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Efficient approach to the ab initio Hartree-Fock problem of solids,
with application to diamond and silicon
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The nonlocal exchange (Hartree-Pock approximation), as a crucial quantity in the correct descrip-

tion of the many-body problem, is gaining increasing attention in the field of electronic structures of
solids. Because of the nonlocality, the numerical solution of the Hartree-Fock equation is very

cumbersome and ab initio Hartree-Pock methods for solids are just now being developed. %'e sug-

gest an efficient approximation scheme which yields the Fock matrix and the total energy as well as

the band structure. Numerical results for diamond and si1icon are presented.

I. INTRODUCTION

Until now nearly all calculations in the field of elec-
tronic structures of solids were performed within the
framework of the local-density approximation (LDA).
The latter is a "local" approximation to the dcnsity-
functional theory (DE=I') which provides, at least in princi-
ple, an exact description of ground-state properties of
electronic systems. '2 For a large number of systems, in
particular metals, it leads to good results. This is one
reason for the increasing success of the LDA, another one
is its computational simplicity.

The computation of band structures (excitation ener-
gies) goes beyond Di i'.3' Despite this, in actual LDA
calculations the eigen values of the one-particle
Schrodinger-type equations are often interpreted as excita-
tion energies. For large-gap semiconductors and insula-
tors this leads to considerable errors (energy gapa «re
found to be too small typically by 50%). Therefore, other
computational schemes are highly desirable.

Ab initio methods as they are used, e.g., in quantum
chemistry, have the advantage of allowing for controlled
approxitnations as far as a treatment of electron correla-
tions is concerned. They have the disadvantage, though,
that they require a Hartree-Fock calculation as a starting
point. In fact, it has recently been shown that it is the
Hartree-Fock part, and here in particular the nonlocal ex-
change, which is the bottleneck even in a calculation
which includes electron correlations. On the other hand,
the importance of nonlocal features of the exchange in the
field of semiconductors and insulators is becoming more
and more apparent because they infiuence strongly, in
particular, the energy gap in these systems (see, e.g., Ref.
6). Therefore it is very important to improve on those
computational schemes which are based on the Hartree-
Fock approximation (HFA).

So far the HFA has not been used widely for solids.
Due to the nonlocality of the exchange potential, the solu-

tion of the Hartree-Fock equation is very cumbersome
and the development of ab initio Hartree-Fock methods
for solids is at the very beginning. It is the aim of this pa-

per to rcport on some progress we have made.
We propose here an efficient approximation scheme

that is based on the similarity of the one-particle orbitals
in the LDA and the HFA. This point will be discussed in
Sec. II. Section III is devoted to the description of a new

procedure yielding the required Hartree-Fock quantities
and the underlying formalism. Numerical results for dia-
mond and silicon are contained in Sec. IV, while a sum-

mary is given in Sec. V.

II. SIGNIFICANCE OF LDA %AVE FUNCTIONS

It is well known that the ground-state density is well
described in both the LDA and in the HFA, leading to a
conformity of the electronic densities within both approx-
imations. It is reasonable to assume that there should also
be an agreement in the wave functions of both one-
particle equations. This was investigated for the first time
by Slater, who performed numerical calculations for
atoms from helium to argon. He calculated the HFA-
partial energies (kinetic, Hartree energy, . . .) with Xa
wave functions.

The agreement, even in all partial energies, is due to the
virial theorem which is fulfilled in the LDA as well as in
the HFA. The agreement vnth ab initio HF results was
best for a= —,', which is close to the Kohn-Sham value of
a= —', used in the LDA. The relative errors in the partial
energies for the investigated systems were less than 10
This shows that at least for those atoms the wave func-
tions of the LDA and the HFA, respectively, do agree
very well.

Now let us turn to an extremely different case, i.e., that
of the homogeneous electron gas. Here the wave func-
tions do agree exactly (plane waves) in the two approxima-
tions under consideration, but the eigenvalues show very
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different behavior.
While in the LDA the exchange potential is only a con-

stant [due to the constant electronic density p(x)=n],
leading to

LD)().
( k ) k 2 y2 VLDA

V,
" =(3nr~)'",

the HFA yields a strongly k-dependent exchange part of
the self-energy. The HFA energies read

s " (k)=k2l2m —V„F(klkz),

F(x)=1+ ln
1 —x 1+x

~(0)=2, +(1)=1, F(m)=0.
We see a strong discrepancy between both dispersion rela-
tions, although the wave functions are identically the
same. This means that the local approximation of the
nonlocal exchange potential has strong infiuence on the
one-particle energies but none on the wave functions.

We have seen that in two limiting cases, i.e., the atomic
limit and the homogeneous. electron gas, the wave func-
tions of the LDA agree very well with those of the HFA.
In order to see whether this holds true also in the inter-
mediate regime, we performed test calculations for dia-
mond and silicon. For this purpose we took different sets
of test functions IP;I and determined the Hartree-Fock
energies

'xH x '"x

f d'(x)d(x)d~~x

g=detI(It;(x) I .

The exact Hartree-Fock wave functions should yield the
lowest energy among all Slater determinantal test func-
tions.

The trial functions we used were, on the one hand, the
results of an approximate Hartree-Fock calculation us-

ing the localization potential of Gilbert and Adams (Ref.
10). On the other hand, we applied wave functions of a
LDA calculation performed within a linear combination
of atomic orbitals (LCAO) scheme which was developed

by Appelbaum and Hamann. A detailed description of
the method can be found in Ref. 11.

In both cases the same basis sets have been used which
will be discussed in Sec. IV. The resulting total energies
are given in Table I. For diamond an all-electron calcula-
tion has been performed, whereas for silicon the neon core
has been replaced by a pseudopotential. Because of the

TABLE I. Total Hartree-Fock ground-state energy (atomic
units) contained with two different sets of trial functions (HFA
and LDA) as explained in the text.

LDA

uI. FORM+uSM

In the preceding section we have seen that the one-
particle wave functions of the LDA and the HFA are in
very good agreement. Therefore, one can use the efficient
algorithms of the LDA to determine approximate HF
wave functions. Once the wave functions are known to a
good approximation, the nonlocal exchange potential has
to be calculated only once. The nonlocal exchange poten-
tial together with the kinetic and the Hartree part of the
Hamiltonian, which is already known from LDA calcula-
tion, form the one-particle Hamiltonian for which the
eigenvalue problem has to be solved. Thus one can avoid
the repeated calculation of the nonlocal exchange poten-
tial that dominates the computational effort. The expense
of solving the Hartree-Fock problem is therefore reduced
by the factor of —100, which is the number of iterations
normally needed for self-consistent Hartree-Fock calcula-
tions.

The whole problem has been formulatal in second
quantization. For a set of basis functions If (x)I, the
Hartree-Fock Hamiltonian for closed-shell systems is
given by

m), m2, e
I'm, Pm, am, ~+E.n —E.td'2 (4)

with the Fock matrix

1

~m)m& tm(m2+ g ( Vm&m2m3md 2 Vm(mdm3m2)~m3m&
Nf 3,Ngy

and the density matrix

P =g(HF~a ~ (HF) .

The hopping matrix t is given by

t, ,= *, xH, xd x,

variational principle the LDA wave functions are obvious-

ly better HF wave functions than those of the approxi-
mate HFA calculations.

Recently the LDA has been extended by Langreth and
Mehl. '2 Their theory is computationally of comparable
simplicity as the LDA but is superior to it. Electronic
densities seem to be better than HF densities as calcula-
tions on atoms demonstrate for which not only HF but
also configuration-interaction calculations are available.
Therefore, it would be very interesting to use wave func-
tions obtained from their theory as input for a HF energy
calculation and to compare the energy with that of a
LDA wave function. We leave this problem to a future
investigation.

In summary we can say that there is a good agreement
between the wave functions of the LDA and those of the
HFA for atoms, homogeneous systems and for nonpolar
solids. Whether this also holds true for solids with more
complex unit cells remains to be seen.

Diamond
Silicon

—7S.S9S
—7.S42

—7S.656
—7.994

with Hp being composed of the kinetic part

HI„„———5/2m,
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the lattice part

H„=—Zg fx —x
/

given by

m2

(18)

V~~~~ = ~ X ~ X X—X

Xf,(x')f, (x')d x d x' .

E„„is the nucleus-nucleus interaction energy:

(10)

(Z is the mass number and x, is the vector of the atomic
positions), and, in the case of silicon, the term of the pseu-
dopotential H~, which will be discussed later. The in-
teraction matrix is defined as

Therefore,

&m ) =&mm & (19)

The Hartree-Fock Hamiltonian expressed in the new
orthogonal operators has the form

Fll I,m2

with

E„„=—g Jx —x
X~,X~

Finally the energy E;„,is given by

Eint g ( ~mtm&ttt3m3 2 ~m tttt4ttt3&tt)t~ttttttttnt3nt4
m&, m2
Pfl3, i@4

(12)

Xexp[ —ay/(x —x; —rpg) j . (13)

p labels the different orbitals in one unit cell while x;
denotes the lattice vectors. The great advantage of these
basis functions is that all integrals [see Eqs. (7) and (10)]
can be expressed in terms of elementary functions, error
function, and Bessel functions (Ref. 17) for which very
fast algorithms are available. The basis functions are not
orthogonal to each other. The corresponding operators
a' ' therefore fulfill the following relations:

(Oia, ~, iO)&S, ,= Jf', ( x)f,( x) dx~,

The last term in Eq. (4) has to be subtracted in order to
avoid double counting of the electron-electron interaction.

The basis sets we used are minimal Gauss-type orbitals
of double-zeta quality. Polarization functions are not in-
cluded (Refs. 13—16). In a lobe-Gauss representation all
basis functions can be written as linear combinations of
elementary Gauss functions

' 3/4

f (x)=f„;(x)=gC„„

The expense for calculating the nonlocal exchange part of
the Fock matrix has been reduced by a factor of about 16
by making use of the symmetry of the diamond lattice.
Further reduction of computer time has been achieved by
dynamical truncations of the infinite sums in Eqs. (5) and
(12). Each partial sum has been truncated in such a way
that the related error in the tota1 energy is less than 10
One therefore can be sure that the results are reliable. For
diamond we performed an all-electron calculation,
whereas in the case of silicon the neon core has been re-
placed by a suitable pseudopotential (Ref. 8), with respect
to which the basis functions have been optimized.

IV. NUMERICAL RESULTS

A. Cohesive energy

The total energy has been calculated in both cases for
the experimental lattice parameters (a=5. 131489 A for
silicon and a =3.370045 A for diamond). By making use
of the atomic HF energies, calculated within the same
basis sets, we obtain the values for the cohesive energies
listed in Table II. For comparison we also present the re-
sults of three other calculations. '

The results of Mauger and I.annoo'9 have been obtained
by a different scheme. They derived the cohesive energy
from the energy difference of the vacuum level and the
top of the conduction band and interpreted it as cohesive
energy, which is not reliable.

The work of Euwema et al. ' gives good insight into
the infiuence of different truncation criteria. According
to which criterion was chosen they obtained the different
values listed in Table II. There is an uncertainty in their
cohesive energy which is related to a correction term the

(O~a, ~, ~0)=(S ')

—1titttt'l=(S )m m ~c ~
1 2

(15)

(16)

TABLE II. Cohesive energies (atomic units} of diamond and
silicon within the HFA using a minimal basis set. The value in
parentheses is explained in the text.

but this does not matter, since the basis functions can
easily be orthogonallzed by

f,(x)=g(S ' ), ,f,(x) .

Analogously the transformation for the operators a~' is

Present work
Reference 19
Reference 18
References 20—22
Reference 24

Diamond

0.346
0.3
0.30—0.37
0.41 4', 0.31)
0.39

Silicon

0.182

0.184
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TABLE III. Cohesive energies (atomic units) of diamond and
silicon. The first column contains the Hartree-Fock limit, the
second column the difference to the experimental result, which
must be compared with the correlation contribution (third
column).

(a. U. )

0.4—
())

x =o.

Diamond

Silicon

'Reference 27.
Reference 4.

&HFA

0.405

0.27

&expt ~HFA

0.158'
0.13b

0.09'

p( x)

authors have to add in order to compensate for a loss of
translational symmetry due to the truncation criteria.

In our opinion, the only shortcoming in the calculation
of Dovesi et al. is the small basis set they have used. In
the case of diamond they took a minimal (Slater-type or-
bital) STO-3-6 basis. The error due to this basis set has
been estimated' and leads to a cohesive energy as indicat-
ed in parentheses (Table II). In the calculation for silicon
Dovesi et al. used a basis set comparable to ours. There-
fore, the good agreement is not astonishing.

By relating HF limits of the total energies for CH4,
C2H6, SiH4, and Si2H6 (Refs. 14, 23, and 24) to the values
obtained within minimal basis sets for the same molecules
it is possible under the assumption that the same relation-
ship holds for solids to determine the HF limits for the
cohesive energies of diamond and silicon (first column of
Table III). In the second column the differences between
the experimental results ' and the HF values are listed.
Since the numerical errors of our HF results are estimated
to be negligible, these differences give directly the correla-
tion contribution to the cohesive energy. The correlation
effects contribute significantly (=25%) to the cohesive
energy. The correlation corrections, which are listed in
the fourth column of Table III are in good agreement
with our results.

B. Charge densities and x-ray factors

The charge densities of the valence electrons computed
in this work are shown in Figs. 1 and 2. In Fig. 1 a com-
parison is made between the densities of diamond and sil-
icon. The difference is remarkable in the peak structure
along the bond direction. Whereas in diamond a double
peak appears, silicon sho~s only one peak. This is a
consequence of the more diffuse wave functions. The
difference in magnitude is inainly due to the different lat-
tice parameters. The computed densities are in good
agreement with available experimental results. Densities
computed from a superposition of atomic charge densities
would give a too small value for the density in the center
of the bond. Figure 1 also contains experimental results
and atomic-superposition results ' ' for the densities in
the bond center. Figure 2 shows the decrease of the
charge densities in a direction orthogonal to the bond
direction starting from the center of the bond. There is a
similar decay in diamond and in silicon, which can be
easily understood because this decrease is dominated by
the angular part of the wave functions which are equal in

0.0
I

0.5

FIG. 1. Density of the valence electrons (atomic units) along
the bond direction for diamond (upper curve) and silicon (lower
curve). indicates experimental results (Ref. 28). )& indicates
atomic-superposition density (Ref. 28).

diamond and silicon.
The x-ray factor is defined by

F(G)=p(G)/f(G), (22)

where'(G) is the Fourier transform of the charge density
p(x), f(G) is the Fourier transform of hypothetical point
charges at every lattice site with the normalization
f(0)=1, and

f(G)= —ge" (23)

p (x)
p{xo)

x
x =(g/4) 1/2 i+a 0

(i&2) HJ

x=(gia) ~

0.5—

0.0
0.0 0.5 1.0

FIG. 2. Density of the valence electrons (atomic units) along
a direction orthogonal to the bond direction for diamond ( )

and silicon (—X—X —).

with z being the number of atoms within a unit cell and

y being the corresponding ve:tors to these atoms.
Table IV gives the structure factors of diamond calcu-

lated in this work compared with results of several other
publications. The last row contains the so-called agree-
ment factor, defined as

Z =g
~

F(G'„"")—F(G'„"-')
~ g ~

F(G'„"")
~

. (24)
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TABLE IV. X-ray factors of diamond (atomic units) compared with different other results: R is the agreement factor (see the

text).

G/(2~/a)

111
220
311
222
400
331
422
511
333
R

'Reference 22.
bPresent work.
'Reference 18.
dReferences 22 and 24.
'Reference 30.

Expt'

3.321
1.972
1.663
0.144
1.480
1.539
1.443
1.418
1.418

LDA

3.249
1.960
1.693
0.070
1.543
1.526
1.427
1.381
1.376
0.020

3.274
1.925
1.659
0.088
1.535
1.533
1.443
1.386
1.382
0.023

HFA'

3.298
1.931
1.571
0.086
1.545
1,527
1.417

0.024

3.281
1.995
1.692
0.139
1.493
1.605
1.408
1.392
1.392
0.015

atomic-superposition
density'

3.056
1.951
1.755
0.000
1.555
1.509
1.430
1.391
1.391
0.051

When one compares calculated densities with experimen-
tal structure factors one must realize that the largest con-
tributions are due to the core electrons. Therefore, such a
comparison does not allow any conclusions about the
quality of the valence electron description except for re-
fiections which would vanish in the absence of solid-state
effects.

The quality of the data of Zunger and Freeman is pri-
marily due to the much 1arger basis set. This is most im-
portant for the 222 peak which is forbidden for atomic-
superposition densities. The influence of the basis set on
this 222 peak his been investigated by Mauger and Lan-
noo. ' Apart from this peak, which is very sensitive to
the basis set, our results are in good agreement with the
experiment.

The x-ray factors for silicon are listed in Table V. Due
to the pseudopotential we have used, it has not been possi-
ble to calculate the contribution of the core electrons to
the x-ray factors. Therefore, comparison with the experi-
ment can only be made for the 222 peak, which is solely
determined by the valence electrons. As in the case of di-
amond there is an enormous discrepancy between the HF

value in the minimal basis set and the experimental data,
displaying again the sensitivity to the choice of the basis
set. According to what has been found for the cohesive
energy, the infiuence of the polarization functions on the
result is of more importance in the case of diamond than
it is for silicon.

C. Sand structure

The band structure of diamond is displayed in Figs.
3—5. Figure 3 gives a comparison between the LDA band

(ev}

0.5

TABLE V. X-ray factors of silicon (atomic units). Due to
the pseudopotential calculation only the value of the 222 peak of
the present work (b) can be compared with the experimental re-

sult (Ref'. 28).

Expt' -O.
111
220
311
222
400
331
422

333

'Reference 22.
bPresent work.

0.18—0.22

1.189
—0.057
—0.224

0.080
—0.183
—0.103
—0.076
—0.060
—0.058

FIG. 3. LDA band structure of diamond.
this work. indicates Ref. 29.

indicates
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structure calculated in this work (minimal basis set) and
that of Ref. 29 (basis set containing polarization func-
tions). We see that the basis set we used is accurate
enough for the description of the valence and lower con-
duction bands. Figures 4 and 5 show the Hartree and the
Hartree-Pock energy bands, respectively. The strong in-
fluence of the nonlocal exchange potential on the gap and
the bandwidths is obvious. It spreads the bands by a fac-
tor of about 1.2 and increases the energy gap at the F
point by a factor of about 3.2. In accordance with the re-
sults of Refs. 1—3 the minimum of the lowest conduction
band lies at the E, point. The deviation from this result
found by Dovesi et al. is due to their small basis set.
There is agreement among all authors about the sequence
of excited states at the I point.

As in the case of diamond we have tested the basis set
for silicon by comparing the band structures obtained
within the I.DA (Fig. 6). Here the polarization functions
are found to be more important than for diamond. In
particular, the size of the gap is affected by the basis set.
Nevertheless, the results for the valence and lower con-
duction bands are in reasonable agreement. The Hartree
and Hartree-Fock band structures, respectively, are plot-
ted in Fig. 7 and 8. Again the exchange potential causes a
big increase in the bandwidth (factor = 1.5) and in the en-

ergy gap at the I" point (by a factor of =6). In the Har-
tree approximation silicon turns out to be a semimetal.
Also in silicon the conduction-band minimum lies near
the E& point in accordance with the experiment.

Again Dovesi er al. find the minimum at the X point
together with an inversion of the I'» and the I 2 levels.
These artifacts result from the small basis set. Contrary

(a.u. )

1.0—

0.5

ch 00

(ev)

(a.u. ) (eV)
FIG. 5. HFA band structure of diamond.

(a.u. ) (eV)

0.2 -—

ch 0gI
10

O. l-
0 F

I

U) -0.2

-0.3

0

-0.4

-0.5

— -10

FIG. 4. Hartree band structure of diamond.
FIG. 6. LDA band structure of si1icon.

work. 0 indicates Ref. 29. X indicates Ref. 33.
indicates this
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(a.u. )

0.5 ~
04-
0.3 ——

(eV)

10

(a.u. )

0$

0.3

(eV)

10

0.2

0. 1

0.0 0.0

-0.1

FIG. 7. Hartree band structure of silicon.

-0.3
-10

to the cohesive energy the band structure has been calcu-
lated with a STO-3-3-3 basis set only. The authors men-
tion that the inversion will vanish within a STO-6-6-4
basis. This leads also to an uncertainty in the value of the
energy gap st the I point. A very recent work by
Ohkoshi3 leads to a direct gap that is in good agro.ment
with ours (Es ——8.15 eV). The same holds true for the
cohesive energy.

Table VI shows the band energies for some high-
symmetry points in k space as they have been calculated
by us and other authors. The discrepancy between the HF
results and the experimental values is due to the lack of
correlation. Horsch et al. s have shown for diamond
that, starting from the HF band structure, a correlation
contribution within a variational calculation leads to accu-
rate energy bands that do agree very well with the experi-
mental results.

-0.6—

-0.7—

-0.8
-20

FIG. 8. HFA band structure of silicon.

V. CONCLUSION

In this work it has been explicitly shown for the first
time that for real crystals like diamond and silicon the
one-particle wave functions of the LDA agree very well
with those of the HFA. This enables one to calculate the
total energy, electronic density, x-ray factor, and the band

TABLE VI. High-symmetry points of the energy bands of diamond and silicon (atomic units).

Diamond

Silicon

Mauger und Lannoo
{Ref. 19)
Dovesi et al.
(Ref. 22)
Euwema et ai.
(Ref. 18)
HFA'
Hartree'
LDA'
Experiment (Ref. 21)

Dovesi et ah.

(Ref. 28)
HFA'
Hartree'
LDA'
Experiment (Ref. 28)

—4.1

—4.1—5.7

—4.6
+ 15.8
—1.3

—3.5
+ 7.7
—3.1

29.1

30.5

29.5

29.7
23.6
21.8

21—24

19.8

18.5
13.3
12.6

b
Sap

15.0

13.9

14.7

13.9
4.3
5.5
7.3

8.0
1.3
2.3
3.5

gI c
C

13.3

11.8

11.6
9.9
6.3

0.7

0.5
1.3
0.5

Xg„d

—9.0

—8.7

—9.3
—7.8
—6.6

—5.0

—5.6
—3.8
—3.3

Xi„d

—17.1

—18.2

—18.8

—18.2
—14.1

—13.1

—12.8

—13.2
—8.7
—8.4

'%idth of the valence bands.
Direct gap.

'%'idth of the conduction bands.
dValues with respect to the I 25 level.
'Present work.
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structure by an efficient HF scheme. Actual calculations
have been performed based on this idea for diamond and
silicon. Due to the gain in computer time it has btxn pos-
sible to do the calculation without further uncontrollable
approximations and within a sufficiently large basis set.
VA'th these accurate HF results it is now possible to per-
form real many-body calculations. As an example we
have given the results for the cohesive energy, which was
in very good agreement with the experimental data.
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