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We present a self-consistent calculation of the electron distribution at a jellium surface in a strong
static electric field, based on the Hohenberg-Kohn-Sham theory in the local-density approximation.
For different metallic densities r,=2,3,4,5 and the wide range of surface-charge densities accessible
to experiments in electrolytic cells, we calculate suitable moments characterizing the electron-density
profile, and give results for the center of mass and spread of the induced charge density, which are
related to static and optical response properties, respectively. Our self-consistent results differ re-
markably from previous results based on other methods and from model assumptions previously
made in order to explain properties of charged surfaces.

I. INTRODUCTION

The purpose of this paper is to report the first! (to our
knowledge) fully-self-consistent quantum-mechanical cal-
culations of the electronic density profile of a jellium-
metal surface in a strong static electric field F, and to
present numerical results for two length parameters,
which roughly characterize the shape of the induced
charge-density profile, namely its mean position z, and its
width A. Whereas 2z, governs static response properties
such as the surface contribution to the capacitance or the
image force on a point charge outside the metal, the width
A is essentially a screening length of the applied static
field F, and plays an important role for the optical
response of the charged metal surface.

Our calculations are based on the Hohenberg-Kohn-
Sham formalism? in the local-density approximation and
extend the pioneering work of Lang and Kohn?—® to
charged surfaces far beyond the linear-response regime.
This extension is necessary for an understanding of metal
surfaces under very strong electric fields, e.g., of the order
of 1 V/A, as can easily be reached at electrode surfaces in
electrolytic cells. Indeed, optical techniques such as elec-
troreflectance,®’ excitation of surface plasmons,? or ellip-
sometry’® yield signals which depend on the applied static
field in a strongly nonlinear way and change completely,
if the field is reversed. This indicates the inadequacy of a
linear-response treatment.

Previous work on charged jellium surfaces outside the
linear-response regime used either an ad hoc, non-self-
consistent model ansatz for the effective one-electron po-
tential,' or a restricted set of trial functions for the elec-
tron density, avoiding the solution of Schrédinger’s equa-
tion altogether.!'~!* A fully-self-consistent calculation
(in the spirit of Lang and Kohn) of characteristic proper-
ties of strongly charged jellium surfaces has, to the best of
our knowledge, not been presented before.

We should, however, mention in this context the work
of Ho, Harmon, and Liu'* on the electronic structure of
the Ag(110) surface in an applied electric field. In order
to explain the polarization anisotropy of the normal-
incidence electroreflectance of the (110) faces of noble
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metals, these authors calculated within the self-consistent
pseudopotential method!® the Ag(110)-projected band
structure and emphasized the importance of unoccupied
surface states, which were found at energy levels depend-
ing strongly on the applied electric fields. The results of
Ho et al. are typical for silver and, probably, the (110)
faces of other noble metals. The induced charge density
averaged parallel to the surface was calculated by Ho
et al. for a certain strength of the applied field, and
resembles corresponding jellium results. A quantitative
agreement can, of course, not be expected, since the
periodic lattice potential and, therefore, band-structure ef-
fects and surface states are not taken into account in the
jellium model.

The intention of the present work is complementary to
that of Ref. 14. Using the jellium model as a simple but
reasonable model for free-electron metals, we investigate
in a systematic manner the dependence of characteristic
features of the surface-electron distribution on an applied
electric field, covering a wide range of field strengths and
the whole range of metallic densities. A reliable
knowledge of the electron-density profile at the surface is,
for instance, important in the context of nonlocal optics,'®
which investigates typical deviations from the classical
Fresnel optics occurring for p-polarized light, but not for
normal incidence. The special optical anisotropy of
noble-metal (110) faces addressed by Ho et al.'* is, on the
other hand, beyond the scope of our model assumptions.

In the past, more or less sophisticated step models for
the electron-density profile have been employed in order
to understand or evaluate optical data on charged sur-
faces.”®!617 In Fig. 1(a) we sketch the simplest step
model, which has been used by Chao and Costa’ to evalu-
ate their ellipsometry data on positively charged Au sur-
faces in the framework of classical oPtics. Recently,
Kempa'” pointed out that nonlocal optics'® should be used
instead, and evaluated the same data with the model
sketched in Fig. 1(b), taking into account the diffuseness
of the uncharged surface. Whereas classical optics sug-
gests’ that the width A of the induced charge density de-
pends linearly on the external field F, Kempa’s result!’
for A is essentially independent of F, and of the order
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FIG. 1. Step models of the electron density at a charged met-
al surface (induced charge is hatched). The center of mass z, of
the induced charge is inside the jellium (zo>0) for model (a),
but outside (z¢ <0) for model (b).

A~2.5-3 ;\, which is consistent with the width of the
self-consistently calculated profile of induced charge in
the linear-response regime.® Similar step models have also
been used to explain electroreflectance data.”'®

Two problems become apparent with such step models.
First, there is a trivial linear relationship between the
width A of the induced charge-density profile and its
center of mass zy. This relationship is an artifact of the
model and does not hold for the self-consistent calcula-
tions. Second, the choice of parameters for models with
several steps involves some arbitrariness and is, in view of
the crudeness of the model, hard to justify. To avoid such
model assumptions, or eventually to justify them, we have
performed the self-consistent calculations.

The paper is organized as follows. In Sec. I we formu-
late the Hohenberg-Kohn-Sham equations in the local-
density approximation for a finite jellium slab in a strong
static external electric field. In Sec. III we present and
discuss our results and compare them with previous work.
Section IV contains a brief summary, and a description of
the numerical techniques is given in the Appendix.

II. THE MODEL

For reasons of computational convenience, we consider
a thin plane metal slab within the jellium model, i.e., we
replace the ions by a uniform background of positive
charge, and assume vacuum on both sides of the slab. We
take the width of the slab to be so large, actually of the
order of 10—20 A, that for zero total charge our results
for effective potential and electron density in the surface
region agree well with the results obtained by Lang and
Kohn® for the surface of a metallic half-space with the
same background density.

The physical situation we have in mind is an electrode
(the slab) in an electrolyte, kept at constant potential on
both sides of the slab, so that a strong electric field, which
induces surface charges in the slab, is present only in a
thin transition region (~Helmholtz layer) of a few
angstroms thickness at the slab’s surfaces. Even for nega-
tive surface charge we will assume that the potential ener-
gy of electrons in the electrolyte region is larger than the
Fermi level in the slab, so that the electron density is
negligibly small in the electrolyte region, and tunneling
and field emission do not occur. The capacity of a

metal-electrolyte interface was recently discussed by Feld-
man et al.'> within a detailed model for the interaction
between metal and electrolyte. Here we are only interest-
ed in the metal side and simulate the situation by a simple
model which does not consider the electrolyte explicitly.
We assume infinite potential barriers, located symmetri-
cally on both sides of the slab and sufficiently far away,
so that the electron density is negligibly small in the
neighborhood of the barriers. This model, schematically
shown in Fig. 2, allows us to treat the effect of a constant
external electric field of either sign in terms of stationary
states. Due to its symmetry, numerical calculations can
be restricted to the layer between the left barrier at
z =—a and the middle of the slab at z =b, where the z
direction is taken to be perpendicular to the slab, and the
left edge of the positive background is at z =0.

We use the following notations: The jellium density
n, is related to the Wigner-Seitz radius (in units of
ao=7#/me*~0.529 A, where m is the electron mass)

re=(+4mn a3)"", 2.1)
n (z) denotes the electron density, and
p(z)=—e[n(z)—n . O(2)0(2b —2)] ,

1, z>0

the total charge density. A static electric field F applied
perpendicular to the slab is characterized by the induced

surface charge density
b b
o=—F/én= [ dzpz)= [_ dzdplz), (23

where 8p(z) is the induced charge density. The electro-
static potential energy ¢(z) obeys Poisson’s equation,
d2
—@(z)=4mep(z) . (2.4)
2° P

Since n(z) and ¢(z) are symmetrical with respect to b, we
obtain, from (2.4),

4 (z)= —4meo +4me fz dz'p(z’) (2.5)
dz7 ~a P ’
and, integrating by parts,
z
$(2) —(b)=4me [D(o)—za+ [ dzz =2z | .
(2.6)
infinite
/" barrier - jellium slab 2
/ electron density
;a0 v s 2b+a
Z-Z

FIG. 2. Model system with a jellium slab of width 25 and in-
finite potential barriers located symmetrically at z=—a and
z=2b +a.
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The electric dipole moment (per unit area)
b
D(o)= [__dzzp(z)=D(0)+0z(0) 2.7

can be expressed in terms of the dipole moment D(0) of
the neutral surface and of the center of mass

1 b
zo(0)=— [ dzz8p(2) (2.8)
of the induced charges.
A sum rule derived by Budd and Vannimenus'® implies

that one part of the induced dipole moment D (o)—D(0)
is related trivially to the induced surface charge density o.
The total electrostatic force exerted by the induced
charges on the left infinite barrier (representing the elec-
trolyte) sums to 2mo?. It must be equal and opposite to
the force acting on the jellium between O and b, which can
be calculated from the induced electric field [Eq. (2.5)].

The result is'®
1 2 b
S0 =en, fo dzz 8p(z) . 2.9

This implies that the center of mass of the induced
charges can be calculated alternatively from the equation

z9(0) = += f dzz8p(z) . (2.10

Zen +

In the framework of the density-functional formalism,?
the exact ground-state electron density of our model sys-
tem is given as the self-consistent solution of the equa-
tions

n(z)= ﬂ-ﬁl Z(eF €,)0(er—¢€,) | ¥ (2) | ? (2.11)

2 52
. d EN2=0,  (2.12)
where €, and Y, are, respectively, the energy eigenvalues
and normalized eigenfunctions of an electron in the one-
dimensional effective potential v, which, in turn, is a
functional of the electron density n(z). With suitably
normalized plane waves for the (x,y)-dependent parts of
the wave functions, n(z) can be calculated for given v
from Eq. (2.11), where the Fermi energy €f is determined
by Eq. (2.3), which can be written as

2 (EF €,)=bn
Mz e T

Ilfv(z +(vege[n ;2] —

g

(2.13)

The effective potential v.g[#n;z] is the sum of the electro-
static contribution ¢(z) given by Eq. (2.6) and an exchange
and correlation part. Following the work of Lang and
Kohn,® we use the local-density approximation of the
latter,

Verr[n32] = (2) +puxc(n (2)) (2.14)

with Wigner’s expression for the correlation energy,’ so
that

4r,(z)+7.8
[r,(z)+7.8]?

e |01l
ag | re(z)

Pre(n(2))= , (2.15)

where r,(z) is obtained from Eq. (2.1) if n is replaced by
the local electron density n(z).

Since direct iteration does not converge, we used for the
numerical calculations a procedure similar to that
described by Lang and Kohn.> Some details of our
method are given in the Appendix. About five to eight
iteration steps were sufficient to obtain the desired accura-

cy.
III. RESULTS AND DISCUSSION

A. Density profile of a charged surface

Figure 3 shows typical results for the self-consistent ef-
fective potential v.g[#n;z] and electron density n(z) of a
neutral (curves b and b’, respectively) and two oppositely
charged surfaces. The umform positive background has a
slab thickness of 16 A and a density n, =5.967x 1022
cm ™3, corresponding to r,=3. The results of our slab
calculation for the neutral system agree within numerical
accuracy with the values tabulated by Lang and Kohn?
for the metallic half-space. Slight differences are expect-
ed near the center of the slab, where, by symmetry, the
slope of our n(z) must vanish, and immediately at the in-
finite barrier, where our effective potential bends up-
wards. This effect nicely visualizes how the infinite bar-
rier disturbs the electron system and is understood as fol-
lows. At some distance from the infinite barrier the elec-
tron density is already very small, n(z)/n, ~107% so
that ¢(z) has reached its asymptotic value. However,
tx(n(z)) ~—n(z)!3 being of the order of 10~2, varies
still noticeably on the scale of Fig. 3 and is forced to van-
ish at the barrier. This leads to the upward bending of the
effective potential, but has negligible effect on the density
profile. The magnitude of this infinite-barrier effect de-

z-z,(R)

FIG. 3. Self-consistent effective potential of (a) a positively
charged, (b) neutral, and (c) negatively charged surface, in units
of the Fermi energy €r, and the corresponding electron density
in units of n+ for Is =3. The induced surface charge density is
+4.77x 1073 e/A the slab width 16 A, and the distance be-
tween the jellium edge and the infinite barrier 4.8 A.
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FIG. 4. Normalized self-consistent induced charge density
for (a) a positively and (c) a negatively charged surface (same pa-
rameters as in Fig. 3). Center of mass z, and spread A are indi-
cated.

creases exponentially with increasing distance between
barrier and slab. Figure 3 also shows results for a posi-
tively (curves @ and a’) and a negatlvely (curves c and c')
charged surface with o=+4.77x 103 e/A2 correspond-
ing to an external electric field F(—a)=30.861 V/A
which is of the order of the fields occurring at electro-
chemical interfaces.” As a function of o, the density pro-
file changes its form, the largest effects occurring in the
low-density tail. This is easily understood, since only the
electron wave functions with high energy extend far out-
side the jellium and thus are strongly affected by the
external electric field. Inside the metal the electron densi-
ty is less disturbed by the field, since, according to Eq.
(2.11), these wave functions contribute little. For positive
surface charge, electrons are removed from the tail region,
the density profile (curve a') becomes steeper, and the
Friedel oscillations become more pronounced. For nega-
tive surface charge, electrons are pulled into the tail re-
gion, the density profile (curve ¢’) becomes smoother, and
the Friedel oscillations are diminished.

In Fig. 4 we plot the normalized induced charge densi-
ties 8p/o, corresponding to Fig. 3. Also indicated are the
mean positions zy(o) of the induced charges, defined by
Eq. (2.8). The results are similar to those obtained by
Lang and Kohn,*3 for a weak external electric field, but
the deviations from the linear-response result, which in
this plot yields only a single curve for all values of o, are
clearly seen.

B. Position and spread of induced charges

We characterize the induced charge-density profile by
its center of mass zg(o) [Eq. (2.8)] and, since it is clearly
dominated by a single peak followed by weak oscillations,
by the full width at half maximum A(o) of that peak.

The physical importance of z,, determining the posi-
tion of the image plane for an external point charge in
front of the surface,>!° or the metal contribution to the
capacity of a parallel-plate condenser,”'® or a metal-
electrolyte interface,'! has been appreciated by many au-
thors.+>10.12,13

In Fig. 5 our results for zy(o) (pluses), calculated with
Eq. (2.8), are shown together with those of Theophilou
and Modinos'® (curve @) and of Schmickler and Hender-
son'? (curve b). The value r, =3 corresponds to the densi-
ty of s-p electrons in gold. This facilitates comparison
with the experiments of Chao and Costa,’ who reported
positive surface charges up to 5x 102 e /A2 Note that
zo(0o) is negative, i.e., it lies in front of the jellium edge
for moderate surface charges.

Our results are in agreement with those of Schmickler
and Henderson!? in the regime of relatively small o,
whereas for larger positive and negative values of o sys-
tematic differences occur. Apparently, the restricted an-
satz for the density profile n(z) used in Ref. 12 is not
flexible enough to account for the considerable modifica-
tions of the fully-self-consistent profile in strong external
electric fields. In particular, it does not contain the fol-
lowing physical effect, which limits our calculations for
large negative values of o. With increasing negative sur-
face charge, the maximum value of the effective potential
decreases, and eventually becomes smaller than the Fermi
energy, so that electrons sweep out of the slab and are
bounded by the infinite barrier (our simplified model of
repulsion by the electrolyte) only. We exclude this situa-
tion from consideration and require the electron density to
be negligibly small in the neighborhood of the barrier.
For r;=3, this limits our calculations to a surface charge
density o> —5X 1073 e/A%= —0.08 C/m?, correspond-
ing to an electric field of 0.9 V/A.

Curve a of Fig. 5 indicates a result obtained by Theo-
philou and Modinos!® from an “approximate semi-self-
consistent calculation,” which determines induced charge
and induced potential change self-consistently, but uses a
non-self-consistent, ad hoc model potential to describe the

o (10°/A?)

FIG. 5. Our result for the center of mass z, ( + ) and spread
A (*) of the induced charge density as a function of surface
charge density o. The dashed straight line gives the asymptotic
behavior of z, for large 0. Curves a and b are results for z,
from Refs. 10 and 12, respectively.
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neutral jellium surface. For different model potentials
different zy(o) curves were obtained,'” and curve a shows
that which compares most favorably with our self-
consistent results. According to Theophilou and Modi-
nos, the essentially linear dependence of z; on o indicates
that the electron-density profiles of the charged surfaces
are related to the profile of the neutral surface by essen-
tially a rigid displacement. This argument is, even for a
jellium half-space (b— «), not quite correct: A rigid
shift of the electron density by a distance s produces the
surface charge densnty o=en s, and the center of mass of
the induced charge is just zo(0)=7s =0/(2n ,e), which
is indicated in Fig. 5 by the dashed straight line. The nu-
merical results, on the other hand, indicate that only for
large positive values of o does an essentially rigid dis-
placement of the charge-density profile remain. In this
limit the integral in the Budd-Vannimenus sum rule, Eq.
(2.10), which collects only contributions from the vacuum
region, becomes independent of o, so that zy(o) ap-
proaches asymptotically (~1/0) the dashed straight line
in Fig. 5. Apparently, the pluses in Fig. 5 show exactly
this behavior. The linear part of curve a, however, cannot
be explained by a rigid shift of the density profile, since it

does not coincide with the dashed straight line. The poor
agreement of curve a with our results demonstrates the
importance of using a consistent approximation scheme,
which treats the “induced” and the “‘ground-state” elec-
tron density, i.e., the electron density with and without
static electric field, on equal footing.

As mentioned in the Introduction, optical experiments
on a positively charged metal surface are usually inter-
preted in terms of a surface layer of reduced electron den-
sity.”*1617 The optical properties of the charged surface
depend on the width of this layer, which corresponds to
the spread of the induced charges in our calculation, i.e.,
the full width at half maximum A of the induced charge
density 8p(z). Since the induced charges screen the elec-
tric field, this A can also be interpreted as static screening
length. Our result for A given by the asterisks in Fig. 5
demonstrates that it depends only weakly on o and be-
comes minimum near 0=0.04 e /A2 Neither a linear re-
lationship between A(o) and zy(o), as implied by the step
models of Fig. 1, nor a monotonic increase of A with in-
creasing values of | o |, as would result from a rigid dis-
placement of the electron profile, is compatible with our
result.

TABLE 1. Various lengths (in A) characterizing the density profiles: Center of mass z, and spread
A of the induced charge-density profile, classical turning point z,, and the moments d and ¥ of the
electron-density proﬁle, for different values of the background density (given by r;) and the surface

charge o (in units of e /A’=16.02 C/m?).

T o (X10%) zo* zo° z A d 1

2 15.10 —0.435 —0.447 —0.782 1.427 0.389 0.207
2 10.07 —0.485 —0.499 —0.897 1.460 0.405 0.214
2 5.03 —0.541 —0.557 —1.052 1.501 0.425 0.221
2 0.00 —1.297 0.448 0.230
2 —5.03 —0.671 —0.695 —1.947 1.607 0475 0.239
3 59.67 0.357 0.359 0.408 1.685 0.366 0.188
3 47.73 0.228 0.227 0.211 1.658 0.372 0.191
3 35.80 0.084 0.082 0.016 1.649 0.383 0.195
3 23.87 —0.086 —0.089 —0.200 1.666 0.403 0.203
3 11.93 —0.310 —0.311 —0.500 1.723 0.444 0.221
3 4.77 —0.522 —0.511 —0.778 1.785 0.490 0.240
3 2.39 —0.633 —0.612 —0.907 1.813 0.514 0.249
3 0.00 —1.062 0.548 0.262
3 —2.39 —0.874 —0.855 —1.280 1.962 0.596 0.278
3 —4.77 —1.056 —1.041 —4.510 2.101 0.666 0.298
4 2.52 —0.488 —0.478 —0.671 2.135 0.574 0.265
4 1.26 —0.568 —0.557 —0.779 2.171 0.598 0.275
4 0.00 —0.907 0.628 0.287
4 —1.26 —0.772 —0.760 —1.063 2.278 0.668 0.301
4 —2.52 —0.914 —0.901 —1.269 2.361 0.724 0.320
4 —3.78 —1.112 —1.094 —4.013 2.487 0.809 0.343
5 1.55 —0.479 —0.456 —0.581 2.413 0.640 0.277
5 0.77 —0.565 —0.538 —0.684 2.445 0.665 0.288
5 0.00 —0.799 0.695 0.300
5 —-0.77 —0.773 —0.740 —0.932 2.535 0.734 0.316
5 —1.55 —0.910 —0.875 —1.088 2.603 0.787 0.335

® Calculated with Eq. (2.8).
®Calculated with Eq. (2.10).
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If we define a “penetration depth” of the external elec-
tric field as the position (with respect to the jellium edge)
where it has been screened to about one-quarter of its vac-
uum value, it is roughly given by zo(o)+5A(o). For a

surface charge density of 0=0.05 e /A’ =80 uC/cm? and
r, =3, this penetration depth is about 1 A. It is hard to
believe that a real metal surface can be stable under such a
gigantic charge.

Values of position zg(o) and spread A(o) of the induced
charge density for r,=2,3,4,5 and different surface
charges o are given in Table 1. zy(o) has been calculated
by both Eq. (2.8) and (2.10), giving an estimate of the nu-
merical accuracy of the values. Also shown is the “classi-
cal turning point” z,(o’), defined as the position at which
the effective potential equals the Fermi energy. It is of
some importance for tunneling experiments® and varies
stronger than zy(o), especially for negative o values.

C. Shape analysis of density profiles

As we have seen, the electron-density profile of a
charged surface is not obtained by a rigid shift from that
of a neutral surface, but rather by a deformation which
affects especially the tail region (cf. Fig. 3). The shape of
the tail region, which is known to be important, e.g., for

the optical-response properties of the metal surface,'s!
can be characterized by the moments
W= [* Gzis—2n@) . 3.1
n, J-a

For v=0, 1, these have the following meaning: The num-
ber (per unit area) of spilled-out electrons with respect to
the plane z =s is given by n__/'?), and the length

d=1V/10 (3.2)

gives the center of mass (or dipole length) of the spilled-
out electrons with respect to this plane. A rough estimate
for the width of the tail region (z <s) and for the whole
surface is given by 2d and by 4d, respectively. For the
neutral surface (s =0), en_ IV is the contribution of the
vacuum side (z <0) to the dipole moment D(0), Eq. (2.7).
Whereas this contribution is always positive, Friedel oscil-
lations lead, for large r; values, to negative contributions
and very small values of the total dipole moment D(0).
Therefore, we take d (or 4d) as a reasonable measure of
the diffuseness of the surface and not the “dipole length”
D(0)/(en  I'”). The generalization of Eq. (3.1) to the
surface of a metallic half-space without an infinite barrier
is obvious.

Figure 6 shows on an enlarged scale the density profiles
of Fig. 3 with the corresponding values of the diffuseness
parameter d. Note that for all three profiles the density
n (z) assumes the value n at the same position z=~1.1 A.
This would not be true for a rigid shift of the neutral pro-
file by s =0 /(en ), indicated in Fig. 6 by a dashed verti-
cal line, which would yield the same values of o and
would leave the values of /¥ and d unchanged. Further
values of /'” and d as a function of surface charge are
given in Table 1.

The correlation plot of Fig. 7 shows interesting charac-
teristics of the density profile, notably of the low-density
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FIG. 6. Enlarged plot of the electron-density profiles from
Fig. 3, with the diffuseness parameter d defined in Eq. (3.2).
The dashed lines mark a shift by s =0 /(en ).

tail. All the symbols refer to self-consistently calculated
profiles, the large symbols to neutral surfaces with dif-
ferent r, values, and symbols of the same kind to surfaces
with the same r; value and different charges. Density
profiles, which apart from a rigid shift differ only by
length scale, e.g., n(z) and n(az —s), appear in this plot
on the same straight line through the origin. With an ex-
ponential model for the tail region,

n(z)= %n.,_ exp[(z —s)/R],

08 T T 7.
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FIG. 7. Correlation plot of diffuseness parameters d and /¥
for the values of r, and o listed in Table I. The enlarged sym-
bols refer to results for neutral systems. The straight lines indi-
cate correlations for model density profiles discussed in the text.
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one calculates from Eq. (3.1) (with —a— — o) the
dashed line in Fig. 7 with slope d /'Y =2. The frequently
used infinite-barrier model (IBM) for a jellium half-
space'>?° with

n(z)=n_0(2)[1+3(Z cosZ —sinZ)/Z] , (3.3)

where Z =2zkp, n, =k3 /37, and the jellium edge is at
z,=3w/8kp, yields, for arbitrary values of kp, the
dashed-dotted line shown in Fig. 7. The slope of this line
is less than 2, indicating that the effective extent of the
low-density tail for the IBM is smaller than that for the
exponential model.

For r;=2 the low-density tail of the uncharged surface
apparently is well represented by an exponential model.
Two points for positively charged surfaces with r,=2 are
also shown in Fig. 7. With increasing o, the electron pro-
file becomes steeper, the number of spilled-out electrons
decreases, and the symbols occur at successively smaller
values of /'”. The appearance of the symbols below the
dashed line with slope 2 indicates that the low-density
tails decrease faster than exponentially. The results for
neutral and positively charged surfaces with r,=3 (solid
circles) show the same trend. In addition, one clearly sees
the tendency of the points to converge for large o values,
indicating an ultimately rigid shift of the electron profile.
The two results for negative surface charge and r,=3 in-
dicate a weaker than exponential decay of the electron
density, so that the effective extent of the low-density tail
increases.

The same trend is seen for the neutral surfaces as r; in-
creases. Although in the interior metal region the shape
of the electron profile with increasing r; becomes similar
to that of the IBM, as has been demonstrated by Newns,2®
the effective extent of the low-density tail increases at the
same time.?!

Finally, we briefly consider the step model of Fig. 1(b)
for the electron density n(z), which is frequently used in
optical model calculations. Well below the plasma fre-
quency the optically induced. charges reside in the surface
region of reduced electron density (outside the jellium),
and it seems reasonable to choose width w and electron
density n; of the surface layer so that /‘”) and d, Egs.
(3.1) and (3.2), agree with the self-consistently calculated
values. It is easily shown that this requires
d/1'=n /2n; and

1'=(ng/n Y1—ny/n,),

so that ng/n_ should be taken between +, corresponding
to the solid line in Fig. 7, and %, corresponding to the
dashed “exponential” line. For a neutral aluminum
(ry=2) surface this leads to n,——-%rh and w=1.24 A.
Different values (n;=0.7n,, w~=4 A) have been used to
fit optical data near the plasma frequency,”!® where in-
duced charges penetrate deeper into the metal and probe
regions of higher electron density.

IV. SUMMARY

We have self-consistently calculated the electron density
of a jellium slab containing about 8 occupied size-
quantized eigenstates for various values of jellium density

(ry) and surface charge (o). In the limit of small surface
charge (0—0), our slab results for the electron-density
profile, induced charge density, etc. are in excellent agree-
ment with those obtained by Lang and Kohn’~3 for a jel-
lium half-space. Our calculations cover the large range of
surface charges accessible to experiments in electrolytic
cells, which far exceeds the regime in which linear-
response theory with respect to the applied static electric
field is applicable.

We present results for two parameters which roughly
characterize the induced charge-density profile, its width
Alo), and its center of mass zy(o). The spread A of the
induced static charge density, which plays an important
role for optical measurements on charged sur-
faces,®~%1%17 depends only weakly on the surface charge
o and is of the order of 1.5 A (for r,=2) to 2.5 A (for
ry=5). The center of mass z, of the induced surface
charge, which is important for static properties such as
capacity or image-plane position, depends in a nonlinear
manner on o. For negative and small positive values of o,
zy lies in the low-density region on the vacuum side, and
with increasing positive values of o it approaches and
eventually enters the jellium region inside the metal. Our
calculation confirms recent variational results'? for z(o)
in the regime of moderate surface charges, but also indi-
cates their limitations. Results of a recent evaluation of
ellipsometry data on a charged gold surface’ using a non-
local theory!” are consistent with our results, whereas
those obtained with local optics® are not.

The shape of the total-electron-density profile is also
studied as a function of surface charge. With increasing
surface charge the electron-density profile becomes
steeper. For very large values of o the deformation satu-
rates (owing to the Fermi pressure) and the profile is ulti-
mately pushed rigidly into the jellium. As a quantitative
characterization of the electron-density profile, two of its
moments are given as functions of o, and their correlation
is discussed.

We hope that this work will be helpful for future inves-
tigations of optical properties of charged metal surfaces
which, in our opinion, are not satisfactorily understood at
present, although electroreflection now is a widely used
tool in surface science.
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APPENDIX

We will describe here in detail how Egs. (2.11) and
(2.12) were solved numerically. Starting with an effective
potential v{{{(z), we obtained the required energy eigen-
values €, and the corresponding wave functions ¥,(z) by
the integration method of Adams and Stoermer,?? impos-
ing the symmetry condition that either ¥,(z) or its deriva-
tive vanishes at z=b. The Fermi energy was evaluated
from
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b
m#en (b —s)/m+ [ _, 42 3 Oler—e,)ediz)

€r= ffa dz ze(eF—ev)tlzf,(z)

(A1)
and the density n(z) from Eq. (2.11). From Eq. (2.14) we
then calculated the new effective potential
T HD=Fvi(2)], (A2)
which is a functional of the original one. Its fixed point is
the required self-consistent effective potential vg(z).
To obtain fast convergence, we determined a linear ap-
proximation of % in the linear subspace of functions
5
v(2)=vi D)+ T, Vyuu(2), (A3)
n=0
where uy(z)=v'}(z) is the input potential itself, four
basis functions were chosen as Gaussians, and the last one
was defined as zero at z =b, linear for 0 <z <b, and
matched to a Gaussian for z <0. The equation for the
new input potential reads

b
v =FoR]+n~"' S Vo F ol +nu, ] —F oD,

n=0

(A4)

n=0.02/r52. The coefficients V|, ..., Vs were calculated
from a set of linear equations derived from the fixed-point
equation in the subspace, and V|, was taken as

Vo=0H(—a)/wl}(—a)—1. (A5)

The self-consistent result was obtained after about five
to eight iteration steps with an inaccuracy estimated by
the integral

—1—1 [
(a+b)7'er' [ dz| Flvgld)]—ver(2)| . (A6)

This quantity was less than 0.2% for all our calculations.

A further estimate of numerical errors followed from
the sum rule of Budd and Vannimenus,'® which allows us
to calculate the center of mass of the induced charge-
density profile, zy(o), defined in Eq. (2.8), alternatively by
Eq. (2.10). The result is given in Table I, showing a devia-
tion of less than 0.035 A for all values of zy(o).
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