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Balance-equation analysis of linear and nonlinear electronic transport
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A non-Boltzmann balance-equation approach to linear and nonlinear dc steady-state electronic
transport in a type-I superlattice (which is composed of infinitely many periodically arranged finite-

width quantum wells) is developed in the presence of an electric field parallel to the superlattiee

planes. The method is based on a separation of the parallel motion of the center of mass from the
relative motion of the electron system. The Coulomb interactions between intralayer and interlayer
carriers are naturally built in via the electron density-density correlation function of the superlattice
system. The force and energy balance equations obtained are applied to the calculation of the Ohm-

ic mobilities limited by remote and background impurity scatterings and by acoustic and polar
optical-phonon scatterings in GaAs-A1„Ga~ „As superlattices. The nonlinear mobility and electron
temperature are numerically calculated as functions of drift velocity, including all the above-

mentioned scattering mechanisms and the full effect of carrier-carrier Coulomb interaction within

the framework of the random-phase approximation. The dependence of transport on the geometri-
cal parameters of the superlattice is discussed.

I. INTRODUCTION

Semiconductor superlattices, first proposed by Esaki
and Tsu, ' have become a central focus in the current
development of microstructure science and technology.
Modulation doping in semiconductors and steady im-
provements in thin-film techniques have made it possible
to produce high-quality periodic multilayer systems com-
posed of alternating ultrathin layers of different semicon-
ducting materials with similar lattice structure and
matching lattice parameters. Such multilayer heterostruc-
ture systems of GaAs-Al„Gai „As and other semicon-
ductor combinations have been shown to have very high
carrier mobilities due to the separation of the mobile

charge carriers from the ionized dopants. s Many aspects
of the physics of such semiconductor superlattices have
been extensively studied in the past several years.
Theoretical investigations of electron transport, however,
were focused mainly on single heterojunction structures.
An electron-transport theory pertinent to a superlattice,
particularly a nonlinear theory, is still not available at this
time, and we therefore address this matter here.

It is well known that the Coulomb interaction between
carriers in a two-dimensional (2D) system has an impor-
tant effect on their transport properties. For a closely
packed multilayer system, such an effect is expected to be
even more important bxeuse of the couplings between in-

terlayer carriers and the carrier scatterings by the charged
impurities in different layers. These effects should be tak-
en into full account in establishing a transport theory for
superlattices. Recently, a non-Boltzrnann balance-
equation approach was developed by I,ei and Ting to
describe nonlinear electronic transport for electron-
impurity-phonon systems in the presence of a uniform
electric field. The role of the electron-electron interaction

is fundamentally built into the theory via the electron
density-density correlation function of the system, and the
associated screening and nonlinear descreening phenome-
na are naturally included. This formulation has been
proven to be useful and convenient for studying linear and
high-field steady-state transport in both the 3D and 2D
cases. ' The same method will be employed in this paper
to discuss the electron transport, especially nonlinear
transport, for a type-I superlattice in the presence of a
constant uniform electric field.

II. HAMILTONIAN

2 2

H=g — + +U(z )
2m 2m'

+g V(r; —rj,z;,zj ),

where p; =(p;,ps; ) and r; =(x;,y; ) are the two-
dimensional momentum and coordinate of the ith electron
along the layer plane and p . and z; are those perpendicu-
lar to the interface; tn and rn, are, respectively, the
electron-band effective mass parallel and perpendicular to
the plane; U(z) is the potential refiecting the superlattice
structure; the last term is the electron-electron interaction.
When a uniform electric field is applied parallel to the
plane, the electronic transport, or the motion of the center
of mass of the electron system, takes place only within the
plane. Therefore, it is convenient to introduce two-

The model we shall use for the type-I superlattice con-
sists of an infinite number of periodically arranged quan-
tum wells of width a, and d is the spatial period or dis-
tance between two adjacent layer centers. In the
effective-mass approximation the electron system can be
described generally by the following Hamiltonian:s
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P=gp;, R= —gr;,

and two-dimensional relative electron variables

p. =p ——P r =r.—R (3)

where N is the total number of electrons (normalized to
unit area). In terms of these variables the Hamiltonian of
the electron system in the presence of an electric field E
parallel to the layer plane, can be written as the sum of a
2D center-of-mass part H, and a relative part H„with

p20,= —¹ER,
2Nm

(4)

and H, is also expressed by Eq. (1) but with p; and r; re-
placed by p,' and r,'. Hereafter we shall omit the primes
and always refer to the relative motion of the electrons.

An Al„Ga& „As-GaAs-AI„Ga& „As multilayer struc-
ture can be described approximately by such a periodica11y
arranged quantum-well model, in which the mobile car-
riers are electrons released from donors located in the
heavily doped Al„Gal, As parts and are essentially con-
fined in the GaAs well regions which are formed by the
band discontinuity of AI„Gal, As-GaAs interfaces. We
assume that (i} the potential-well depth is deep enough
and tunneling is small enough, so that electrons are con-
fined to just one well, and (ii) the width of the well is nar-
row and the electron density is not too high, such that
electrons occupy only the lowest subband. This descrip-
tion for a semiconductor superlattice has bo:n widely used
in the literature. In the effective-mass approximation the
lowest subband wave function of the electron in 1th well is
taken as

pll, (r,z)=e'"'g(z —ld) (1=0,+1, . . . ) (5)

dimensional center-of-mass variables P=(P,P„) and
R=(X,F):

where a. is the background dielectric constant of the super-
lattice and Fl (q) is a form factor for the Coulomb in-
teraction of the system. For a GaAs-AI„Ga~ „As super-
lattice, the difference between the dielectric constants in
GaAs and AI, Ga&, As regions is small enough that the
image charge contribution is generally neglected, leading
to the simple result

Fl (q) =Fl (q)

z z'e-&~'-'~ z — ' z' —m

=e 'I™'[exp(qa)1(q)'(I—&l~)+&l H(q)]

(9)
Here, 5l is the Kronecker delta, and the form factors
I(q) and H(q) are determined by the electron wave func-
tion within the well [Eq. (6}]. Setting u =qa, we have

I(q)= f e «'g(z) dz

=4«r [1—exp( —u)]/[u(u +4m )], (10)

H(q)= f e «' ' 'g(z) g(z') dzdz'

1 —exp( —u) u—3 +
u +4«r2 u +4m

1 —exp( —u) 2(u —4n-)
(u +4m )2

2 1 —exp( —u)1—
Q Q

In a GaAs-Al Ga& „As system the elastic scatterings
are mainly due to charged impurities. These charged im-

purities give rise to an electron-impurity interaction H„
in the Hamiltonian:

with
' 1/2

2
cos

g(z) = a

0 elsewhere,

7rz a a
for — (z (

2 2
'

(6a)

(6b)

21~8 iq(R —r )
ei =

2
Fl(q, za )e '

Cl li+«Cl li 0,
2EOKQ

k, q

(12)

where (r„z, ) and Z, are the location and the charge
number of the ath impurity and

Fl(q, z, )=f e ' g(z —1d) dz . (13)

Image terms have been neglected in Eq. (13). We consider
two kinds of impurities: remote impurities and back-
ground impurities. The former are the ionized dopants in
Al„Ga& „As regions, which are located in planar sheets
at a distance s from the center of each layer with area
density N, per sheet; the latter are distributed equiprob-
ably within the GaAs mell regions with area density Nb
per layer. Here we assume that there is the same impurity
number density in each remote sheet (or in each layer).
Thus, to specify an impurity we can use a =(m, a), which
denotes the ath impurity in the mth sheet (or mth layer).
Its transverse coordinate is r, =r and longitudinal posi-
tion is (for remote impurities)

(7)

where c&„~(cl„~) are creation (annihilation) operators for
relative electrons with lowest subband wave function pili,

(q) is the corresponding matrix element of the
Coulomb potential, which can be written as

2

vl (q)= Fl (q), (8)
2E'gKq

and the corresponding energy el, ——R k /2m is degenerate
with respect to the layer indices. Here, k=—

~
k ~. Now

the Hamiltonian H, for relative electrons can be written
in second quantized representation as

He = g elicli+gii+ 2 I 0'(q)cl, li+q, iicl'li q, cr c/ ,li, , n—clt', n '~'',
f,k, o f, f'

k, k', q
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Q Q
z, =md —s m =0,+1, . . . and —&s &d ——,(14)

2 2

or (for background impurities)

z, =md+z m =0, +1, . . . and ——&z & — . (15)
0 0

C

Ft(q, z, ) =F(q, l —m, —s)

e
—q ~z+(t —m)d+s ~g(z)2d

exp[ —q l
(I —m)d +s

l ]I(q) if I —m & (),
exp[ —q l

(I —m)d +s
l ]I(—q) if I —m &0,

Therefore, for remote impurities and for background impurities

F(qz ) if/=m,
Ft(q, z, )=F(q, / —m, z )= J e g(z) dz= ~ exp[ —q l(I —m)d l]exp(qz )I(q) if /&m,

exp[ —q l
(I m}d—

l ]exp( qz~)I—( —q) if / & m,
(17}

in which (u =—qa)

Sm
F(q,z ) = 1+ cos —z

u(u + ) 2m

Q = (q, q, } is the 3D wave vector. In Eq. (20),
M(q, q„A, ) =M(Q, A, ) is the matrix element of the
electron-phonon interaction in 30 plane-wave representa-
tion and I (iq, ) is a form factor:

—2 exp ——cosh(qz ) . {18)
2

l
I(iq, )

l
=n sin y/[y (y —m2)2],

with y
—=q, a/2.

(21)

H, ~= g M(q, q„A, )I(iq, )e'q (b~r, +b'r/r )

X ~ &I,k+q el k 0 ~

l, k, cr

(20)

in the Hamiltonian. In these two equations, b&z (b&&)
are creation (annihilation) operators for the phonons of
wave vector Q in branch I, and frequency Qq&.

The phonons in the Al„Ga& „As-GaAs superlattice can
be considered approximately the same as in bulk GaAs.
They give rise to a phonon part

Hph
——g fiQggb gt,br/r

Q, A.

and an electron-phonon interaction

III. FORCE- AND ENERGY-BALANCE
EQUATIONS

The derivation of the force- and energy-balance equa-
tions in steady-state transport devolves upon the evalua-
tion of the statistical expectation values of the time
derivative of the center-of-mass momentum
P= i [P,H]/fi —and the rate of change of the total
relative-electron energy H, = i [H„H]/—1, or that of the
total phonon energy H&h = —/[H&h, H]/A'. The procedure
is similar to that described in Ref. 5 and will not be re-
peated here. However, we shall discuss the aspects specif-
ically related to the case of a superlattice.

In steady state, when the center of mass moves at a con-
stant velocity v, the frictional force due to phonons can be
shown to be

T

Pa=2 2 IM{q qx ~)
I li(/qs) l'qge "* II(l, l', q, Q~q +qv) n

kgT
A'(Qqg+q v}

kgT,

attice and electron temperatures respectively' n (x)= 1/[exp(x) 1] is the Bose function. v is
the center-of-mass velocity or the average drift velocity of the system. II2(1,1',q co) is the imaginary part of the Fourier
transform « the elec«on density-density correlation function of the superlattice Ilr(1, /', q, t) defined by

Here the average is in an equilibrium ensemble of the
relative-electron system with Hamiltonian 0, and tem-
perature T„ imagining it to be decoupled. Also the step
function 8{t)=1for t &0 and 8(t)=0 otherwise.

In the absence of Coulomb interaction between carriers,
the density-density correlation function has nonzero value

only when I =I':

II(/, I',q, co) =Sit 11(q,m),
and

f(eg+q) —f (eg)II q, ro)=2
Reit+ eg+q —eg+ l5 {25)



X. L. LEI, N. J. M. HORING, AND J. Q. ZHANG

is the density-density correlation function for a single
sheet of 2D electrons without Coulomb interaction.
f(E)= 1/I exp[(e e—f )Ika T, ]+1] is the Fermi-Dirac
function at temperature T, and e~ e——f( T, ) is the corre-
sponding temperature-dependent Fermi energy, or chemi-
cal potential.

The inclusion of both intralayer and interlayer carrier
Coulomb interactions can be achieved using the random-
phase approximation (RPA). The well-known RPA treat-
ment leads to the following equation:

11(l,l', q, co) =5g rl(q, co)+II(q,co)g VI (q)II(m, l', q, co) .

II(q„q,co) =g e ' II(l,q, co),
I

Eq. (27) is easily solved to give

Il(q„q, co) = II(q

)co�

)

1 —V(q, q, )II(q, co)

with

V(q, q, ) =y. V,(,).-""
I

2

[H(q)+S(q, q, )],
2&gPcg

(28)

(29)

(30)

(26)

Assuming an infinite superlattice and neglecting image
contributions, we have V& (q)=Vi (q) and II(l, l', q, co)
=II(l —I', q, co) and Eq. (26) reduces to

T

II(l,q, co) =II(q, co) 5(0+@Vi (q)II(m, q, co) . (27)

By introducing

in which S(q,q, ) comes from the interlayer carrier in-
teraction:

cos(q, d) —exp( —qd)S q, q, ) = exp(qa)I(q)cosh qd —cos q, d
(31)

In terms of the correlation function Il(q„q, co), we can
rewrite Eq. (22) as a phonon-induced per-layer frictional
force fz.

2 IM(qn ~) i'l~(iq. ) I'qIlz(qg q, Qqx+q» n
A(Q~i+q. v)

kgT, (32)

Note that although IIz(q„q, co) is a periodic function of q„~ M
( ~

I
~

is not. The sum over q, goes from —()0 to ao as
usual:

g~(2~) ' f dq, .

The energy loss of the relative-electron system is due to inelastic scattering associated with the electron-phonon cou-
pling. A similar derivation yields the per-layer energy-transfer rate from the electron system to the phonon system:

=2 g ~M(q, q„A, )
~ ~

I(~q, ) ( Q& II (q„q,Q~ +q )
fiQqg

q 7 ling
7 Al kgT

R(Qgi+q v)

ksT, (33)

In deriving the impurity-induced frictional force one
needs to average over impurity sites. We assume that
there is no interference effect between different kinds of
scatterers so that the contributions to the frictional force
due to remote- and background-impurity scatterings are
additive and the average over these two kinds of impuri-
ties can be done separately. Thus we shall evaluate the
following quantities:

QF(q, ( mz)F(ql ——«, z, e,)e
' e), '

m, n aP

I

the expression (34) can be simplified approximately as

g F(ql m, z)F(q, l' n,z,)(g—e-
m, m' a,P

where

a/2
F(q, l —m, z ) =—f F(q, l —m, z)dz

g —a/2

K(q) for I =m,

(36)

for background impurities, and
exp[ —q ~(l —m)d

~ ] I(q)
qQ

(35)
I'q r~+I q'. I'p

g(XF(q, l —m, e)F(q, l' n, —e)e- —
m, n a, P

for l~m, (37)

for remote impurities. The average is over all the possible
configurations of the impurity distribution in the mth and
nth layers (sheets). Since F(q, l —m, z ) is a smooth
nonoscillatory function of z and the background impuri-
ties are distributed equiprobably within each well region,

with (u:—qa)

K(q)=
(4H+u )u

u 1 —exp( —u)2

1+
4m. Q
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Therefore, in either case, we essentially deal with the
quantity

'q' ma+'q' npA= ~~e' '
a,P

(39)

If the impurity distribution is random within each sheet
(layer) and there is no correlation between different sheets
(layers), the quantity in Eq. {39)is a two-dimensional ex-
tension of the averaging discussed by many authors in the
3D case. ' '" Therefore, to the lowest order of Nq

(NI ——N, or Nb is the impurity sheet density),

A =N15q q,
independent of tlie layer indices m and n The. assump-
tion of noncorrelation of the impurity distributions in dif-
ferent sheets generally seems reasonable. Nevertheless, as
discussed in Ref. 12, the possibility of correlation between
the impurity distributions in different layers could be in-

I

d ~~d iq md
g (m) = dq, g (q, )e ' (42)

with the corresponding inverse series

g(q, )=gg{m)e (43)

The total frictional force due to remote-impurity scatter-
ing can now be written as

eluded in the following way. The superlattice system
structure enables us to assume that the quantity in Eq.
(39) is a function of m n—after configuration averaging:

~ g

"r)-NzB~ rg(m —n),
~.B

where the function g(m) (m =0,+1, . . . ) may be ex-
pressed as a Fourier coefficient:

2
'2

d/n q lfg (Nl —5)df dq, g g F(q, l —m, s)F(q—, l' n, —s—)e ' g(q, )A2(l —l', q, q v) .
2egtc 2m' —~«q (44)

A similar expression could also be obtained for the background-impurity-induced total force. The summation over the
layer indices in Eq. (44) is easy to perform, resulting in the expression for the per-layer frictional force due to remote-
and background-impurity scatterings jointly:

r '2
2

f dq, g N(q, q, )g(q, )II2(q„q,q v), (45)
q

26pK 2% —d«q
in which N(q, q, ) is an effective impurity density:

sinh[q (d —s)]+exp(iq, d)sinh(qs)
N{q,q, ) =N„Z„ exp(qa )I(q)cosh qd —cos qg

2
2 cos(q, d) —exp( qd) exp{qa)—

+NbZb I(q)+ (q)cosh qd —cos q, d qa

with

2 2

z N(q) II2(0,q, q v),
2E'pK q

(47)

N(q) =N(q, 0)

cosh[q (d /2 —s)] 2

and Z, and Zb are equivalent charge numbers of the re-
mote and background impurities.

For an uncorrelated distribution of impurities, g (m) = 1

and g(q, ) =2n5(q, d), whence the expression (45) for the
iinpurity-induced per-layer frictional force f; reduces to

and

v f(v)+w(v)=0.

Here N, is the carrier area density per layer, and

f(v)= f;+ f~

(50)

(51)

is the per-layer frictional force due to impurity and pho-
non scatterings, and w (v) is the per-layer energy-loss rate
of the electron system.

The carrier mobility, defined by (v—=
~

v
~

)

can be written in terms of the per-layer frictional force
along the x direction f„:

r

qa exp(qd) —1

2
1 x

p tv (53)

NgeE+ f(v) =0 (49)

Now the force and energy bamce equations of stmdy
state transport can be written down for each layer:

The contributions to 1/p by different scattering mecha-
riisms (remote and background impurities, acoustic and
optical phonons, etc.) are additive within the present
lowest-order model, because the frictional forces induced
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by different mechanisms are additive. Nevertheless, all
these forces depend on the electron temperature, which is
to be determined from the energy balance equation involv-
ing all the scattering mechanisms jcuntly.

IV. LINEAR MOBILITY

In the presence of an energy-loss mechanism (electron-
phonon interaction), the energy balance equation yields a
steady-state solution with electron teniperature T, =T
+0(E ) for weak electric field E. Therefare, the iso-
thermal linear mobility' is determined solely by the force
balance equation at common electron and lattice tempera-
ture T. We have

(54)

for impurity-limited inverse Ohmic mobility (assume un-
correlated distributions of impurities in different sheets
and layers}, and [n'(x) =dn (x)/dx]

~
~(q,q„g)

~ q„ 112(q„q,Qqg)
PLO e+ kBTqq A,

X n' AQgg
(55)

8

for phonon-limited inverse Ohmic mobility. These for-
mulas incorporate in full the role of dynamic and
temperature-dependent carrier screening represented in
the structure of the density-density correlation function of
the superlattice [Eq. (23)] within the framework of the

RPA.
The remote- and background-impurity-limited Ohmic

mobilities have been calculated from Eq. (54) as functions
of temperature for several different geometrical parame-
ters of GaAs-Al, Ga~ „As superlattices. [The parameters
used in the calculations are GaAs mass density
5.31g/cm3, effective mass m =0.07m, (m, is the free-
electron inass), transverse sound velocity v„=2.48X103
m/s, longitudinal sound velocity v,~

——5.29X10' m/s,
longitudinal optical-phonon energy RQO ——35.4 meU, low-
frequency dielectric constant «=12.9, optical dielectric
constant «„=10.8, acoustic deformation potential:- =8.5
eV, and piezoelectric constant e~& ——1.41X10 V/m. ] The
results are shown in Fig. 1 (for remote-impurity scatter-
ing} and Fig. 2 (for background-impurity scattering),
where we plot the inverse Ohmic mobilities p,.o normal-
ized by their values at T=0 K, p;0(0) ', against tem-
perature from T =0.5 to 400 K, for superlattices with a
carrier density E,=2.0X10" cm but different well
widths a and well separations d. In most cases the in-
verse Ohmic mobility increases with increasing tempera-
ture in the low-temperature region, then decreases after
reaching a maximum. This decrease of 1/p;0 at high
temperatures is a coinmon feature of impurity-induced
linear resistivity when carriers obey Maxwell-Boltzmann
statistics. This feature has alsa been faund in both 3D
and 2D systems. 5' ' Note that the case of a =0 is
cquiva1ent to a pure 2D-sheet-array model widely used for
a superlattice, in which the electron density has a 5 func-
tion in the z directian:

~
g(z ld)

~
=5(z——ld).

The Ohmic mobilities due to both acoustic and polar
optical-phonon scattering have been calculated from Eq.
(55) for several different geometrical parameters of

I ~ I I
I

I I
1

I ~ I $

[

1.2

1.0

0.$

Ge As -Al GaAs

I& —2x 1011

Relate impuri

0. 5

I I i l I f

100 500

FIG. 1. Normalized inverse Ohmic mobilities p;0(0)jp;0 due to remote-impurity scatterings are sho~n as functions of temperature
for super1attices with carrier density N, =2.0~ 10" cm 2 per sheet but different geoaietrica1 parameters (in A): 1—a =0, d =100,
s =25; 2—a =0, d =200, s =25; 3—u =50, d = 100, s =50; . a = 100, d =200, s =75; 5—a =200, d =400, s = 125.
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ty of the contributions of these two kinds of impurities to
the Ohmic mobility in the zero-temperature limit. More-
over, the RPA expression [Eq. (29)] for the density-
density correlation function of a superlattice is used in the
calculation, thereby including full carrier screening and
high-field descreening effects as well as plasmon contribu-
tions.

The calculated results for the nonlinear mobility p [de-
fined by Eq. (52)] normalized to its Ohinic limit po, and
the electron temperature T„are shown as functions of
drift velocity v in Figs. 4(a)—4(c) at lattice temperature
T =0 K for GaAs-A1, Gai „As superlattices with carrier
density N, =2.0X10" cm per layer, but different su-

perlattice geometrical parameters (a, d and s), and dif-
ferent zero-temperature Ohmic mobilities po correspond-
ing to differing effective impurity densities. The non-
linear mobility generally decreases monotonically with in-
creasing drift velocity v. This is usually a feature of sys-
tems composed of one kind (same effective mass) of car-
rier. On the other hand, the electron temperature is not
necessarily monotonic in v„as can be seen in Figs.
4(a)—4(c), where the curves labeled 1 (0 K Ohmic mobility

po ——2.5 X 10 cm /V s) dip as v increases (around
v =2—3 X 10 cm/s), reflecting a trend toward an
electron-cooling-type phenomenon. Electron cooling
arises from a rapid increase of the electron-energy-loss
rate with increasing drift velocity at that range of v for
which the impurity scattering in the sample is relatively
weak compared to electron-phonon scattering. Cooling
may occur due to acoustic-phonon coupling at around the
sound velocity only in very pure samples. ' In the present
case, however, the decrease of T, with increasing v is due
to polar optical-phonon scattering; it may give rise to a
much larger electron-energy-loss rate at large v, resulting
in the occurrence of the cooling-type effect in experimen-
tally accessible systems. For given carrier sheet density
X, and Ohmic mobility 1uo and at fixed drift velocity, the
carriers generally stay cooler and show a stronger cooling
trend in samples with smaller well width a. This may be
attributed to the enhancement of the effective electron-
phonon interaction in very thin quantum-well systems.
These cooling-type effects may be detected, provided that
the electron temperature can be properly determined ex-
perimentally. It should be noted that the electron tem-
perature here is not a parameter in a preassumed distribu-
tion function for the carriers in transport, but rather it
measures the internal energy of the relative-electron sys-
tem and should thus reflect the strength of the carrier
thermal motion. It seems not unreasonable to conjecture
that T, may be estimated from thermal noise measure-
ments on the system.
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FIG. 4. (a}—(c) Nonlinear nobilities normalized to the Ohm-
ic limit p/po (solid curves} and electron temperatures T,
(dashed curves) are sho~n as functions of drift velocity v at lat-
tice temperature T=4.2 K for GaAs-Al„Ga~ „As quantum-
well superlattices with carrier density N, =2.0)&10" cm per
sheet, but different values of impurity-limited Ohmic mobilities:
1—2.5&10' cm /Vs; 2—8.0&10 cm /Vs.
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