shows the correctness of our
formulations and provides a quantum-mechanical proof
of old classical results. We should note that the exact cal-
culation of Eq. (3) provides the short-range fiuctuating
terms in Eqs. (45) and (46). A direct application of u„,(r)
is the calculation of self-energies, which is not covered
here.

As it was our primary aim, we have obtained a compact
analytical form of a model RPA e '(r, r', co) based on a
quantum-mechanical microscopic treatment. Our model
e '(r, r', co) needs a simple integration to calculate other
properties. It does not require any additional matching
conditions. Extension of our calculation, in order to in-
clude short-range variations and the finite overlap in bond
orbitals (band-structure effects), can be easily done using
numerical methods. Also, our calculation suggests that
this method can be extended to apply for composite ma-
terials, and devices having more than one junction. These
topics are planned to be discussed in future publications.
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