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Influence of dissipation on the accuracy of the integral quantum Hall effect
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The dc conductivity o of a two-dimensional electron gas, in the presence of strong magnetic
fields, is evaluated for elastic impurity scattering in the first Born approximation. Short-range,
long-range, and Gaussian potentials are considered. The results depend explicitly on the scattering,
the temperature (P, and the magnetic field. For lo~ temperatures and high magnetic fields the

conductivity shows an activated type of behavior as observed experimentally. For an integer filling

factor the deviation Acr»(T) of the Hall conductivity from its zero-temperature quantized value, ob-

tained previously, is equal to ao (T); the coefficient a depends on the scattering, on the magnetic

field, and, for constant impurity concentration, on the temperature.

I. INTRODUCTION

Most of the theoretical studies of the integral quantum
Hall effect' are concerned with the evaluation, at zero
temperature, of the Hall conductivity o~„which shows
plateaus as a function of the magnetic field, where the
latter occur between Landau levels. The other conductivi-
ty component cr~, which measures the dissipation, is usu-

ally dismissed on account of the large gap between Lan-
dau levels and the existence of localized states between

them; the Fermi level is pinned by these states in the
gap. 2 " However, experiments show that cr~ is different
from zero, although very small, for finite temperatures
and it extrapolates to zero for zero temperature. ' More-
over, for finite temperatures and stron~ magnetic fields

o~ shows an activated type of behavior. ' ' '

We are not aware of explicit evaluations of the com-
ponent o~ other than those of Refs. 7—9, valid at zero
temperature. For short-range impurity scattering the
peak values of o~, corresponding to filled or half-filled
Landau levels, are shown to be independent of the scatter-
ing and the magnetic field and are different from zero.
In Ref. 8, however, a slight dependence of o~ on the
magnetic field is reported for magnetic fields that are not
too strong. The conclusions of Ref. 9 are similar to those
of Refs. 7 and 8. Early experiments are in good agree-
ment with the theory' "but later ones show dependence
of the peak values on the magnetic field "" or on the
electron concentration. '

It is clear from the above that more work is needixi in
order to clarify the role of the dissipation on the accuracy
of the effect, that is, the role of the scattering, the tem-

perature, and the magnetic field. In this paper, we evalu-

ate cr explicitly for finite temperatures in the first Born
approximation. We consider only elastic impurity scatter-
ing (short-range, long-range, or Gaussian-type potentials).
The dependence of the conductivity on the scattering and
the magnetic field is shown explicitly. For strong mag-
netic fields (for which the Born approximation is expected
to apply) u has an activated type of behavior as ob-
served experimentally. The result for o combined with

II. THE MAGNETOCONDUCTIVITY cr„„

A. Preliminaries

We consider a two-dimensional electron gas, such as the
one realized in the inversion layer of a metal-oxide-
semiconductor field-effect transistor (MOSFET}, in a
strong magnetic field 8 normal to the surface and parallel
to the z axis. In the Landau gauge, the one-electron
Hamiltonian, states, and eigenvalues read

h =(P+eA) /2m', A=(0,8x,0),

~
g)=

~
E,ky) =P~(x+xp)e ' /Ly'

eg=—e~ (N+ 1/2)ficop, ——X=0, 1,2, . . . ,

(2.1)

(2.2)

(2.3}

where cop ——e8/m' is the cyclotron frequency, m ' is the
effective mass, and I =A'/m 'cop. P~ represents
harmonic-oscillator wave functions, S denotes the Lan-
dau levels, A is the vector potential, and 30 ——I.„l.

„

is the
area. We set xp ———I k„.In the representation (2.2) the
matrix elements necessary for the evaluation of cr are

(g ~x
~
g')=xp5~~5k k, +(//i/2)

&&«&+14,N+i —i &4,x-»

(2.4)

(2.5)

the corresponding one for cr~„, published previously, '

helps explain the observed behavior of the resistivity
peaks.

In Sec. II, we present the formalism and the results. In
Sec. III, we present a simplified version of the results for
strong magnetic fields and we make a comparison with
the experiment.
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I. Screened interaction

=(N'!/N!)e-"u" -"[LN -"(u)]'

with N (N'; (2.6)

here u=l qi/2, qi ——q„+q„,arid LN(u) is a Laguerre
polynomial.

The conductivity tensor has been evaluated in Ref. 15.
When an electric field is applied in the x direction, the
two-dimensional version of the dc conductivity tr~ (spin
included) reads [cf. Ref. 15, Eq. (2.84)]

g (ng)gq(1 —(ng ) q)wg (Xg —Xg)ZÃ

where e is the electron charge, /= 1 jk&T, T is the tem-
perature, kz is Boltzmann's constant, and where (n~),

„

is
the equilibrium Fermi-Dirac distribution function. Fur-
ther, X&——(g (X

~
g}, ting is the transition rate given by

the "golden rule, " and the superscript d denotes that (2.7)
comes from the solution of the diagonal master equation
for the density operator p(p pe+p~) or from the corre-
sponding diagonal quantum Boltzmann equation. In Ref.
14, it has been shown that the nondiagonal contribution
0"~ vaillslles.

It is worth noting that (2.7) is valid for both elastic and
inelastic collisions. In what follows, we evaluate (2.7) for
elastic scattering with impurities.

For

U(r)=(e /k)exp( k,—r) jr,
~here k is the dielectric constant and k, the inverse
screening length, we have (in two dimensions) U(q)
=(2ne /k)(qi+k, )' . Using (2A) and (2.7)—(2.10), we
obtain

'I 2e' PNt 2m.e' 1

b %coo k 2n.

Xg f~(1 fN) J— i i du, (2.11)ep ISA(u}I'
qi+k,

where fz ——(ng), q. Due to symmetry, try@ will be given
by (2.11) with q~ replaced by q, . With o
=(o +ops)/2 we obtain

e' PNt v 2me'

Ii Rcoo k 2n.
Xg f~(1 f~) J — du, (2.12)

N u+
where b =k, li/2. Since

~
J&N(u)

~

i-e " the major con-
tribution to the integral, at least for small N, comes from
small values of u. For u &gb, (u+b) ' is expanded in
powers of ujb and the result for the integral over u,
I(N, b), in (2.12), is

B. Impurity scattering
I(N, b)=g ( —1) +'I~/b, ni =1,2, 3, . . . , (2.13)

We assume that the electrons are scattered quasielasti-
cally by randomly distributed impurities. Writing the im-
purity potential U(r —R) as g U(q)e'&' (r and R are
the positions of the electron and the impurity, respective-
ly), we find, with the help of (2.5), that the transition rate

eg is given by

where

u J~~ u ' u, m=123, . . . . (2.14)

The integral I has been evaluated explicitly in Ref. 16
for m=1,2,3 and the same method is applied for m ~ 3.
For nt =1, . . . , 4 the result is

NN', k k''sr
=(2ir/A')(Nt /Ao) g ) U(q) )

i
] J~~.(u ) (

~

k, k'+q (2.8)

Ii 2N+ 1, ——

Ii —2(3N +3N+1), —

Ii ——2(2N+ 1)(5N +5N+ 3),
Ig 4(N+1)(2N+—1—)(7N +7N+6)+2N (7N +5) .

(2.15}

where Xl is the impurity concentration. Further, since
the functions PN(x+xo) oscillate around the point —xo,
we have

Alternatively, one can use the explicit expressions for
L~(u) and express the integral in terms of exponential in-
tegrals or evaluate it numerically with b as a parameter.

L /2I2 ~o
dk =

2K —L„j'2I

and, using cylindrical coordinates,

(2.9)
2. Gaussian potential

The Fourier transform U(q} of the potential
2

U(r) =( Vo/md2)e ' /d, where d is the range of the po-
—;2d2tential, is U(q)= Voe '" /2. Repeating the steps in sub-

section B 1 we obtain (b'=d /1 )
', I"du .

2ml2

We can now evaluate (2.7).

(2.10) o~=(e jb)(nt'pNI Vo/Ith')

XgfN(1 —fN) I e "u
~
J~~(u) ~'du .

N
0

(2.16)
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For d ~0, (2.16) reduces to the delta function result given
below [cf. (2.18)]. The integral over u in (2.16) is equal to

—(3/Bb') J e b"
i
J (u)

i
du

and the modified integral can be done exactly. ' Alterna-
tively, for b' small, one can expand the exponential in
powers of b' and use (2.14) and (2.15). The result is fol-
1owing:

I ~ ——QNi/2n. (2n.e Ik) I ~
J~rr(u)

~
du/(u+b)

~ 2

I N (N——r Vole! )' P
(bl 1)N/i +

{b&)2

I rr=(Nr
~

U(q)
~

llr! ) r =(R ~os''rf} r (2.19)

m'PNr Vo'

hei

1
8 (b' —1)'

P
(b')'+1

frr
gb (b )rr+i N

=(e /h )(m'PNr Volhk)

where we have used the fact that J ~
J~~(u)

~

du=1
for I z. Notice that the results (2.19},obtained here in a
simple way, differ only by a factor of l/2 from the more
rigorous self-consistent results of Refs. 7 and 19. The
corresponding results for the conductivities are given by
(2.12), (2.16), and (2.18) multiplied by a factor %cool@.l rr.

D. Zero-temperature limit

X ~rr(1 —fN ) g ( b') '—I l(m —1)t, (2.17)

where Prr(z} is a Legendre polynomial. '

3. Short-range interaction

For U(r)= VS(r), U(q) is in~dent of q. The in-
tegral over u now becomes u

~
JrrN(u)

~
du and is

0
given by Ii, cf. (2.15). Moreover, the quantity
Nr

~
U(q)

~
is eqllal to ~ Im 1f, where rf is the relaxa-

tion time in the absence of the magnetic field. The result
18

If the integrals over u in Sec. II 8 are known functions
of N, we can also perform the sums over N at zero tem-
perature. However, we obtain a simple result only for
short-range potentials. This is also the result (apart from
numerical factors) for the first term of (2.12) and (2.16)
[cf. (2.15)) and is given below.

At zero temperature the factor pfz(1 frr) is equal —to
5(err —eF ), where sF is the Fermi level. To sum the prod-
uct (2N + 1)5(e~—eF) we use Poisson's summation for-
mula and we replace 5(ez —er;) by a Lorentzian of
width 1 ~. %e can then show that

g (N+ —,
' )5(e~ —eF)

o =(e /h)(PA/2nrf) g f~(1—frr)(2N+1) . (2.18) eF
1 2 ~ { 1)

—2 ( I'NIAL)

(faup)l

In contrast with previous results (valid for zero tempera-
ture ) this finite temperature result depends on the
scattering through w/ and on the magnetic field through
the factor frr. This is also the case with Eqs. (2.12) and
(2.17}but with a different dependence on the scattering.

The above results have been obtained within linear-
response theory. For corrections to these results, obtained
by the two-parameter scaling theory of localization at zero
temperature (and less explicitly at finite temperatures) see
Ref. 18.

C. Collision broadening

Xcos[2irs(eF /%coo) ] . (2.20)

2

limo = (2N+1)coth{+n/coorf)/2m'. o~f,
0 h

(2.21)

where we used (2.19). For Qmlero~y&&1, cothx=l/x
and (2.21) becomes simpler:

At zero temperature eF =(N+ ,' )%coo, co—s[2ms(eF/

Pic@0)]=(—1)', and the quantity in the large parens is
equal to coth(el z/Acro). Thus (2.18) becomes

Strictly speaking, the results (2.12), (2.17), and (2.18)
give a series of isolated peaks {N is an integer). Broaden-
ing of the levels can be incorporated heuristically by re-
placing the delta function in (2.8) by a Lorentzian of zero
shift {for simplicity) and of width I rr. (For more
rigorous treatments, see Refs. 7—9.) The level width I rr
is estimated from the relaxation time, I z =Ale For elas-.
tic scattering we have Ilr=g&, ur~~, where iog is given

by (2.8). Replacing the delta function in (2.8) by a
Lorentzian, we obtain, in correspondence with subsections
8 1, 8 2, and 8 3, the followlllg level widths:

2

limo" = (2N+1)/2~+lr~c~f .XX (2.22)

Thus the conductivity, which goes to zero for coorf ~00,
decreases with increasing magnetic field as observed at 50
mK (Ref. 5) and at 4.2 K (Ref. 12}; in the latter case,
however, Pfrr(1 fN) is only aPPro—ximately equal to
5(e~ —eF ).

The main difference of (2.22) from the results of Refs.
7 and 9 [equal to (e /h)(2N+1) divided by ir and 2,
respectively] is its dependence on coo~y absent in those
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references. However, a dependence on ufo~/ is reported in
Ref. 8 but it is opposite to that in (2.22).

much for 8 between 4.98T and 6.65T, this shows that k,
varies with the magnetic field 8.

III. COMPARISON %'ITH THE EXPERIMENT

f)v(1 f~)=—g ( —1) +'me =e (3.1)

With (3.1), the results (2.12), (2.17), and (2.18) take the
approximate form (cr =o )

=(ei/Ii)(PNI /~o)(~2~e i/k )ie

X Q J~~ Q Q Q+ 27K, (3.2)

tT~ =(e'/h )(m 'PNq Vo/It R)e

(b' —1) p
(&') +1

~b' (b'+1)"+' (b')' —1
(3.3)

o = (e /h )(2N+1)(13'/2tr~f )e (3.4)

These results depend on the magnetic field 8 through
C. The first one, Eq. (3.2), however, has an additional 8
dependence through %coo and b and Eq. (3.3) through b'.

B. Activated behavior

A. Strong magnetic fields

For electrons interacting with randomly distributed im-

purities, the Born approximation applies for magnetic
Gelds such that I «RI, where RI is the average impurity
separation and 1=(R/m'rao)'~ This restriction howev-

er, as discussed in Ref. 14, can be relaxed.
In what follows we assume that the magnetic field is so

strong that for low temperatures, only the ¹h term con-
tributes to the sum over N in the results of Sec. II 8. Set-
ting C P=(sF s—N)a, ssuming e «1, and expanding
the Fermi factors, we obtain

2. Gaussian potential

The quantity I
. J, in Eq. (3.3), is equal to

[(1+b')' —4(1+b')+6]/(1+ b')',
b'=d /I T.he factor NIVo is replaced by the corre-
sponding value, fi /rf m', for short-range interaction and

rf is taken from the mobility. The results are again given

by curves I and II, in Fig. 1, and have been obtained with
d/1=0. 6 and d/1=0. 0, respectively. Again, since I does
not vary much between the two curves this indicates, in

analogy with subsection B 1, that the range d of the po-
tential varies with the magnetic field.

3. Short-range interaction

The relaxation time rf is taken from the mobility. The
results are shown in Fig. 1 by the curves III and IV,
respectively.

As can be seen from Fig. 1 the agreement of the theory
with the experiment is reasonable for the screened interac-
tion and the Gaussian potential but rather poor for the
short-range interaction, especially for the half-filled level
(curve III). The discrepancies arise mainly from the fact
that the Born approximation requires I «RI, where RI is

the average impurity separation, while in the reported ex-

periment (1-100 A, RI-200 A) this condition is not
well fulfilled. This is formally reflected in the values of
e which are not much smaller than 1 as we assumed,

especially for low 1/T values. On the average, the Born
approximation, as discussed in Ref. 14, is valid for
8 & 10T.

We also notice that the prefactor in tr~(T) varies with

the temperature, whereas the experimental points indicate

~0-'

The temperature dependence of the above results is can-
tained in the factor Pe . The conductivity behaves as
e ' /T, i.e., it shows an activated type of behavior as
observed experimentally. ' ' '

We now make a comparison of (3.2)—(3A), with the re-
sults of Ref. 5 for the levels marked ni, at (8=6.55T)
and n „at8=4.98T. For those fields, the Born approxi-
mation is expected to apply. The (constant) impurity con-
centration and zero-field mobility are 4.0&(10' /m and
8.6 m /Vs, respectively. The activation energy is taken
from the data.

O

Screened interaction

We evaluate the integral over u, in Eq. (3.2), numerical-
ly with b as a parameter. The results are shown in Fig. 1.
Curve I is obtained with k, 1=80 (b =k, I /2) and curve
II with k, 1=20. These values of k, l are in qualitative
agreement with the self-consistent results for k, l as a
function of the magnetic Geld of Ref. 19. For a density of
10' /m and the lowest Landau level these values are
k, l =65 and k, l =2, respectively. Since I does not vary

I l l i I I I i 0 i i f I I I I ~ l & i i l i I

5' ]O 15 20 25

FIG. 1. Logarithmic plot of a. (T) vs 1/T. The circles are
experimental points from Ref. 5. The curves I and II are ob-
tained from Eq. (3.2) or Eq. (3.3). The curves III and IV are ob-
tained from Eq. (3.4).
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the opposite, especially for the half-filled level. Had we

assumed a constant NIP product in Eqs. (3.2) and (3.3)
the fit to the data would be perfect (curves I and II). It is
not clear what suppresses the temperature dependence of
the prefactor. However, thermal activation can change
the density of mobile carriers at the wings of the plateaus
[where the results for o (T) apply (Ref. 22)] or can lead

to hopping conduction, not treated here. These reasons or
corrections to the components o&„(T),missed by linear-

response theory, ' could probably account for the
discrepancies by suppressing or weakening the tempera-
ture dependence of the prefactor in o (T).

If we use the collision broadening version of Eqs.
(3.2)—(3.4) (multiplication by %coo/nI'z) together with

(2.19) and the above-quoted values for k, l and d/l, the re-

sults get worse by a factor of 3 indicating that the replace-
ment of the delta function by a Lorentzian, at the conduc-
tivity level, is a poor approximation.

Before closing this subsection, we note that an activated
behavior of the conductivity or resistivity minima

=p /p +p„„,p «p~) has been observed in Ref.
6 (in Si MOSFET's) at magnetic fields roughly twice as
strong as those of Ref. 5 (8.1T&8 &14T). Assuming the
same temperature dependence for both minima and maxi-
ma (results for the latter are not given in Ref. 5), one can
describe the activated behavior of the minima with one or
at most two terms in (3.1). [The term 2e ic in (3.1) is
about 5 times smaller than the first one e for 8 & 10T].
This refiects the fact that the Born approximation be-
comes better as the magnetic field increases.

Equation (3.5) holds for the resistivity components
+z„(T)and p (T) for cr~ (T) p&o' (T) and rr„,(T)/
sr~„(0)=l. This has been observed experimentally (cf.
Refs. 21, 22, and 24—27) but with a temperature-
independent proportionality coefficient. The temperature
dependence of this coefficient, in Eq. (3.5), comes from
the prefactor in cr ( T), cf. Eqs. (3.2)—(3.4); again,
thermal activation of the mobile carriers or hopping
could probably suppress or weaken this dependence by
keeping Nl f3 approximately constant.

From Eqs. (3.5) and (3.6) we notice that the propor-
tionality coefficient depends on the scattering, the range
of the potentials (b, b'), the impurity concentration NI,
and the Landau level index N. The dependence on the
magnetic field 8 is explicit for the screened interaction or
the Gaussian potential, but not for the short-range in-
teraction (only through Nl and N).

The validity of Eqs. (3.5) and (3.6) could be easily
checked experimentally by changing the impurity concen-
tration (e.g., by illumination of the samples) or by consid-
ering various Landau levels and measuring o (T) at the
wings of the plateaus [maxima in o~( T)].

Finally, the order of magnitude of the proportionality
coefficient appears to be correct for the only pertinent
data that we are aware of, i.e., thoSe of Ref. 22. The re-
ported mobility is 1.6 m /Vs. Assuming m'=0. 19mo,
we find for short-range scattering and T=0.6 K, a slope
0.95 whereas the reported one is between 0.3 and 0.4. For
T between 1.2 and 3.0 K this is also the order of magni-
tude2 'i6 for the coefficient between +~,(T) and p '"( T).

C. Relationship between her„,(T) and.~ (T) IV. CONCLUDING REMARKS

(3.5)

where

e8
(one /k)

X f u
~
J~~(u)

~
du (u+b)

ai —— i (2N+ 1)
V2

In a previous paper' the Hall conductivity o~~(T) has
been evaluated. The deviation

b,ay (T)=cry (0) cry (T)—
where 0'~„(0) is the zero-temperature quantized value,
(e /h)(N+I), when only the ¹h level is occupied, is
equal to (e /h)(N+1)e, where C=P(eF sz). We see-
that both o~(T) and ho~„(T)show the same activated
behavior (for e c«1). Using Eqs. (3.2)—(3.4), we can
write

In this paper we have evaluated the conductivity 0
for finite temperatures. For strong magnetic fields, for
which the Born approximation applies, an activated
behavior of the conductivity is obtained. Deviations from
this behavior have also been observed and are usually at-
tributed to hopping conduction, not treated here. Our
results depend explicitly on the magnetic field, the scatter-
ing, and the impurity concentration in contrast with some
of the earlier results. ' Besides, they are in reasonable
agreement with the experimental data 5 and the adjust-
able parameters used to describe the latter are in agree-
ment with those of the literature when available [e.g., k, l
in (3.2)]. For Gaussian potentials and in analogy with the
results for k, l of Ref. 19, they also indicate that the range
of the potential varies with magnetic field. Moreover, the
dependence of the proportionality coefficient between

bp~„(T)and p~(T) on the scattering, the magnetic field,
etc., is made explicit.

In a previous paper, ' it has been shown that, for the
temperatures and the magnetic fields in which most of the
quantum Hall experiments have been done, the conduc-
tivity component o~„remains quantized to an accuracy
better than 10 . It can be shown that this result remains
unaffected when electron-electron interaction is con-
sidered. Since the quantization of u~„(orp~~) has been
used in Ref. 5 in order to extract the o peak values,
which compare relatively well with Eqs. (3.2)—(3.4), it can
be said that the present theory gives a reasonable quantita-
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tive account of the dissipation for the integral quantum
Hall effect. For a complete description of tr however,
other factors have to be considered as well, e.g., hopping,
electron-electron interaction, etc.
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