
PHYSICAL REVIEW 8 VOLUME 34, NUMBER 2

Cyclotron mass of a polaron in two dimensions
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A new calculation of the two-dimensional polaron cyclotron mass, which goes beyond second-

order perturbation theory, is presented. The present approach is based on a memory-function for-

malism and does not rely on a calculation of the Landau levels themselves. A comparison is made

~ith the cyclotron mass obtained from other theories. It is found that the present results are valid

for a larger range of electron-phonon coupling constants than are the existing results.

I. INTRODUCTION

Recently' there has been interest in the calculation of
properties of a two-dimensional (2D) polaron beyond
second-order perturbation theory. In the present paper, as
in Refs. 1—4, we consider an ideal 2D system in which an
electron in a parabolic conduction band interacts with I 0
phonons. The electron-phonon coupling constant (a) is
allowed to have arbitrary values. Such calculations are
important, e.g., in order to indicate the range of validity
of second-order perturbation theory.

The aim of the present paper is to calculate the cyclo-
tron resonance frequency (or equivalently the cyclotron
mass) beyond first order in a in an approximate way. In
the existing theories the cyclotron resonance frequency

I

(u,') is determined as the difference between the energy of
the first ( Ei ) and the second ( E2 ) Landau level:

E2 —Ei %co,
'——The. energy of the Landau levels is deter-

mined, e.g., by second-order perturbation theory. The
most accurate available treatment is called "improved
Wigner-Brillouin perturbation theory" (IWBPT) (Refs. 9
and 10), where the electron-phonon correction &R„ to the
Landau level E„has to be calculated self-consistently.
Although the calculation is only valid to order a, we re-
cently" showed in the case of the 3D polaron that the
self-consistency induces corrections which are of higher
order in a. In 2D a similar conclusion applies as we can
demonstrate by solving the self-consistency relation [see
Eq. (21) of Ref. &] for small values of the magnetic field

up to order az and found

n
1

2n+1 1&n{n+1)+1 q 5E„=—a—1+ co, + ai, + (2n + 1)[10n (n +1)—1]co,+3

r

+ neo, 1 + co, + {97n + 123n +26)co, +
aiir 3(7n +5) 1 2

where co, is expressed in units of aio and hk„ in units of
fic00 with r00 the optical phonon energy. The cyclotron
mass can now easily be found (ro,

' =e8/rn 'c)

2

with mb the electron band mass. Note that the a term
gives a negative correction to the polaron mass which is
clearly wrong. For example, within the Feynman approx-
imation we know that at zero magnetic field one has up
to order o.

'
2=1+—a+ a

8 72

For a=0.07 and zero magnetic field IWBPT gives an er-
ror of 5% in the polaron correction to the effective mass.

This error increases with increasing a and/or increasing
cue.

In the present paper we will present a calculation of the
2D polaron cyclotron mass under an approximation that
is valid for all values of the electron-phonon coupling
strength and for arbitrary values of the magnetic field.
The present approximation does not suffer from the
above-mentioned inadequacies, i.e., the wrong sign for the
n term in the polaron mass. Furthermore, in our ap-
proach we do not rely on a calculation of the energy of
the Landau levels themselves, but we calculate the cyclo-
tron resonance spectrum which directly gives the cyclo-
tron resonance frequency. The calculation is based on the
Feynman polaron model. The calculation itself' is a
direct generahzation of the Feynman-Heilwarth-Iddings-
Platzman theory' for the response of a polaron in the
case where a inagnetic field is present and the polaron
motion is limited to two-dimensions. It turns out that the
present approach even if limited to second-order perturba-
tion theory is valid for larger values of the electron-
phonon coupling constant than is DVBPT.
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Using the memory-function formalism' we find that
the cyclotron resonance spectrum is given by

l
limRe
e~o co —co& —X(co+ l e)

(4)

where X(z) is the memory function which is calculated us-

ing the Feynman polaron model. This gives

vZ~ 1X(z)=a —f dt(( —e~)(m
8 q 0

(1+n )e"+ne

[D~(t)]

(A'=ms ——coo ——1) . (5)

We introduced the occupation number for the LO pho-

nons n =n (coo) = 1/(e —1) and the function (P= 1/kT)
3

DH(t) = g dj [1 e'—+4n (s )sin (sjt/2)],

where the frequencies sj and the constants dJ are given'
functions of co, and of the parameters of the Feynman po-
laron model (U, u)). The latter parameters were deter-
mined in Ref. 4 by a variational calculation of the polaron
ground-state energy.

In the following we will limit ourselves to the zero-
temperature case and to frequencies below the LO-phonon
continuum, i.e., co (coo. For this situation ImX(co) =0 and
the cyclotron resonance spectrum consists of a delta func-
tion which is located at the frequency co,

' which is deter-
mined by the equation

co,
' —co, —ReX(co,')=0 . (7)

Under these circumstances, the memory function can be
written as

av 2ir I." e 'sinh (cot/2)
Q [D (t)]3/2

TABLE I. Cyclotron mass for a=0.01 and for different
values of the magnetic field. The results of different approaches
are given.

%'8PT IWBPT Present work

0
0.05
0.10
0.15
0.20
0.25
0.30
0.3S
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

1.003 94
1.004 18
1.00444
1.004 73
1.005 06
1.005 43
1.005 86
1.006 35
1.006 93
1.007 61
1.00843
1.00943
1.01068
1.012 30
1.01447
1.017 52
1.022 13
1.029 90
1.045 81
1.09663

1.003 82
1.00405
1.00429
1.004 56
1.004 87
1.005 22
1.005 61
1.00606
1.006 58
1.00720
1.007 93
1.008 80
1.009 88
1.01124
1.012 98
1.015 30
1.018 51
1.023 16
1.03028
1.041 70
1,06003

1.003 94
1.004 15
1.00440
1.004 68
1.005 01
1.005 37
1.005 79
1.00627
1.006 82
1.00748
1.008 26
1.009 21
1.01038
1.011 87
1.013 80
1.01641
1.02008
1.025 51
1.03400
1.047 74
1.06948

1.003 94
1.004 18
1.00443
1.004 72
1.005 05
1.005 41
1,00S 84
1.006 32
1.006 88
1.007 55
1.008 34
1.009 31
1.01050
1.01202
1,01400
1.01668
1.02047
1.026 10
1.03495
1.049 34
1.072 01

coupling constant as is shown in Fig. 1 for a=0.1 and in
Fig. 2 for a =1. Note that for co, /coo &0.2 our results are
closest to the RSPT results. For a =0.1 the difference be-
tween the polaron correction to the effective mass for the
IWBPT and for the present result is about 14% when

3

D(t)= g dj(l —e J ) .

We have solved Eq. (7) numerically for different values
of a and co, . The results for the cyclotron mass for a
weak electron-phonon coupling constant, i.e., a =0.01, are
listed in Table I and are compared with other approaches.
The results for RSPT (Rayleigh-Schrodinger perturbation
theory), WBPT (Wigner-Brillouin perturbation theory),
and IWBPT are obtained from a numerical evaluation of
the energy of the first two Landau levels. The results
from RSPT and the present approach are very close to
each other up to co, /coo-0. 75, where the difference due to
the polaron correction is 5%. For larger values of the
magnetic field the difference starts to increase rapidly.
The polaron correction in the I%'BPT and the present re-
sults differ at most by 3.5%. The WBPT correction for
the polaron mass is smaller (for co, /coo ——1 the difference
is 17%) than that of the present approximation.

The differences between the various theories become
more pronounced for larger values of the ele:tron-phonon

I I I I I I I I I I I
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FIG. 1. Cyclotron mass as function of the magnetic field for

a=0.1. The present results are compared with {i) RSPT:
Rayleigh-Schrodinger perturbation theory, {ii) IWBPT:
Improved-%igner-Brillouin perturbation theory, and {iii)
%'BPr: Vhgner-Brillouin perturbation theory.
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2.8 clotron mass of the 2D polaron is found:

= 1+ 1+ tuc + COc
a 9 145
8 8

' 128

a 6 31 13253
192 c 23O4 c

1.6

1A

which should be compared with Eq. (2). Note that Eq.
(11) has a positive a correction to the polaron mass when
co, /co«& l.

Let us consider the memory function within second-
order perturbation theory, i.e., u =w and consequently

2 & 2 2si co $2 —$3 —u, d i
———,co„di ——d i——0. A small mag-

netic field and small frequency expansion gives

ReX(co) = —a—co 1+—co, + co + co,
9 5 2 21

8 8 ' 16 8

12 I I I I I I I I I I I

0 02 04 06 0.8 1
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FIG. 2. Same as Fig. 1, but now for 0,= 1. The present result
with a perturbative {i.e., U =e) calculation of the memory func-
tion is also presented.

from which we get the cyclotron mass

m '
m 9 145=1+a—1+—u + co +

mb 8 8
' 128

— '5" '+2

C

(12)

(13)

ReX(co) = —a—co
ma 9 311+ +a), —1+ ma

2 105 25 147' 128 34020

5am 3 1
209

128
'+

1440

where use was made of the results for the variational pa-
rameters U, m as derived in the Appendix. Inserting this
expansion into Eq. (7) the following expression for the cy-

co, /coo= 1. When a=1 this difference is increased to
about a factor of 2.

In our calculation we have also considered u =w for the
parameters of the Feynman polaron model which is

equivalent to a calculation of the memory function X(co)
with second-order perturbation theory. For a=0.1, the
difference with our original calculation (i.e., where u+w
and u and w are determined by a variational calculation of
the polaron ground-state energy) is too small to be seen on
the scale of Fig. 1.

In the limit of zero magnetic field the present result for
the cyclotron resonance spectrum reduces to the result for
the optical absorption as calculated using the FHIP
theory. ' Consequently the cyclotron mass should reduce
to the Feynman polaron mass in this limit. In order to
calculate the magnetic field correction to the polaron
mass (3) for a« 1 and co, /coo « 1 we expanded Eq. (8)
for low frequencies

Note that for zero magnetic field m'/ms ——1+am/8 and
the second-order perturbation version for the memory-
function formalism does not induce any a -correction
terms into the cyclotron mass. This is the reason why the
present approach, even for u =w, is superior to IWBPT.

III. CONCLUSION

First we will discuss the main difference between the
present approach of calculating the cyclotron frequency
and the more conventional approaches based on WBPT or
I%'BPT. For convenience me take U =m in our expres-
sion. 7 s In the present calculation the cyclotron frequency
is determined by the equation co —co, —ReX(co)=0. For
zero polaron coupling ReX(co) =0 and the cyclotron fre-
quency becomes co=co,' =co, . In the presence of electron-
phonon coupling ReX(co,') gives the shift of the cyclotron
frequency due to the electron-phonon interaction, i.e.,
co,
' =co, +ReX(co,'). Consequently our approach amounts

to a perturbative calculation of the shift in the cyclotron
frequency. This is in contrast with WBPT or IWBPT
where the shift in energy of the Landau leuels is calculated
perturbatively, i.e., E„=%co,(n+ —,

' )+b,E„. From it the
cyclotron frequency is then derived, co,

' =(Ei Eo)/a). —
In the zero magnetic field limit the present results

reduce to the Feynman polaron mass. The latter one pro-
vides a good approximation to m ' for all electron-phonon
coupling strengths. Because our calculation is a direct
generalization to the Feynman polaron theory' one may
expect (although there is no proof) that the present theory
gives a good approximation for magnetic fields at least up
to co, =coo and for all values of a. This is in contrast to
the IWBPT results which are inaccurate for a & 0.1 due to
the fact that they lead to an a correction which has the
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wrong sign. Note, however, that up to order a and for
small magnetic fields IWBPT and the present calculation

give exactly the same results.
At this moment there are no two-dimensional electron

systems which are embedded in a strongly polar semicon-

ductor. Therefore, at present the present results have a
limited practical applicability. We expect that for a &0.1
the differences between IWBPT and the present approach
will become important.
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APPENDIX

(Al)

with

hE =ae2 —be

of order a' and

(A2)

authors applied an earlier extension' of the Feynman po-
laron theory to nonzero magnetic field, to the case of a
2D polaron. In such a theory two parameters (u, m) are
present which were obtained variationally. These parame-
ters are needed in Sec. II and will be determined up to or-
der a for weak magnetic fields, i.e., co, ((coo. Recently
Larsen has questioned the variational character of the
Feynman polaron model for magnetic fields such that

co, /~o& 1.9. In the present work we limit ourselves to
co /coo( 1.2.

For weak electron-phonon coupling v and m are nearly
equal and we have w =v (1—e) with e positive and of the
order of a. Expanding the ground-state energy to order
a for weak magnetic fields results in

In this Appendix we calculate the nonperturbative
corrections to the ground-state energy ( E}of the 2D pola-
ron. In particular, we will calculate E up to order a
within the Feynman polaron model. Recently the present

Va=—
2

2

1 —4 +9
V

2

b =—a ~ 1 ——(v'1+U —1)
2

2

(A3)

0.02—

0.01

c 6 11+—1—
8 v v'1+U

+co, ——— (&1+U —1)
3 3 6

V2 8 3

-0.01

-0.02

~ -003

I

-OQL

-0.05

0 O00 g

O ~ .x'
4

b x

O.

001

0.1

1.

2.5

(A4)

ma
1

7 265
18 12 c 576 c (A5)

which gives

367
C (A6)

The term of order a in Eq. (Al} was already obtained in
Ref. 8. Minimizing E gives e=b/2a and the correction
to E to second order in a become hE =bi/4a. In the
limit o.~O and co, ~O the energy minimum is obtained
for V=3 and consequently

-0.07—X
K

0 1 2 3

Q /4)o

FIG. 3. Difference between the Feynman polaron ground-
state energy {E) and the result from second-order perturbation
theory {ERspT) vs the magnetic field for different values of the
electron-phonon coupling constant. Larsen's fourth-order per-
turbation result, i.e., a~O, for the 2D polaron ground-state en-
ergy is also given {solid curve).

Note that the coefficient of the a term at wc=0:
vari/216=0. 04569 differs with 28% from the exact result
0.06397 which was obtained earlier by the present au-
thors. In Fig. 3 we show the nonperturbative correction
to the ground-state energy divided by a2 as a function of
the magnetic field for different values of the electron-
phonon coupling constant as obtained with the Feynman
approximation of Ref. 2. For a~0 the result should
reduce to the full curve as was recently calculated by Lar-
sen with the use of fourth-order perturbation theory.
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The dashed line in Fig. 3 gives the limiting behavior as
represented by Eq. (A6).

Note that for co, /coo ~ 1 our result and the exact result
of Larsen have a similar qualitative behavior as a function
of the magnetic field, although our result is 28% off the
exact result for co, =0. With increasing electron-phonon
coupling strength a corrections to E of order a' with
n =3„4, . . . , which are not incorporated in Larsen's cal-
culation, become more and more important. In the limit
of large magnetic fields we found U /ic al and the E ob-
tained within the Feynman approximation approaches the
result of second-order perturbation theory and conse-
quently E —EitspT-0. Within our approach E —EitspT
can never become positive because E &ERspT. Note also
that for a=2.5 the ground-state energy exhibits a discon-
tinuity for ro, /aro-3. 5. The nature of this discontinuity
was examined in Refs. 14 and 2.

Finally we remark that from the above results we are
able to define a model mass

u ma 7 265—1+ + g + g + . ~ I + I ~

9 12 ' 576

which in the u ~~1 and co, /coo ~~1 limit is slightly dif-
ferent from the cyclotron mass. The ground-state energy
enables us to define a magnetic mass'6 by noting

E =E(co, =0)+
2fP20

which results in

(A8)

ma ma 73m''+
8 '5184 (A9)

where E(co, =0)= na/2 —ma /—216. The coefficient of
the a term 73vr /5184=0. 13898 differs with 1.4% from
the Feynman mass result [Eq. (11)]n /72=0. 13708.
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