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Hopping conductivity in one dimension with asymmetric transfer rates
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The frequency-dependent conductivity is calculated for a one-dimensional disordered system in

the presence of an external biased electric field. Four classes of transfer-rate distributions are dis-

cussed. The singular distribution for which the inverse first moment does not exist gives the most

interesting nonanalytic behavior. For the class-(a) distribution such that all inverse moments exist,
numerical results are in complete agreement with the analytic expansions for weak disorder, as dis-

cussed in our previous work. For the class-(c) distribution such that no inverse moments exist, one

finds nonuniversal crossover behavior as well as nonanalytic frequency dependence of the ac conduc-

tivity. %'e find a crossover region co&&co&co2 such that for co&co&, the conductivity o-co
(0&a&1), and for copco2, u-~ ' ' with behavior the same as for the unbiased case. For the
class™(b')distribution such that only one inverse moment exists, nonanalytic leading corrections in

the conductivity are also obtained. Finally, for the bond-percolation model, we find no crossover
behavior in the frequency-dependent conductivity even in the strong biased case.

INTRODUCTION

Hopping transport in one dimension' has attracted
great interest recently as it appears to explain conductivity
experiments on quasi-one-dimensional conductors over a
wide temperature range. However, the theory focuses on
symmetric transfer rates so that it is only good for small
electric fields.

Transport with random and biased transfer rates seems
to be even more interesting. This case was first studied by
Derrida and Orbach in an early paper in which the
frequency-dependent conductivity of the one-dimensional
disordered chain was calculated with an external biased
electric field. The problem was solved in the weak-
disorder limit and results very different from the sym-
metric case were found in the low-frequency region, cross-
ing over to a behavior which was the same as the sym-
metric case. ' Whether the weak-disorder results could be
valid even when the disorder is not weak was also dis-
cussed. Recent work on this problem ' seems to confirm
this point, and the calculations have been extended to gen-
eral nonsingular distributions.

It would be more interesting to study the case when the
transfer rates obey a singular distribution. In this paper,
we wish to study distributions where the inverse first mo-
ment does not exist. In this case, there is no dc conduc-
tivity, and nonanalytic behavior in the ac conductivity
will occur. Physically, infinitesimally small transfer rates
correspond to infinitely high barriers and this is relevant
to the conductivity experiments on the superionic conduc-
tor, hollandite. Qn the other hand, with a scaling hy-
pothesis, Bernasconi et al. were able to obtain an exact
asymptotic solution for the symmetric case. %e shall see
that such a scaling assumption is sti11 correct in the biased
case although the frequency dependence of a scaling
length is modified at low frequencies.

The plan of this paper is as follows. In Sec. I we briefly
discuss the model and the effective-medium theory. Four

classes of distribution of transfer rates are introduced, in
which the singular distribution gives the most interesting
results. In Sec. II we present the results of the real and
imaginary parts of the ac conductivity for all classes of
distribution. The crossover behavior from drift to dif-
fusion is discussed. Finally, we discuss the leading correc-
tions to the small-frequency expansions which could be
important for the singular distribution. In Sec. III we
also discuss the high-frequency expansions for the class-
(a} distribution. Comparison to the known results is dis-
cussed where appropriate.

I. THE MODEL AND THE EFFECTIVE-MEDIUM
APPROXIMATION

A detailed description of the model has been presented
in our recent paper (hereafter referred to as paper I). We
shall only discuss the results briefiy for notation. We ex-
amine the master equation with asymmetric transfer rates

dP„
na+, 5n Wn+, snPn +pan, n+5Wn, n+sPn+s ~

5 . 5

where 5=+1 in one dimension.
In this equation, P„(t) is the probability on site n at

time t W~„=Wn~. are the nearest-neighbor transfer
rates. They are all independent random variables and
obey a probability distribution P(W). We shall focus on
the following classes of distribution:

Class (a). P(W} is such that all ( W") and (W n) ex-
ist. This is a nonsingular distribution. We shall examine
the weak-disorder limit analytically; however, the weak-
disorder results are valid for all class-(a) distributions in
which the disorder is not necessarily weak, as we shall nu-
merically confirm.

Class (c). P(W) is such that no inverse moments exist
and ( W ") '=0 for all n & l. As an example, we shall
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consider P ( W) = (1—a )W, 0 & W & 1, and 0 & a & 1.
Class (5'). P(W} is such that only the first r inverse

moments exist, (W ") being finite for all n(r, and
(W ") '=0 for n ~r A. particular example (r =1) is
P(W)=(1+P)W~, 0& W&1, and 0&P& 1. Note that a
crossover from class (c) to class (b') occurs when
a=P=O. This case is inore general than the class (b} dis-
cussed in Ref. 1.

Class (d). P(W} is such that there exists a finite proba-
bility for W to be zero. An example is the bond-
percolation model.

In Eq. (1.1), a „are the bias and are given by
—(n-nI) eEO/k&T (1.2)&m, n =e

where Eo is an external electric field, so that the transfer
rates are biased in the direction of the electric field. s Tak-
ing the Laplace transform, with the initial condition
P„(t =0)=5„o,one obtains

r

sP„=5.,o ga„—+s,„W„+s,. P„
5

+g~n, n+sWn, n+5, nPn +s ~

5
(1.3)

co„-(a ' —a) (W), (1.4)

where ( W) is an averaged transfer rate and
a =exp( eEolk&T—) is the bias. For low frequencies, or
lang periods, the drift behavior always dominates and vice
versa.

In order to give a quantitative description of our model,
we shall solve the master equation [Eq. (1.3)] using the
effective-medium approximation (EMA). In this approx-
imation, we replace the random transfer rates in Eq. (1.3)
by a homogeneous value, which is to be determined self-
consistently. As pointed out in Ref. 1, all classes of distri-
bution can be well described by EMA. In particular,
class-(a) distribution yields the normal diffusion behavior
at long times. In the asymmetric case, however, it can be
shown that EMA still works well provided that either
one of the averages ( W /W+) and (W+/W ) exists
and is less than unity. In the present case, it is obvious
that this condition is always satisfied. The details of
EMA for the biased case have been established in paper I.
Here we only briefly state the resulting equations. In the
one-dimensional case, the self-consistency equations are

1+ 8' —8'
where W is the EMA transfer rate and Q is the EMA im-
pedance

where 5=+1 in one dimension. P„(s) denotes the La-
place transform.

In paper I we discussed the crossover behavior in the
biased case. If we consider the frequency response of a
diffusing particle to an ac field at frequency co, we obtain
a crossover frequency

1 1
Po(s) =—g&

q s+W[a(1 —e~)+a '(1 —e '~)]

1

(s +2Wsa&+ W ai)'~
(1.7)

(P,(s))=(PO(s))P(ii/g($)), s 0 (1.10)

where g(s) is the frequency-dependent characteristic
length and F is a scaling function. From the normaliza-
tion F(0}= 1 and

g(P„(s)& =.-',

they arrived at

[g(s)] '-2s (Po(s) ), s~0 . (1.12)

%'ith this assumption, Alexander et al. ' were also able to
obtain the transport properties. Using the replica method,
Stephen and Kariotis' verified the validity of this scaling
hypothesis. Let us consider in the EMA

1 &qn

(P„(s))=—g&
z s+. Wfa(1 —e'~)+a '(1 —e '~)]

where a i ——a +o and a2 ——a —a.—I —1

We shall solve these self-consistency equations to obtain
the EMA transfer rate as a small-frequency expansion.
To do the expansion, one should compare the magnitude
of the two terms 2Wsai and W az in Eq. (1.7} for the
zero-site probability. We shall see in Sec. II that for
class-(a) and -(b ) distributions, the static value of W exists
and is equal to a constant. This immediately gives us a
crossover value of s,s„-(a ' —a) W, which is consistent
with Eq. (1.4). For the singular class-(c) distribution,
however, we shall see that W-O(so~'~ ') at low fre-
quencies and W-O(s ) at even lower frequencies. Thus,
crossover will occur in a finite region of frequencies as we
shall study in Sec. II. Finally, for the bond-percolation
model, W-O(s) and we find no crossover behavior.
Now in EMA, the frequency-dependent conductivity is
given by the generalized Einstein relation9 derived from
the fluctuation-dissipation theorem

2
Pl8o(co)= (,D(ice)) = W(s =ice) .

B 8

In the static limit s —+0, Q~l/W, and one can rewrite
Eq. (1.5) as

—.'=(') (1.9)

Thus, in one dimension, the dc transport depends on the
existence of the inverse first moment of the distribution of
transfer rates P(W). As for class-(c) and -(d) distribu-
tions, we do not have any dc conductivity and we shall see
that nonanalytic ac conductivity results.

Bernasconi et al. propased a scaling hypothesis for the
probability (P„(s)) in the small-s limit

1
Q = (1—sPO),8'

and Po(s} is the zero-site probability:

=(P.(.))z ~" ~,

(1.13)
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z=[(s+ IVai) —(s +28'sa&+ JV az)'~ ]/2aS'. (1.14} For co &co from Eq. (1.7),f=s jaz, one finds

In the symmetric case, a =a '=1, where s~O,
z = 1 —(s/W')'i

Thus, one finds F(X}=exp(—
~
X

~
) and

(1.15)
g= — (e'& .

02

FOr CO )63coy

(2-8)

g(s) = (s /IV)

which is consistent ~ith the scaling hypothesis. Howev-
er, in the presence of a bias, where s ~0,

1j2sS'
201

Thus, one finds

1/2s8'0

z=l —s jazIV.
Thus, one finds

{1.17)
g = —IV, (d&

2S'o1

' 1j'2

(2.9)

g(s) -(s/IV) (1.18) We obtain the conductivity from Eq. (1.8). For co & co

and the scaling assumption is still correct but the frequen-

cy dependence of the characteristic length has changed. IO'

II. FREQUENCY-DEPENDENT CONDUCTIVITY

Here we solve the EMA equations [Eqs. (1.5)—(1.7)] for
all classes of distribution. The frequency-dependent con-
ductivity is then calculated in both the drift and diffusion
regions.

IO2

A. Class (a)

We discuss the weak-disorder limit analytically; howev-
er, the results are equally applied to the more general
class-(a) distribution. In this limit we take

1 1 +e with (e)=0 and (e ) « z . (2.1)
1

0 wo

This allows us to expand IV in a series expansion of s and
(e ). Let us write

IO-3

IO-4
IO-' Io-'

1 1 +g,8' 0
(2.2)

(b}

where g depends on the bias and the disorder parameter e
as vrell as s, and

1—I
8' 8'

From Eq. {1.5}we get

(1—l'(g —s) )
or

g+f[g'+(&&]+f'[g'+3g(e'& &e')]+—

(2.3)

(2.4)

(2.5)

Io-2

O

b
I

3

b
Io-3

IO
10-4 102

by expanding the denominator in Eq. {2.4). To lowest or-
der, one finds

(2.6)

From Sec. I one finds a crossover frequency

azS'0 (a —a) IVO
2 —1 2

2a1 2(a +a )

FIG. 1. (a) Imaginary part of the conductivity al(co) plotted
as a function of the frequency for the class-(a) distribution
~(S')= —,5(H —

~ )+ 25(H' ——, ) and for different values of
bias strength a. Here, m is reduced by the maximum transfer
rate and cr(co) is also normalized to the dc conductivity. (b) As
in (a), the real part of the conductivity oz(~) is plotted as a
function of the frequency.
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(e')a)'(a+a ')
aR ai Q +

(a —a}
(e }WQQi

ol(co) =
(a ' —a}

For co p 6)~,
' 1/2

(2.10a)

(2.10b)

(2.16)

(1 f)' —g 'f =C~(1—a),
where C~ is a real number;

(2.17)

Since we are interested in a nontrivial solution, we arrive
at

oit(co)= WQ+ WQ(e )
4WQ(a+a ')

' 1/2

al(~)= Wo'&~}
4WQ(a +a ')

(2.11a)
c~=

~ x cfx

1+x sin(ma )

To lowest order, one can ignore 1 f=1—; thus,

g 'f =C (1—a).

(2.18)

(2.19)

These results have been obtained in paper I. We repro-
duce them here for the sake of completeness. A general
series expansion of W for any nonsingular distribution
can, in principle, be obtained order by order in terms of
the inverse moments of P(W). However, as these expan-
sions are fairly complicated, we do not present them here.
We also solve the self-consistency equations numerically,
using the binary distribution

P ( W) = —,
' 5( W —,' ) + —,—5(W —, ) . —

Note that this distribution has all well defined inverse mo-
ments as well as the moments. One can easily show that
(W ') ' exists and is equal to —,'. The results are

presented in Fig. 1(a} for the imaginary part of the con-
ductivity ol, and in Fig. 1(b) for the ac part of the real
part of the conductivity az. One can see clearly that
there exists a crossover frequency co which depends on
the strength of bias in accord with Eq. (1.4). Figure 1

shows that al(r0) behaves linearly as ~ in the drift region,
crossing over to co'~ in the diffusion region, while oz(ai)
behaves as QP in the drift region, crossing over to ai'~i in
the diffusion region. The results are consistent with the
analytic expansions, Eqs. (2.10) and (2.11), and we thus
confirm that the weak-disorder expansions can be equally
applied to any general class-(a) distributions.

0)ne can show that there exists a crossover region
(

i B)
' 1/(1 —a)

Q2

Q1

2
' (2—e)/2(1 —&)

Q2

(2.20)

(2.21}

a/(2 —a) (2.23)

This crossover behavior is in accord with the qualitative
results discussed in Sec. I, and our result for the second
region is still consistent with the symmetric case.

One can calculate the conductivity from Eq. (1.8).
Note that

~ Q ~ ~=cos x +l s1n x
2 2

is in general a complex number. For r0 &Qii (correspond-
ing to s,', ),

In any case, s~ &s" because 0&a&1, such that for
s &s~, one finds [from Eqs. (1.7) and (2.19)]

(2.22)

and similarly for s & s~n, one finds

B. Class (c)

A particular example we shall consider is

P(W}=(1—a)W, 0& W&1, 0&a&1 . (2.12)

One can easily show that the inverse first moment
diverges; therefore, one finds s ~0, W~O. We thus take

aa (co) cos —a N Q

2

err(co)-sin —a co
2

For co )co2 (corresponding to s,",),

(2.24a)

(2.24b)

W =0+g,
where g is a function of a and s, and

(2.13)
era(co)-cos co

ma

2(2 —a)
(2.25a)

Q= (1 f) . — (2.14)
O'1(Cd) —Siii CO

O'A

2(2—a)
(2.25b)

From the self-consistency equation, one arrives at the
foBowing exact relation:

T

(2.15}

Thus,

Thus, in the presence of a bias, we obtain a lower-
frequency region in which the conductivity behaves dif-
ferently from the symmetric case, as in Ref. 1. Moreover,
the crossover behavior obtained in this singular distribu-
tion is nonuniversal and is quite different from those of
the class-(a) distribution.
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On the other hand, the leading corrections to the results
are also very important. "' I.et us consider the case
co&ru2. Suppose a& —,, the correction from (1 f—)' is
very important (ignoring corrections from fa,ga '); one
finds

There exists a crossover frequency
r

CO~= 8'0 ——
2a) 2a) 1+P

sucli tliat foi' (0 (cocoy

(2.37)

C(0)sa/(& —a)(1 C(i)s() —a)/(2 —a))
CK CX (2.26)

and furthermore, when a & —,', so that correction from f
is more important, one finds

C(0)sa/(2 —a)(1 C(2)sa/(2 —a))as CÃ 2 (2.27)

g=C~a(1 —C'"s' ), a& —,
'

g=C~ (1—C' 's ), a( —,
' .

(2.28)

(2.29)

Richards and Renken" considered only the corrections
for a«1. Our result for a& —,

'
is in agreement with

theirs. In the lower-frequency region ro & r0) one finds the
corresponding corrections,

)=C) p(1+P)

and for co&co

02

'P
S

8'(P2
(2.38)

w, '"
g= C) p(1+P)

1

P/2 1 1

i' 2$'0a1
S 1/2

W = W() ( 1 + W()g )= W() + Wo g . (2.40)

(2.39)

Since 0 &p & 1, this correction is nonuniversal. To get W,
one inverts Eq. (2.33) and obtains

In Eqs. (2.26)—(2.29) the coefficients are functions of C
and a.

C. Class (b')

We obtain the conductivity for ap &co„:
p

1 nP pcos d7
Q2 2

(2.41a)

A particular example (r =1) is

P(W)=(1+P)W~, 0( W(1, 0&P&1. (2.30)

or(~)- 1 . m
sin N~ .

Q2 2
(2.41b)

This distribution has a nonzero inverse first moment, so
that W{0)=(W ') ' is nonzero. But o —od, will also
show nonuniversal behavior because ( W } does not ex-
ist.

1n order to study this case, we use the exact relationship
from the class-(c) distribution [Eq. (2.16)],

For a~co~,

cos p a)&/z
4

P/2
0

or {a)}-
1

sin p r0&/2
4

' P/2
0

og (a) ) —o)t (0)—
2Q 1

(2.42a)

(2.42b)

(
1 — =0.

(1 f}W+fg—
If one defines

one finds

(2.31)

Equation (2.42) is in complete agreement with Richards
and Renken. "

D. Class (d)

An example of this is the bond-percolation model, ~

P(W}=(1—p)5(W)+p5(W —1), 0&p(1 . (2.43)

One finds from the self-consistency equation,

Let

8'+h g W —W p(1 —W) (1—p)( —W) =0.
1+g( W —W) 1+g(1—W) 1+g( W)—

1 1

8'0
{2.33)

(2.34)
Since (1/W} does not exist, we expect

W-0(s)

(2.44)

(2.45)

One obtains

P

p(1+P) fW f (2.35)

and we find no crossover behavior, as discussed in Sec. I.
After considerable simplification by taking

Q =(1 f)/W, one finds—

x~-)dx
C1 P

——
1+x

is a real number.

sin[ir( 1 —P)]
(2.36}

(1—W)f =(1—p) .

Taking

2Wa1f=l/ 1+ +
s s2

(2.46)

(2.47)
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one arrives at III. HIGH-FREQUENCY EXPANSIONS

a i(1 —p)—p(2 —p)+2K + 1
S

Here we also discuss the high-frequency expansion for
the class-(a) distributions. In this limit, the inverse mo-
ments are irrelevant and we take

+ W —1 =0 . (2.48)
ai( I —p)'

S2
fV= W'o+5, with (5) =0 and (5 ) « ~0 . (3.1)

In the case of no bias a2 ——O, a ~
——2, one finds 8'= 8'p+g, (3.2)

p(2 —p) s 1—
4(1—p)' 2(1 —p)'

(2.49) where g depends on the bias and the disorder parameter 5,
as well as s. %e assume 8' g&s, so that

This is consistent with Ref. 7. And in the scaling region
(1—p)'«s,

2 2(3ai —a2) .
252

(3.3)

a&s8'=
02 (1-p)' '

From the self-consistency equation, one finds

g+Q(g +(5 )}+Q (g'+3g(5 ) —&5'))+ . =0.
s

2a i(1—p)
(2.50}

To lowest order, one obtains

(3 4)

Numerical calculation for the conductivity for p = —,
' and

a =
4 is presented in Fig. 2. One can see clearly that in

all cases, W-O(s), and the bias is irrelevant in this
bond-percolation model. This result can be understood as
follows. Random removal of bonds in the one-
dimensional chain leads to isolated segments of finite
clusters whose typical size is determined by the percola-
tion correlation length. Far from the percolation thresh-
old, the percolation correlation length is very small. The
diffusing particle will never travel far enough to experi-
ence the drift, and thus diffusion always dominates as in
the unbiased case.

g = —Q&5'),

(5 )ai Wo(5 )(3ai —ap)o- +
s 2$

We obtain the conductivity

W, (5')(3a', —a', )
aa(ai) = Wo-

2Q?

ai &5')
err(~) =

These results are in complete agreement with Ref. 3.

(3.5}

(3.6)

(3.7a)

(3.7b)

IV. DISCUSSION

cT {M3

(p-I

(0-'
io ' lo a

FIG. 2. Real and imaginary parts of the conductivity plotted
as a function of the frequency for the percolation model
~( W) =p5( 8' —1)+(1—p)5( 8') and p =

2 . Here the strength

of bias a = ~, and is fairly strong.

In summary we have extended the calculation of the
frequency-dependent conductivity to singular distribu-
tions. Class-(c) distributions show nonanalytic behaviors
for all frequencies. In the presence of a bias, nonuniversal
crossover behaviors are also observed. For the percolation
model, we do not find any crossover behavior even in the
strong bias case.

Here we need to comment on our effective-medium re-
sults. As pointed out in Ref. 1, the EMA gives correct
asymptotic behavior in the diffusion coefficient for all
classes of distribution, including the singular class-(c} dis-
tribution. Furthermore, the higher corrections are also
correctly predicted by EMA, except possibly that the
coefficients may be different from those for the exact
solution. Here in the biased case, one should expect EMA
to have the saine character, namely, that the exponents for
the asymptotic behavior and higher corrections are exactly
given by the EMA, except possibly that the coefficients
may be different from those of the exact solution.

%e have proven the validity of the scaling hypothesis
within the EMA for the biased case as well as the sym-
metric case. Such a scaling assumption is still correct in
the biased case although the frequency dependence of a
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scaling length is modified. In this connection, the validity
of this scaling assumption was verified recently for the
symmetric case by Nieuwenhuizen and Ernst' to leading
corrections of their asymptotic solutions.
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