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The Raman scattering cross section from a two-component layered electron gas (such as in InAs-

GaSb, GaAs-Al„Gal „Assuperlattices, etc.) has been calculated. It is found that for a separation

between the two components larger than a critical value, the scattered spectra have two resonant

peaks in the high-frequency regime. For small separation and small mass ratio, there is a resonant

peak due to an ion acoustic mode in the low-frequency regime and to a plasma mode in the high-

frequency regime.

I. INTRODUCTION

Recently, many light scattering experiments have been
done on the layered electron gas (LEG) in superlattice
structures. ' Olego et ttl. observed the bulk plasmon of a
LEG by inelastic light scattering from GaAs-
Al„oa~ „As heterostructures. This experiment con-
firmed the random-phase-approximation (RPA) predic-
tioni ~ of the bulk-plasmon dispersion relation. By impos-
ing standard electromagnetic boundary conditions at the
layers of a semi-infinite LEG, Giuliani and Quinn
predicted the existence and dispersion relation of surface
plasmons if the dielectric media outside and inside the
semi-infinite LEG are different. Jain and Allen calculat-
ed the Raman intensities of the bulk and surface
plasmons. In this work we give a microscopic theory for
the Raman intensity of the bulk plasmons in a LEG
where two different earners are localized on alternating
layers. Our method involves the exact construction of the
density-density correlation functions in the RPA for such
LEG. From these correlation functions, the Raman in-

tensity is calculated.
The Raman scattering cross section is completely

characterized by the wave-number transfer q and energy
loss ro in the scattering event. Here, q=k;„—k „,and
co=to;„—to,„,(subscripts in and out refer to incoming and
outgoing photons). For most light scattering experiments
from the semiconductor plasmas the wave-number
transfer is smaller than the inverse screening length, i.e.,
qA,, & 1. For a one-component isotropic plasma the cross
section is proportional to the density fluctuations of the
electron gas. For the case qA,, ~1 the scattered intensity
resides almost entirely in the plasma line.

II. CALCULATION OF THE
SCA I-I BRING CROSS-SECTION

ture and their Fermi energies are small compared to the
subband splitting. Let us consider electrons of density n,
per unit area and mass m, occupying layers which are po-
sitioned at z =ja and holes of density nt, per unit area and
mass trt t, occupying layers which are positioned at
z =ja +5, where j can be any integer, a is the length of
the unit ceB in the z direction, and b is the separation be-
tween electrons and holes on each cell. The Hamiltonian
that describes such a system is given by

H =Hi+HI,

q~p~p J~J ~»
Vt"I (q)e e ap+qt(s)ap qI(s')

Xap J (s')ap, (s),

where p is a two-dimensional (2D) momentum vector.
a~ I and up I represent, respectively, the electron creation
and destruction operators with momentum p on the 1th
layer. We set A' and the speed of light c equal to unity for
notational convenience. The summation over s means
that s can be either an electron or a hole. VJ"t (q) is the
Fourier transform of the Coulomb interaction

where the first term contains the kinetic energy of the car-
riers and their coupling to the radiation field. The second
term is the Coulomb interaction of the many-particle sys-
tem. In second-quantized notation, they are given as

[p+(e, /c)A]2
Hi = t g tip J(s)ttp J($)

P,j,s

%'e use the model of Visscher and Falicov for a I.EG,
which has a 5-function-localized carrier density in a
plane. The carriers are free to move in the plane and the
carriers in different planes interact only via the Coulomb
potential. The possibility of tunneling between two planes
as well as of interband excitations within a plane is ig-
nored under the assumption that both the carrier tempera-

(for s =e, s'=e or s=h, s'=h) (4)

or

V*" (q)= e s "t i" ~ {for s =e,s'=h) .
q

(4a)

In calculating the scattering cross section, we consider
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only the coupling of the incoming and outgoing radiation
via the A term in the Hamiltonian. This is a good ap-
proximation when EF ~~;„~me, where E~ is the Fermi
energy. This essentially nonrelativistic approximation

leads to the following expression for the cross section for
a photon of wave number k;„,frequency co;„,and polari-
zation e to be scattered into a state with wave number
k,

„„
frequency co,„„andpolarization e (Appendix A):

ik (j—j')u
dg 4, i coout ~ dt;~q e

dodd Q Olio ce 27T jj ms ms
(nj, (qt)n, ', ( —q)) .

In Eq. (5), nj, (q) is the Fourier transform of the density operator to the 1th cell for the s species,

nj s(t}=e'H'nj s(0)e ' ', and the brackets ( ) represent the usual thermodynamic ensemble average. The factor e *

is a coherence term which will generate perpendicular momentum conservation. The scattering cross section is given in
our Eq. (5) in terms of the time-dependent density fluctuations of the carriers in the different planes. In equilibrium Eq.
(5) can be rewritten, using the fluctuation-dissipation theorem, as

dcr 4, 2 coo«p(csi)+1, ;~, ckslj j')a —s,s' J~J
(6)=8

where p(c0)=[exp(@co)—1] ' and P is the inverse tem-
perature in energy units. Here, 0 is given as

Il„(jj')=e(t)([nj, (q, t),nj', ( —q, 0)]),
where e(t) is the standard step function and it obeys the
following integral equation:

ssII„(j,j')= II,5, , 5j j +II, g e, e,- Vj'~'- II,-, (j",j'),

E(q, ks, a) )= [ Q(1 —VSB)+a B(1—VSQ)

—aQB V(S'+S") ] D q, k„al
Here, cz=m, /mi„V=2ne2/q, and Q,B refer, respective-

ly, to the 2D density fluctuation of electrons and holes,
i.e., Q =II, and B=IIt, . Also, S and S' are the form
factors which can be expressed, respectively, as

$ss jss

where II is the value of 11 in the absence of the Coulomb
interaction:

0 dp f~+~(') —f."
E&+z s E& s c0—ia——

(8a)

e I i I
a —lks ja sinh(qa)

cosh(qa) —cos(k, a)

y e —e ~
ja b~ e

+sja-

j
sinh[q (a b)]+e —* sinh(qb)

cosh(qa ) —cos(k,a )

(12)

Here, fz(s) is the Fermi distribution function for the s
component which is independent of the layer index

I
P @E ($) p ]f (s)=

e ~ '+1
where p, is the chemical potential and Ez(s)=p /2m, .
The dependence on q and c0 is suppressed in Eq. (8}. To
solve this equation, we make the following Fourier
transformation:

$,$

where q, can assume the values 2nn/Na. Here, N is the
number of planes and n =0, 1, . . . , N —1. (At the end,
we take the limit N moo. ) After some algebra—, our result
can be written as (Appendix 8)

r

doe~g~zou~q[p(cu)+1)&1~(
dcod 0

gyes~ Qp)g

(10}

where A is the area of the plane and

In Eq. (11) we defined a "dielectric function"

D (q, k„al) = 1 —V(q)S [Q (q, c0)+B(q, col) ]

+V(q) Q(q, co)B(q,css)(S —iS'
i

) .
(14)

From Eqs. (10) or (11), we see that the cross section is
given in terms of the susceptibilities of the electrons and
the holes (i.e., Q and B) of the 2D electron gas. However,
the cross section is not proportional to the imaginary part
of the inverse dielectric function of the I.EG formed by
the electron-hole system. The light scattering cross sec-
tion depends on the current matrix element, while the
dielectric response depends on the matrix element of the
density operator. [See the mass dependence in our Eqs.
(5}and (6).] We point out that the light scattering intensi-
ty will peak at the zeros of D(q, k„co),which defines the
resonance frequencies of the density response. However,
the scattered light intensity related to these frequencies
cannot be obtained from the residue off the density
response but rather by using our Eqs. (10) and (11).
(Nevertheless, one can calculate the cross section mac-
roscopically using a susceptibility defined by
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n;„q„~/P„„~,provided the coupling of the external
field to the charge density of the s species is made propor-
tloiial to m~ tliiles the usual Couloiilb interaction. )

The dispersion relation of the plasmon in LEG as well
as the collective excitations observed in light scattering
are given by the zeros of D (q, k„co), i.e., when
D (q, k„cu)=0. This was investigated by Tselis and
Quinn. Sarma and Madhukar' had investigated the

longitudinal collective spectrum of a spatially separated,
two-dimensional plasma. We have generalized their re-
sults for a layered electron-hole structure.

A. High-frequency regime (~)&qu~~, qvpq}

Using the high-frequency expression for Q and B, we
have

2 2 2 2

Qp co 48 n&nI ppl, N2I

where co&, 2nn——,e q/m, is the 2D plasma frequency for the sth component. The dispersion relation from Eq. (15}is

2 2 2 2

6)+ =2 ( ~+ Ph} 1 2 g i i g 2 g, i qe's ne nh+—
(c0~+cozs) S 4'~—aizi, S —

~

S
~

(16)

qa
1 —cos(k,a)

(17)

Since we are only interested in the long-wavelength
behavior of the collective modes, we shall consider the
small-q limit, i.e., q/kF «1. However, we still are left
with two regions: (i) the intermediate-coupling limit, i.e.,
qa, qb « 1, and (ii) the weak-coupling limit, i.e.,
qa, qb » 1.

(i) qa, qb « 1 but k,+0. In this situation

The coefficient C+ is given by

m'e2g ne nh
+

(1+kg�)

1 —cos(k,a) m, mi,

%Pith

m, msn, ns [1—cos(k, a)]g=1-
a(m, ns+msn, )'

2
b 3me~p nex 2b 1 ——

4e n, n~ m,

1/2

2
np+ 3
ml,

(20)

i (a b) +b +—2b(a b)cos(k, a)—
I

S'
I

'=q'
[1—cos(k,a)]i

Using Eqs. (17) and (18) in Eq. (16) we obtain following
two collective modes:

Both modes are acousticlike, and for the co mode, b can-
not be zero since C becomes purely imaginary. The co

mode can exist as an undamped, stable mode in the long
wavelengths only in a system where the two components
of the electron gas are spatially separated. ' The separa-
tion b and the period a must satisfy the condition by the
requirement (C & UF & (2rrn, ——} /m, },which is given by

2b 1 ——b

a
4 I ne

2 1+
pyg e pal np

ne

pffft

3we wh ne nh
2 2

[1—cos(k, a)]
e mens 4e nenes ~e ngI,

(21)

For a fixed a, one can find the minimum separation b, .
The ~+ mode always exists without any restriction.

The case with k, =0 is different from the above result.
In such a case the term with the product QB vanishes and

4n e ne &II4n.e e I
(22)

9 P7l~ PPlI

This is just like a three-dimensional plasmon with effec-
tive plasma frequency 0~, =4mna, e /m, ; the same form
as that of bulk plasmons where na, n,/a-—

(ii) qa, qb » l. In this limit, co+ are simply the respec-
tive two-dimensional plasma frequencies of the two com-
ponents.

9. Low-frequency regime ( qvp ~ & u & gUp2, }

For a system with a small mass ratio (a «1), one may
expect that there is a low-lying mode of the heavy holes
screened by the electron. Using the appropriate limiting
forms for the two polarizabihty functions [see Eqs. (7)
and (8) in Ref. 10] in this regime, one can easily find that
there can be just one solution of Eq. (14) satisfying
quF~&co&qUFi. This solution is necessarily complex (in-
dicating the mode to be a damped one), since the polariza-
tion function of the light species has an imaginary part in
this regime due to single-particle excitations. For the col-
lective mode to be physically meaningful, damping has to
be small and we shall assume this in our analysis. %e
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co=cog —l5g (23)

write the solution of Eq. (14) in this low-frequency regime
in the form

and

2
TRIAL

I'g Ql g (S~~/~,'~) S—'+ IS'I'
(25)

S+2r, (S iS'i )(k~, /q)

where

S +(S2—
~

S'
~

)2r, (kz, /q)

1+2Sr,(k~, /q)
(24)

where kF, is the Fermi wave vector for the electron and
r, =m, e /k~, is the electronic plasma parameter. For
qa «1, co& and 5& are proportional to q (k,&0) and
their ratio is

~ar, (k a)

[kz,a +4r, kz, b(a —b)]'~z[1 —cos(k,a )+2r,kF,a]i~
(26)

Here, for a&1 and r, &1, 5&/coq can be easily made
smaller than unity. The proportionality coefficient C„
for roq must satisfy the condition u~ &Cz &UF, . This
gives the condition for a and b,

mq a +4b(a b)r, kF, —
1 & pgkp~

m, 1 cos(k, a—)+2r,ak~,

2
fPgp ltd

m

For qa, qb ~~1, co& is just a~zs, which is proportional to
v q, and Sq is approximately zero. As pointed out in Ref.

20"

IO-

(c)

0 5 IO ls 2G

FIG. 1. Dispersion curves for two high-frequency modes u+
and co . Here, k, =0.45X10 cm ', n =3.77X10" cm
a=0.87, and a =2b. The region below the upper dashed line is
the region for single-particle excitation of light-mass particles,
and the region below the looser dashed line is the region for
single-particle excitation of heavy-mass particles. The number
above the vertical bar is the value of I(q, k„m„).(a) 0 =300 A,
(b) b =350 A, (c) b =400 A, and (d) b =450 A.

9, this ion acoustic mode can even exist when the mass ra-
tio is 1 because of the separation between two com-
ponents. However, we have shown in this work that the
spectral weight of the mode is rather small when the mass
ratio is close to 1.

All the above analytical results for the resonance fre-
quencies are limited for a small range of parameters. We
have calculated and plotted the dispersion curves for arbi-
trary values of qa, qb, and k,a. For a =2b and a=0.87
for the InAs-GaSb system (Fig. 1), we obtain two acous-
ticlike high-frequency modes. When q &0.3k~„one of
the mode drops into the single-particle excitation regime.
We may note that we have the co mode at separation b
smaller than the critical separation defined in Eq. (21).
This is because Eq. (21) is valid only under the condition
qa, qb «1, which is not accurate here. In Fig. 2, we plot
the dispersion curves for the case of a=0.2. The lower
solid curve represents the ion acoustic wave.

The intensity of the Raman-scattered light as a func-
tion of its energy loss for a fixed value of in-plane
momentum exchange q is given by the imaginary part of
F(q,k„co)given in Eq. (11). k, is the z component of the
wave vector of a photon inside the I.EG, a negligible
quantity. In our figures we have plotted the dispersion
curves and the Raman intensity for several different
values of q and mass ratio. For a small value of q (i.e.,
q &q„where q, is the screening wave vector of the sys-
tem}, the scattered light only exhibits the collective spec-
trum. If q is not small, we have scattering due to collec-
tive excitation as well as single-particle excitation. If we
decrease the value of the hole mass, the plasmon frequen-
cy will shift upward as expected.

We have calculated the cross section from Eq. (10). An
exact expression for the 2D polarization function has been
given by Stern" for infinite electron relaxation time ~.
We use this result in our calculation. VVhen the Landau
damping is small, we introduce a phenomenological col-
lision time ~ to account for the collisional damping from
background impurities and phonon scattering. Using a
realistic ~, ' we compute the dimensionless quantity
ImF(q, k„co}.In Fig. 3, we plot this quantity as a func-
tion of frequency, the two resonant peaks are, respective-
ly, at ~+ and co . To relate our results to experiment, we
also carried out the integration over each of the reso-
nances and define
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co +LE

I(q, k„co,)= f ImF(q, k„co)
F

(28)

PO

which is the area under each resonant peak (co„is the
resonant frequency m+ or co ). The integrated cross sec-
tion can be written as

4E„ dtT

dQ
4', e

77l~ in

q [p(a))+1]A I( k ) (29)

0 I

l00

l0 l5 20

loo
2k

FIG. 2. Dispersion curves for two high- and low-frequency
modes u+ and coq. Here, k, =0.45&(106 cm ' n =3 77&10
cm ', o;=0.2, and a =2b. The region below the upper dashed
line is the region for single-particle excitation of light-mass par-
ticles, and the region below the lo~er dashed hne is the region
for single-particle excitation of heavy-mass particles. The num-
ber above the vertical bar is the value of I(q, k„co,). (a) b =80
A, (1) b =120A.

60

We have denoted these values of I(q, k„ro,) on our
dispersion curves in Fig. 1 to see their dependence on q
and b. We have found that I+,I and the ratio
P=I+/I strongly depend on the in-plane momentum
transfer q =

~ q ~
and separation b. We choose carrier

surface density n =3.77X10" cm 2, k, =0.45X106
cm ', and a=0.87 for the InAs-GaSb system and use
a =2b. For b smaller than 200 A, the co mode is inside
the regime of single-particle excitation. For b =300 A,
the most spectral weight is carried by the ro mode and P
is an increasing function of q. For b ~400 A, the most
spectral weight is carried by the co+ mode and in this case
P is a decreasing function of q. The interesting case is at
b =350 A; in this case, the spectral weights of the co+ and
co modes are about the same and P is almost independent
of q. We think this is the suitable case for observing the
co mode in experiment. We conclude that the co mode
only appears when b &b„but the most spectral weight
will be carried out by the co mode for the separation
slightly greater than b, . For b much larger than b„co,is
the plasma frequency of the holes. In Figs. 2 and 4 we
present results of similar investigations for the ion acous-
tic mode. Here the ion acoustic mode described by the
resonance at co~ will appear for small separation b, to-
gether with the plasma mode m+. We found that the co+
mode usually carries more spectral weight than the uz
mode for the typical mass ratio of semiconductors. We
found that for b =80 A and q =O. lkF„I„is very close
to I+. In Fig. 4 we see that the peak of ImF(q, k„co)at
co& is even higher than that at co+, but the width of the

40-
24

Im F(cu}

ImF

'ao
lOO ~EFe

FIG. 3. Plot of function ImF(q, k„co). Here, q =0.2k~„
k, =0.4S&10 cm ', n =3.77X10" cm, a=0.87,
U=0.025EF„and a =2b, b =3504..

0 I I

0 O.OI 0.02 0.05 0.04 0.05 0.06 0.07 0.08 0.09 0.IO 0 II

FIG. 4. Plot of function ImF(q, k„co). Here, q=0. 1kF„
k, =0.45)& 10 cm ', n =3.77 x 10" cm, a=0.2,
v =0.025EF„and a =2b, b =80 A.
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to& mode is narrow compared to the width of the co+
mode. For the case where 5 is increased to 120 A the
spectral weight of the co+ mode increases and the spectral
weight of the co& mode decreases since the co& mode is
iinportant only at small separations.

From our Figs. 1—4 we find that light scattering can
provide us with experimental verification of the modes of
electron-hole superlattice systems. As for the case of the
two-dimensional electron-hole systems, depending on the
electron-hole separation, we obtain either the high-

frequency acoustic mode co or the usual ion acoustic
mode toq. The plasma mode to+ always exists regardless
of the electron-hole separation. The advantage of scatter-
ing experiments using superlattices is that the relative in-

tensity of the plasmon versus the acoustic mode depends
strongly on b, the separation parameter. Thus it would be
possible to verify the dispersion relation of to or to„.In
contrast, for the 20 electron-hole systems, most of the in-

tensity seems to reside in the plasma (op+ ) mode.

III. CONCLUSION

In conclusion, we have calculated the Raman intensity
for the electron-hole layered structure. The regimes
necessary for the different modes are obtained and our
calculations and plots for the spectral intensity indicate
that the co and the to„modes can be observed experi-
mentally.

Mp. A CO&~

~(1 .
me2

(A 1)

Therefore, in our calculation we only consider the A con-
tribution. The matrix element of light scattering is

~=(1~H„~F),
where I,F refer to initial and final states and

e2 A
av J(s)ai, J(s) .2, . m,

(A2)

Using the property of 5-function-like carrier density in a
plane and by standard calculation, we obtain

ik ja
(I

~ n, ,(q) ~F),
(toinoiout) j,s

iq r;tj, s)
where nz, (q)= g, e ' '

and r;(j,s) is the coordinate
of the ith electron of the sth component on the jth cell.
Now the cross section can be written as

APPENDIX A

It has been shown that for the multicomponent system,
the ratio of the P.A and A contributions to the light
scattering matrix element is'

ik ja 2

=e4 (e e')~g g M
~ nJ, (q}

~
F) 5(EF—EI co), —

to 0 F fbi
(A4)

where EF,Et are energies are initial and final states. By
using the identity

(ZF —ZI —~)
5(EF Et —to}= —dt e

To obtain the quantities II„(k,), Ili,s(k, ), II,I, (k, ), and

Il&, (k, ), we take the Fourier transformation of Eq. (8)
and have the following coupled equations:

We finally obtain

da g ~out=e
dcod 0 con

ik (j —j')a

j,j' S,S' S S'
SJ'J (q, ro),

(A6}

II~(kg )=Q +Q[SVII„(k,) —S' Vill„(k,)],

IIi„(kg) =8[—S' ' VII„(kg) +SVIII„(k,)],

(82)

(83)

Ills(k, )=Q+Q[SVIIis(k, ) —S''VII,p(k, )], (84)

CO

SJ (q,co)= dt e'"' drdre 'q" ''(n. ,(r, t)nJ. ,(r)) .
(A7)

In Eq. (A7), q, r are two-dimensional vectors in a plane.

APPENDIX 8

II,i, (k, )=8[—S' VII' i, (k, )+SVII,„(k,)] .

In Eqs. (82)—(85), the quantities V,S,S', Q, B,D are all de-
fined in the text. The solutions for Eqs. (82)—(85) are

We substitute Eq. (9) in Eq. (6) and obtain

do' g
i

2 out p(cd)+ 1= 2mAe
1

11„(k,)=Q (1—SVB)D

III„———QBS' *D

Ilail, (k, ) =8(1 SVQ)D-
Il,l,

—— QBS'D—

(87)

(88)

Il,g(k, ) III (k, )+- +
7?l~ P?lI Nl~ Pily

(81) Substituting Eqs. (86)—(89) into Eq. (81), we obtain Eq.
(10).
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