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Magnetic and elastic fields have a strong influence on the phonon-scattering properties of accep-

tor states, which is experimentally well known from thermal conductivity measurements at low tem-

peratures. Our theoretical approach starts with a former theory of the degenerate electronic defect

states which are of the I 8 type. It uses high-order Green-function techniques together with unitary

transformations. For the calculation of the thermal conductivity we take Callaway's formula to-

gether with a one-mode relaxation rate of the phonons. %e discuss the dependence of the calculated

scattering rates on physical parameters of the system. Under the influence of static fields the

dynamical behavior of the electron-phonon coupling can be disturbed (e.g., resonance structures in

the thermal conductivity curve can be destroyed). The changes due to those external perturbations

are studied and it is shown that our theory qualitatively explains the experimenta1 thermal conduc-

tivity results.

I. INTRODUCTION II. DEFECT HAMILTONIAN %ITH FIELDS

In recent years the study of defects in solids by mea-

surements with phonon techniques gained much interest.
Because of their high resolution these methods are better
suited for studying the dynamical behavior of the
electron-phonon interaction than optical methods. New

kinds of resonance structures were found, e.g., in p-doped
semiconductors. ' These additional phonon-scattering
mechanisms were seen in thermal conductivity measure-

ments as well as in experiments with monochromatic pho-
non techniques. They are typically of nonadiabatic ori-

gin, i.e., they are due to the coupled dynamics of the in-

teracting subsystems (electrons and phonons), which have

to be solved. In previous papers ' the connection between

these resonances and the Jahn-Teller effect was demon-

strated. Therefore these resonances are a dominating

feature if degenerate electronic levels which can be split

dynamically are present in the system. Therefore we call

these resonances "dynamic resonances. "
By applying external elastic or magnetic fields the orig-

inal degeneracy can be destroyed by splitting the electron-

ic levels in a static sense. This has been used in several ex-

periments to infiuence these resonances. Together with

the static splitting in the electronic system direct phonon
transitions may occur. By varying the field strength one

has a tool to switch between both types of resonanes (the

static and the dynamic ones).
The existing theories of phonon scattering at such stati-

cally split electronic states use a perturbational ap-
proach' "and are not able to describe the dynalnical res-

onances in the vanishing field limit. A first approach to a
more general theory was given in a recent paper for donor
states in sefnieonductors where the ground state is split
even in the absence of fields. '
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In the following we consider acceptor systems (such as
Mn in GaAs, In in Si, etc.) with I

& ground states. The
derivation of the defect Hamiltonian without fields was

given in a previous paper of the authorsq and therefore
omitted here. We give the result which reads

2 3

He-ih=X De X Ptr~ +Dept g trtst (bqi. +bqi. )

qA, i=1 j=1

where D, and D, are the two independent deformation

potential constants. Ip;) and Itrj I are two commutin

sets of spin operators. Together with the functions rq

and sJ they are shown in Appendix A.
These functions project the different phonon branches

which are labeled by k onto the normal modes of the cu-

bic cell around the defect. Group-theoretical arguments

show that only e and t phonons can interact with the de-

fect. For simplicity we will use the abbreviation

2 3
Aqi, g D rqi. + (2)

If we include elastic fields we arrive at a Hamjltonjan of
the following form:

H =g~,xb,xb,~++ &"(b,x+b,'&)+ g g, ~, , (3)
q it q, k. j=1

~here the gi's are abbreviations for the spin operators

p;, trz and p;a'i. They are defined in Appendix B. The ~;
are the elastic tensions instead of the deformatjons. Ljke
the phono» tw«- and three t type deformation-s may
couple to the defect. These fields split the original I s
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ground state into two Kramers doublets with energy
difference

1/2

(a} For k =1,
A@2——H&, A@3——02 .

be= g(2r;) (4} (b) For k =2,5,

The interaction of the I s state with magnetic fields re-
moves all degeneracies. The coupling terms are easily de-
rived by the use of group theory: A magnetic field
transforms like I 4. The coupling is with bilinear electron-
ic operators and therefore the decomposition of the
Kronecker product" of I s is needed:

rs X rs =ri+ re+ rs+2r4+2rs
I 4 is contained twice in this product. The operators given
in Eq. (1) belong to different irreducible representations of
the cubic group. The details are given in Appendix A.
The result for the Hamiltonian then reads:

A A
Hr. id=gi'(Or, , Ãx+0 r, ,2&i+o r, ,P.}

+g2'(0 f; iB,+0 r, 28', +0 ~r,,gi) .

For our purposes, in this paper only magnetic fields in the
z direction are considered. In this case the Hamiltonian
for elastic and magnetic fields has the following form:

Hfield rk 4k+Hi 49+H2 kl5

H~ ——gZ'8„02——g&'8, .

This operator is not yet diagonal in the electronic sub-
space. The operators of a fourfold state form a SU(4)- Lie
algebra which is given in Appendix B. This Lie algebra
has rank 3 (Ref. 16), every diagonal electronic operator
therefore may be written as a combination of up to 3
simultaneously diagonal operators of the algebra which in
our case are

A6) P3+56203+ 663P3CT3 .

Figure 1 shows the level scheme in the general case.
For further use we take only one single rk nonvanishing.
In this case the energy splittings of the system are easily
calculated:

b,ei ——(H, +~k}, be2 H—z, be& —0.
(c) For k =3,4,

hei ——(H2+rk)'/, «2 Hi——, «&——0 . (9c)

In cases (b} and (c} only four different energy differences

appear. To simplify the formulas in the text and the nu-

merical calculation we will therefore neglect case (a).
Because of the two independent I 4 representations con-

tained in the I"
s Kronecker space the shape of the magnet-

ic coupling terms is not unique. The usual way' to derive
this interaction is by the use of angular momentum opera-
tors. Here we give the connection between the different g
factors used in the literature:

g i' ——0.5gi+5g2

g2 =5.66g2

(10a)

(lob)

To clarify the following expressions and calculations we
introduce the parameter

IHi I

z „,in case (b)
(Hi+Wk)'/

in case (c)
(H', +e )'"

and

( 1 D2)1/2

D =0 marks the case of the pure elastic field, whereas
D =1 gives the pure magnetic one. In the discussion of
transitions the introduction of energy differences is useful:

eo=o ei=2
I
«z

I
ex=2

I I
«i

I

—
I «z I I

(12)
e3 2

I «i I
e4= 2(

I
hei

I
+

I
bee

I
}

Instead of Eq. (7) we use the short form

Hrieid =g

&mmmm

(13)

I dc3

s hc3
~ 2~ 2 ----fh

1,2 2„hc2
& b,c3

where the summation is restricted to the values k (index
of applied elastic field, from 1 to 5, 9, and 15).

III. EQUATION OF MOTION HIERARCHY

In a Green-function-based approach the relaxation rate
of a physical system is related to the imaginary part of the
T matrix which can be expressed by a thermodynamical
Green function. ' ' ' This reads

6 =Go —GoTGo . (14)

FIG. l. Energy levels of the electronic I 8 state split by exter-
nal fields.

The index 0 denotes the unperturbed system where no re-
laxation occurs. The calculations of the relaxation rate
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rqi therefore implies a determination of the Green func-
tion of the perturbed system G.

For the relaxation of a phonon the phonon Green func-
tion is needed which has the form ((g;;g;)). We use the
equation-of-motion method for the evaluation of this
Green function. The first step reads

«g, ;g, » =g«g[g, ,A];g, ))+g..(&[g, ,g. ],g, » .

For the next Green function ((QE;g; )) the following ex-
pression results:

(~'—~,', )&&QE,g, &&++K,K ((a[[E,g, ],g ];g, &&

=, &Q[E,C;)&.+ ' &~[E,g;]&,+ g&&aa[E,A];g;&&+ QKi(&a[Eel];g;&&
2m 2m I gl I

+~,i, g &&~a'[E,A'];g;)&+2ai, &&«,g;)&+QKI c0((Q[E,gl];g;)) — (Q[[E,gi], g,.])
q', A.

' 2~

—g «aa'[[E,k), A'];a »
q, A

In this context E denotes an arbitrary elix:tronic operator of the I.ie algebra SU(4). In general [[E,g],g] will not
reduce to E. Therefore Eq. (16) leads to a system of linear equations. The solution can most easily be accomplished by a
unitary transformation technique with

g; = Ugq, i,j = 1,2„.. . , 15 (17)

and the demand

[[(,g„],g(]=A,'P'g, n, l =k, 9, 15 . (18)

This matrix is easily found because the double commutator in Eq. (18) decomposes in small units which are analytically
diagonalized. For one case we give the matrix U in Appendix D. In transformed space Eq. (16) closes to yield E. With
the abbreviation

1 T 1

qA.
Q(ai r0 i) EE g ( )

EE'

this equation reads

«QE;0 »=g &Q[E'k)& + ' &~[E 0]& — gK &Q[[E'0] 0]&
Ei 6 CO, Qlqi, ~E, 27T 2m. 7T

+~ X «aa'[E', A');c;»-XKi g «aa [[E',cl],A ];s;»+2,.««';c;»
q', A,

' I q', A,
'

+, y((~a'[E', A'];g;))+2 yK &&Q[E',g ];g;&&
q, A,

(20)

With the additional definitions

1 =JU-T
K(co,co&i), K qA,

I 1
QKIM (co,ruqi ), x„[K(co,coqi ) ]sF- I b (a), coqi )

(21)

(22)

this is transformed to
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«QE 0;»=Q &Q[E'l l& + ' &P[E'kl& — g& &Q[[E'kl kl&

+,i. g &(PQ'[E', A'];g;))+2,i.(&AE';g; »+ g (&QQ'[E', A'];g;)&
q, A, q, A,

—g I~i Q && QQ'[[E' k 1 A'l'0 &&

l q', A,
'

+2~+ ~ 2
&Q[E" kl&T+ ' &P[E k]&T 2—Q &Q[[ "k 1(]&T

+ y «QQ'[E"' A'1;4;» —yI~ y &&QQ'[[E" k 1 A']'k &&

m q', A,
'

+~,„g((PQ'[E",A'];g, ))
q', A,

'
(23)

From Eq. (14) the relaxation rate is given in terms of the electronic Green functions:

'=4mn Vlm((A~;A "&), (24)

where n is the defect concentration and V the volume of the crystal. Therefore, only the "diagonal" Green functions are

needed for the calculation. With the introduction of a projector P in the electronic space and the complementary projec-

tor Q one obtains
T

'-X~ ~.P([[C;,r ],C.]-r;} «&;;&;»
l, m

.y~ &[[k;,k],k]&.+ Z«Q[k;, A];k;»+Z~ Z«Q[[k, k],A];f, »
l qk, l qA,

+/&i'' Q(lu k] 4] k)«[[C k] r ]'4 » (25)

From the Green functions on the right-hand side of Eq.
(16) only ((PQ'[E, A'];g;)) has phonon terms which do
not commute with the unperturbed Hamiltonian. There-
fore this function is expanded and yields

(&PQ'E'k»= 2'. (PQ'[E 0 ]&T+ .x«QQ'E

where E(co) denotes the expectation values and G (co) the
higher Green functions. To reach a closure of the hierar-
chy Eq. (27) the following approximations are used

(a) RPA factorization of all quadratic phonon terms
(A =-P, Q):

(&~'g;;g, &) =(~'&,&&g;;g, && .

+~, , ((PP'E;g, ))+2((Q'AE;g, ))

+Z~. «PQ [E,~.];~,»

+ g «PQ'Q"[E, A"];C;»
tl

hatt

(26)

(b} Neglect of all terms higher than quadratic in the
static splittings Kl.

(c) Further development of nonclosing functions
((gk, g;)) with respect to b.

(d} Simplification of electronic operator products by the
limitation to one-electron-parts, i.e.,

kkj ——z[( kil.

Inserting Eq. (26) in Eq. (16) gives the final equation for
the relaxation rate calculation which reads in a formal
wag

(e) Closure of all remaining terms with odd numbers of
phonon operators with restriction to b with an expectation
value:

' —XI~& P(f[k kit ]
l, m

E(cu)+G(~), (27)
1

2%'

~((~g,-;g, && = &~[g, ,g, ]&, .

For the control of the approximations several sum rules'
and especially the required positive definiteness of the re-
sult (24) are checked.
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IV. CALCULATION OF EXPECTATION VALUES

The application of the equation-of-motion technique to-
gether with the described RPA approximation leads to
several thermal expectation values which have to be calcu-
lated in the base of the perturbed Hamiltonian. To ensure
high accuracy we use a unitary transformation ap-
proach. The expectation value is written as

The coefficients R and R~ are given in Appendix D.
In the transformed space according to Eq. (30) the follow-
ing electronic operators give nonvanishing expectation
values:

'+. ')/z,

& 4 &0 = & g; &
- =

& e 'g;e'&„-= & g; &„-+& [g;,&]&„-+

(28)

&g~&r
———E&(6& =E( '+. ' — ' —1)/Z',

&g, &,=-D&g, &,=D(. '+. "—.' —1)/Z,

where S denotes a Hermitian matrix which may be deter-
mined by the U matrix equation. With the abbreviations

& g„&r ——E & g, & r =E(1—e ' —e '+e ')/Z',

(31)

~q$ qk,

i
N g —f t

Dqk,
l

N g —6.
q

i =0, . . . , 4 (29) '+.

the S matrix can be brought to the following form:
5 15

S=g g qq" g (Z,,'pqh+W, qQq'g, .
q, k, i =1

(30)

with Z'=1+e '+e '+e ', where Z' denotes the
canonical Zustandsumrne The. other expectation values
read

& QQ'&, =S„S,„coth ' +4 g CJ(,LJ('WqhWq'qqk'qq'&g &,
2 j,k, l, m

-2 g F,",P'&g &, oth ' Wf'Dq'q, 'q, "+ oth ' Wq'Dq'qt, 'qf'
j,k, l, m

(32a)

& pp & g g th q 4 y C(PP')~qhaq'h' qh q'h, '&
g

j,k, l, m2
P r

Fi( )
& g & coth gff hDqh q h qh+ t} gfghDq h qh

j,k, l, m

&PQ &,=&PQ &,'=~„~„,
(32b)

(32c)

&Qg, & = —2 g C;~~ Wq rtq &g & +2coth g F.tgf Dq riq &g
J, l, NI

l
.j,l, rn

(32d)

&Pg, &,=2i g Cgf'D,q'qq'&g &„2icot —' g r,',J'Wg'qq"&g. &, ,
j,1,m

J )Sf J
,j,l, rn

(32e)

V. DISCUSSIONS OF RELAXATION RATES

From Eq. (24) the expression for the phonon relaxation
rate can be brought to the following form:

Acofh(to)c '
&1 (co) & =n, g A,". Im«g, .;g, »,

2pcg
(33)

where the respective summation range is evident from the
definition. The various types of F and C matrices were
determined by a numerical procedure.

tions are converted to integrals with nontrivial imaginary
parts which describe the irreversible behavior of the sys-
tem. The temperature dependence of some of these in-

tegrals is caused by the expectation values. The integrals
are given in Appendix F.

The formal structure of the result for the relaxation
rate is the same for the applied magnetic and elastic
field. ' The difference appears only in the summation of
the splittings and the actual values of the coefficients.
The result can be brought to the following form:

where the A's result from the angular integration within a
isotropic Debye model. They are given in Appendix E.
p=M/V is the mass density, ch (A. =l, t) the longitudinal
and transverse sound velocity, respectively, and
c =1/(gh}/ch). By standard methods all q summa- where N(co) and Z(co) are given as

(34)
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10 W~(meVI

FIG. 2. Phonon relaxation rate of GaAs (Mn) with small
magnetic field (1 T}.

10 Au)(meV}

FIG. 4. Phonon relaxation rate of GaAs (Mn) with applied
magnetic field of 500 T.

14
1

7

N(co)=g n((co), Z(co)= g ZJ(a)) .
i=1 27K )

The explicit form of the terms n;(co) and zj(co) is given in
Appendix G.

It is easily seen that the dynamical terms {AJ ) contri-
bute as well as the static splittings (xi). For small
electron-phonon couplings AJ the perturbational result'
is obtained. In this limiting case the terms n2 to ni4 in
the denominator can be neglected as well as z6 and z7 in
the numerator. In contrast to perturbation theory our
method gives a closed form for all scattering terms
without distinction between direct and Raman processes.

The numerical evaluation for different cases is shown in
Figs. 2—4. Independent of the kind of applied field the
direct resonance is sharp only if the static splitting is
larger than the Jahn-Teller resonance. Smaller static
fields appear only through a broad absorption structure.
This result fits very well in the intuitive picture of the
dynamical scattering mechanism.

The small fields do not destroy the dynamics of the
Jahn-Teller effect, therefore the static splitting is modu-
lated by the momentary dynamical sphttings and there-
fore smeared out.

Figure 5 shows very well the disturbance of the JT reso-
nance by the application of a magnetic field. In the upper
right the magnetic field applied to GaAs (Mn) in the z
direction is weak and therefore the JT resonance, shown
as a small peak is not disturbed. With higher magnetic
field this resonance structure gets weaker and weaker, i.e.,
it is smeared out by the static splittings induced by the
external field. Figure 6 shows the completely different

temperature behavior for the static and the dynamical res-
onance. In this case a static splitting of he =4 meV is ap-
plied to GaAs (Mn) by an elastic field. At low tempera-
tures the static splitting is easily seen because it is at
higher energies than the dynamical splittings and there-
fore it is not smeared out. For higher temperatures the
occupation numbers of both static levels get the same and
therefore this resonance is saturated. The dynamical reso-
nance, which at low temperatures is completely dominat-
ed by the static one, survives at higher temperatures near-

ly unchanged because there are no static levels which can
be equally populated. Therefore only this resonance is
seen at tugher temperatures.

The range of validity of the theory given here is limited
by two parameters which are used for an expansion. The
coefficients A~ (respectively, D„D,) and the static split-
tings a, . Both are required to be small. Additionally, we
included the electronic splitting term in the unperturbed
Ho. For very small fields this is not adapted to the physi-
cal situation in which the fields act as a perturbation for
the stronger electron-phonon coupling.

VI. CALCULATION OF THERMAL CONDUCTIVITY

With the relaxation rate Eq. (34) the thermal conduc-
tivity can be calculated using Callaway's form ula2

(x =AcoikT):

kB ~ 1 8D /k~ ~ 4ex
K(T)= g f dx ri(x), (35)

ci (e" 1)

If
C

I

C3
„

10 5~(meV)
FIG. 3. Phonon relaxation rate of GaAs (Mn) with magnetic

field strength of 10 T.

B{T}
FIG. 5. Phonon relaxation rate plotted against magnetic field

strength and phonon energy. The energy scale is logarithmic,
the magnetic field scale is linear.
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~ I

.. IH
I I I ~

f
I

. . I 11 I I }

KtT)

(—)

10.,

FIG. 6. Temperature dependence of the relaxation rate for an
applied elastic field with he=4 meV. The energy scale is loga-
rithmic, the temperature scale is linear.

I/

//
/

/

GaAs(Mn}

where ri(co) gives the total relaxation time of phonons of
branch A, . For independent scattering processes the in-
verse relaxation rates have to be summed up:

For the evaluation of the thermal conductivity we added
boundary scattering (rs), Rayleigh scattering (~a), and
Umklapp scattering (rU) to the calculated relaxation rate
Eq. (34) (Refs. 22—26). The parameters of the acceptor
systems are given in Ref. 9. It should be stressed that our
theory contains no adjustable parameters and the values
used are determined by independent experiments.

The thermal conductivity for different cases and con-
centrations is given in Figs. 7 and 8. Figure 7 shows the
infiuence of elastic fields on the thermal conductivity of
Si(In). The solid lines gives the degenerate case (without

FIG. 8. Calculated thermal conductivity of GaAs {Mn) for
different elastic field strengths: without field (solid line);
he=50 p eV (dashed line); he=1. 5 meV (long-dashed —short-
dashed line); lie=3 meV (broken line). The upper curve corre-
sponds to the undoped crystal.

applied field). A small elastic field reduces the thermal
conductivity at low temperatures in analogy to experi-
ments with a distribution of internal fields. A further in-
crease of the field reduces the thermal conductivity in the
whole range of teinperatures and destroys completely the
resonancelike structure. Figure 8 shows the infiuence of
elastic fields on the thermal conductivity of GaAs (Mn).
Fields much smaller than the resonance energy do not af-
fect the dynamical resonance structure but reduce the

10+&

1Q;,

1P,

10 -R;.

/

/
/

/
/

/

Si(In }

I
IIIIIIII

GaAs(&n}

1P T(K)

FIG. 7. Calculated thermal conductivity of Si (In) with dif-
ferent elastic fields: without field (solid line); he=50 peV
(dashed line); he= 3 meV (long-dashed —short-dashed line);
De=10 meV {broken line). The upper curve corresponds to the
undoped crystal.

FIG. 9. Influence of a magnetic field on the thermal conduc-
tivity of GaAs (Mn): without field (solid line); 1 T {long-
dashed —short-dashed line); 5 T (broken line); 20 T {dashed line).
The upper curve corresponds to the undoped crystal.
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thermal conductivity at lower temperatures. For very
high fields the resonance structure gets weaker and finally
disappears.

For magnetic field splittings the situation is analogous
as is shown in Fig. 9 for the case of GaAs (Mn). In con-
trast to the case with elastic fields a minimum in thermal
conductivity is built up at medium magnetic field
strengths. Such a minimum was experimentally detected.
In contrast to former approaches for the degenerate case
the theory presented here cannot reproduce the thermal
conductivity minimum of the field-free case in GaAs
(Mn). This is due to the much simpler approximation
scheme in the case here which was necessary for the in-
clusion of the field terms. Nevertheless, our theory shows
qualitatively the influence of fields on thermal conductivi-
ty of these defect systems.

VII. CONCLUSIONS

Based on former work on the degenerate I's state ' we
investigated the dynamics of the field-split electronic I s
state at acceptor defects in cubic semiconductors. We
developed a Green-function method to evaluate the
phonon-scattering rate due to the electron-phonon interac-
tion.

By changing the field-induced splitting one can switch
between the degenerate case (dynamical limit) and the
nondegenerate one-level case (static limit) without JT in-

teraction. Therefore these systems are very well suited to
study the electron-phonon dynamics in detail.

From our Green-function result of the relaxation rate
we calculated the thermal conductivity. The theoretical
results agree qualitatively with several measurements on
these systems. For a more quantitative approach in the
case of the acceptor systems considered here the higher-
order terms have to be evaluated, which seems to be not
feasible with the numerical methods available to the au-
thors. Nevertheless, the behavior of the electron-phonon
system studied here is of theoretical interest and may be a
dominant feature in other systems with a weak dynamical
JT effect within a defect level.
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APPENDIX A

The definitions of the spin operators p; and o~ and of
the coupling functions rs and s,~" are given below. The
spin operators p; and o& can be represented as &X4 ma-
trices:~

I T

0 0 1 0 0 0 —i 0 1 0 0
0 0 0 1 0 0 0 —i 0 1 0000'~2= i 0 0 0 'F3=00
0 1 0 0 0 i 0 0 0 0 0

0

1 0 0 0 —i 0 0 1 0 0 0
0 0 0 i 0 0 0 0 —1 0 0
0 0 1 ' 2 0 0 0 —i ' 3 0 0 1 0
0 1 0 0 0 i 0 0 0 0 —1

They satisfy the relations p; =oj =1, [p;,oj ]=0, and the
usual spin commutation relations [pi,p3]=2ip3 [cT] (T2]
=2io3, and cyclic.

From these definitions the representations of the prod-
ucts p;crj can easily be found. The commutation relations
are given in Appendix B. The two sets of electronic
operators which transform according to the two I 4 repre-
sentations and which couple to the magnetic field have
the form:29

v3or, , l= —zp101+
2 pal

v3
p22 ~

0 r4, 2= —2P1&2—

0 r4, 3 Pl3

The coupling functions are defined by

and

A.0 r4, 1=1~ 0 r4, z=~2' 0 r4, 3=&3
«f =~(q)f(q) —(2q.n~. —q.ni —e,n3.,»3

r f"=a(q)f (q) (q„ni„q~ni~),—v'3



JOHANNES MAIER AND ERNST SK'MUND 34

t4

oa ~~b~na ~be ~~b~a
bl ba sf'=a(q)f(q} - (q.«, +e,nz»S P

~@3 b c) ~ b~ c)
c7.

I
Q.

s)"=a(q)f (q) (q,nz„+q„nz),
3

OQO

bago +
I

a&~bc)
I

b
bCO W b bW Qb~CO

I

sf =a(q)f(q) (q, nzs+q„nz ),Z P

with q;:=q;/! q! and a(q) =(M~z, /2Mcz, )'
nz(=nz, nz,„,nz ) is the polarization vector. f(q} is a
cutoff function. In the most simple case it is given as

b b~~

ba ax

c& Pj c& cl

CO C7. g CO C)

W CD
I

b g b

~ w W C) b™'

CV

b b b~~~ ~~b~
I

~+~I

I I a.

t4ba b b ann
I

CO g C7b. b b b&D(DC&

CO C) C) C) C)
I

C4

C) CO ~CD W

CO C0 ~W O4D
I c7.

b b bccacae~ ~™a.

f(q) =(1+-'(a')'q't '

where a' is the Bohr radius of the defect, describing the
extension of the defect wave function. '

APPENDIX 8

Table I represents the operators for a fourfold state.

APPENDIX C

The transformation of the electronic operator set for
k =2 is shown as

gz ——(1/v 2)(E(z+D(9+g»},
4= —Dh —EC14

44= Df4+—Eks

Cs=h

4=4
g7 ——(1/~2 }(E$4 (7+Dpi 3), —

fs ( /~2)( E(3 48+D(14)

E9= —DR+Eh

CIO glO ~

411 Oil ~

klz= Ekl+Dkz, —

$13 (1/~2}( Eg4 (7 D——$13), — — —

g,.=(1/~»(Eg, —g, —Dg„),
/is=(1/V2)(Eg'z+D$9 —/is) .

0

~~ 8l dl dl ~ ill 5I 8I El dt 5l mme
NI Hl dl

6. W a. a. W a. a. a. c7. 8 a o. b b b

APPENDIX D

The coefficients Rp and R~l of the S matrix are given
below. If we restrict ourselves to the case of an elastic
field ~= rz and an arbitrary magnetic field we have
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TABLE II. Definition of the functions A~ as the result of an angle-dependent integration over the
phonon coordinates.

~D,16

4q mD,
16 2

45 mD,
16 2

45 ma,16

—mg,16 2

,~ mD,

—mD
4
45

45 mD,
16

4, mD,
16

—m'D
45

9 mD,2

9 mD,
2 2

9 mD,
2 2

9 m'D,
4

R i i EW——f +D W$, R (i =DD)

R, 2
——E'WIW +D'w), Rf, =0.5 E'( Df' —D)")+D'Df~,

R'„=o.ls'( w)'+ w(')+D'w)", RWI, =0.5E'(D)"—D)') —D'Dt',

R44 ——0.5E (Wf +Wf )+D Wf, R)5 —— DD)—

R55 ——W'f, RI 6
——ED(

R,', =0.5E( Wf' —Wf'), R $,= —0.5E(Df'+D )"),
Rqs —0.5E(w) —Wf ), RPs ———0.5E(Df +Df ),
R f,=s D ( WI%" —w)" ), R (,= ED)', —

Ri i2=ED(WI% —Wf ), R(ip= ED( .0(5—Df Df )—D—'f ),
R,'„=ED(0.5(W)'+ W&")—W('), RP„=ED(0.5(D(' —D&')+Dt'),

Ri i4 ———ED(0.5(wf +Wf )—W'f ) .

All the other coefficients vanish. The expressions can be simplified to those of an elastic field alone by

E=l, D=0, wf =wNI, wf"=w) =wf"=wq

APPPNDIX E

Table II represents the angular integration within an isotropic Debye model.

APPENDIX F

The definitions of integrals needed for the Green-function equations are given below. We use the following abbrevia-
tions for the integrals, where s,g, d may have the values 0 to 4:

R, (n):=f dcoqi.

coq" coth
q A.

2

2 ~2
qA, —& s

' fi(~qi),

2 ~2 N
69 —Q)&g+ 6 g COqg

Sgd(co, n}:= da)q). . . , , ' „,f~(~q"),
[(~ ed)' ~—q'i. j[(~+ed)' ~qi, ) ~qi &g—

A, 2
co —co&g+ E

Sgd(co, n):= dcoqg
[(~ ed) ~qki[(~—+&d) ~qi j

Pqi
Q)qgCOtkl

A2
ig

' fi(~qi»

1 ~@X
Vgd(a), n):= dcoqi . . . , , fg(~qg),

l(~ &d ) ~qi.]l(~+Ed ) —~qii ~q& g g
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I
Vsd(co, n):= dIo&k'

[(IO e—~)' O—I,'k][(~+~g)' IO—,'k j

Pqk
Qjskcoth

2

QPqg
—E'

g

' fk(~sk) .

Restricting ourselves to the simple Lorentzian form of the
cutoff function, i.e.,

2

fk(bosk)= 1+
2cg

the temperature-independent integrals result in rational
functions. So they may be easily solved. The calcula-
tion of the temperature-dependent integrals cannot be
done analytically. A numerial integration is impossible
due to CPU-time considerations. We therefore developed
the coth-part:3'

This series converges for
~
x

~
&m. Even for k &5

good results are received in accordance with numerical
calculations. Together with this series no new type of in-
tegral is needed, therefore this method was chosen despite
other methods with better convergence conditions. ' A11

the integrals are of Cauchy-principal-value type. The
imaginary parts of the integrals can be calculated analyti-
cally.

APPENDIX G

22k' A listing of the terms appearing in expression (35) is
cothx =—+g, x " ', &„:Bernoulli's numbers . given below. In the following, summation convention is

x k, (2k)!
QSCd:

n I (co) =a) oI NI'ImKI—Km,

II2(Io)=Io gyk[NI', '8 "(IO,5)+NI",I' Vk(co, 5)KIK ]A, ,
q, A,

n3(~)='X X»yk[NjbS (~4)+NI bI V"(~4)KIK ]A AbR (4),
qA, q, A,

n4(~) rO y g yiLyA'[NI'abkn ,S (~~3)++jabknlm V (~i3)KIK ]Rm(4)ACAb Ka(gk ~T i

q „A,

5(~)=~'g X ykyk [N,".bk S (~ 4)+N bk I V (Io '4)KIK ]R (3)Ao Ab K (gk)T
q, A, q', j)t,

'

nb(co)=a) g yk[NI'a 'S (Io,6)+NI,'Im Vk(oI, 6)KIKm]A, ,

n7(IO)=a) g g ykyk[Nq, 'y„'pS (OI,4)+Eq,'g„'pIm V (OI, 4)KIKm]Aa Ab R (4)K„Kp,
q, i, q', A,

'

IIs(Io)=~ g g ykyk[Ng, y„~S (Io, 5)+NI",b~I V (Io,5)KIK ]A, Ab R (4)K„(g~)T,
q, A, q, A,

Its(Io)=~ g g ykyk[Njab~S (oI, 5)+NI",b~I V "(co,5)KImKm]A, Ab R"(4)K„(gp)jT,
q, A, q', A,

'

n9(ro)=co g Q ykyk[N~'qS"(co, 6)+Nq, 'g„qImV (o),6)KIKm]A, Ab R (3)K„(gq)T,
q, A. q', A,

'

IIIO(co)=co g g ykyk[Np~'g„'pS (o),4)+N&,'g„'pI V (co,4)KIK ]A, Ab R (5)K„(g~)jT,
q, A,

IIII(IO)=IO gyk[X~aIm S (a), 3)+IO NISI'm V (IO, 3)]KIKmA, ,

1t ~2 (CO )=CO

q, A,

II I3(Ci7) =CO

II I4(CO) =CO

g ykyk [NI'abImS (co„4)+coNI~(m V (IO, 4)]KIKm Aa Ab R k (4)
q, A.

g ykyk[NIQI S (~,3)+co Nj, bIm V (cu, 3)]KIKmAa Ab Rk(4),
q, A,

g ykyk [NjabImS"(~, 4)+OI N,',bI' V"(OI,4)]KIK A~Ab R k(3),
q, k

and the denominator terms
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Zt(co)=co ZJII Kt (4~r
Zq(co)=co gyt[ZJ', 'S (co,4)+Zq, (' V (co,4)EtE~]A, ,

Zs(co)=co gyg[Z~ i' S (co,3)+ZJ',i' V "(co,5)]Et(g )rA,",
q, i,

Z ( )= yy [Z'„'S"(,4)K +Z'„' S (,5)(g ) ]K,A, ,
q, A,

Zs(co)=co gyg[zi', t' S (co,5)+co Zt', i' V (co, 5)]Ki(g )rA, ,

Zs(co)=cog g [ZJ",g'S"(co,6)+Z~",sI~ V (co,6)EtE~]A, As R (4),
q, A, q, A,

Zq(co)=cog g[ZJ",~~~S (co,6)+ZJ",st~a&V (co,6)KsK&]A,"As R (3)Ki(g~)r .
q, A,

The values of the coefficients N" and Z" are not given explicitly. They contain the algebraic properties of SU(4)
through different kinds of commutators. In our case they were determined numerically.
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