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Irrelevance of bulk symmetry to critical wetting
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%'e consider a q-state Potts model below its critical temperature, which is in contact with a wall.

The bulk is in one of the q phases while the wall favors one of the others. We show that if the criti-

cal wetting exponents are universal, independent of the wall, then they are superuniversal, indepen-

dent of q and thus of the bulk symmetry. The order parameter of the wetting transition can be tak-

en to be of one component, the thickness of the wetting layer. Although this derivation is within

mean-field theory, we believe the result to be true in all dimensions.

Studies of wetting almost invariably' employ a model
of the bulk in which there are two phases, A and 8.
Given that the bulk is in state A while a surface favors 8,
one examines the thickness l of the film of 8 as bulk
coexistence between A and 8 is approached. The thick-
ness at coexistence is finite below a wetting temperature

T~ and infinite above. If !at coexistence increases con-
tinuously as T is approached, the transition, denoted
critical wetting, has associated with it various exponents
which describe, inter alia, the divergence of l with tem-
perature

and the singularity in the surface specific heat

the symmetry. Thus, these systems can all be character-
ized by a single-component order parameter I specifying
the thickness of the phase favored by the surface. Al-

though our demonstration for short-ranged forces proves
the point only above the upper critical dimension for such
forces (Ref. 5) d'=3, we believe that it is true in all di-

mensions, a point to which we return later. In order to
determine the exponents for the case in which the bulk
has a Potts symmetry, it is convenient to remind the
reader how they are obtained for the case in which the
bulk exhibits Ising symmetry. One begins with a Landau
free energy (per unit surface)

F=Fg+Fg,

C-(T —T)
where

2

One might expect that in models in which there are
more than two bulk phases which are related by some
symmetry, these exponents would depend upon that sym-
metry. For example, if the bulk were in one of the or-
dered states, A, of a q-state Potts model while the surface
favored another such state, 8, then the exponents govern-
ing the critical wetting of the surface by 8 might well be
different from that of the two-component system due to
the presence of the other components C,D, . . . , just as
the exponents governing the bulk transition are known to
be different. However, it is believed that, within mean-
field theory which should show such an effect, there is no
such difference. This belief rests on the construction of
effective one- (order-parameter) component theories which
are essentially symmetry independent. Although such
theories are incapable of addressing some issues which
arise in systems with a multicomponent order parameter,
they are thought to provide correctly the critical ex-
ponents associated with interfacial transitions. We con-
sider below the multicomponent theory and show that if
the exponents are universal, independent of wall poten-
tials, then they are indeed superuniversal, independent of

Fg —— z — +U M, T1 dM
2 dz

(2)

M(z) is a one-component order parameter, the particle
density, and U(M, T) is a function with two equal mini-
ma: one at MG( T) & 0, which represents the gas, the other
at ML ( T) & 0, which represents the liquid. Surface contri-
butions, which need not concern us, are given by Fz. The
functional Ftt is to be minimized with respect to variation
of M(z) subject to the boundary conditions that the bulk
is in the gas phase,

M( co ) =MG, (3)

describes the motion of a particle moving in the potential
V= —U, which has two maxima. The particle, whose

and a condition at the surface which we need not make
explicit. The problem is easily visualized in terms of its
dynamical analogue, in which the action

2

Fg= f dz — —V(MT)1 dM
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coordinate at time z is M(z}, is constrained by Eq. (3) to
arrive on top of the gas hill as z~ao. It begins at some
point M(0) determined by the initial conditions. As T
approaches the wetting temperature T~, the coordinate
of the liquid hill, ML, , approaches the initial position
M(0). The particle begins with more potential and less

kinetic energy, so the time spent in the vicinity of the
liquid hill is greater. This corresponds to a thicker film in

the original problem. As the critical exponents describe
the divergence of this time, it is not surprising that they
can be extracted by simply investigating the motion in the
vicinity of ML, . Then we can write

V(M, T)=—
z k [M —Mt, (T)]

With this choice of the zero of potential energy, the
boundary condition (3) implies that the total energy af the
system is zero. Thus,

1 dM k
(M —Mt ) =0,2=

2 dz 2

The inverse susceptibility X ' is obtained as
' =BzF(T,l)/Bl, which vanishes like t r .This has the

same singular behavior as 8 Fii/Bl, which, from {12),has
the same behavior as Ftt itself. Thus, on using the
smooth temperature dependence of ML given by (9}, we
obtain, from (11)and (12),

I'g -t 2 (13)

(14)

which identifies a=0 and y=2. Lastly, one defines the
correlation length g which describes the decay of the ex-
cess surface density-density correlation function in the
direction parallel to the substrate. This length diverges as
t "with v given, in mean-field theory, by y/2= 1.

Now consider the case of a three-state Potts model in
contact with a wall. The state of the system is described
by an order parameter with two components Mi(z) and
Mz(z) which vary with the distance from the wall. The
free energy can be written as in (1) with

so thai

M(z)=ML, +[M(0)—ML ]e (7)

I '2 T

p~— 1 dMi 1 dMz

2 dz 2 dz
+— —V(Mi, Mz, T)

1 ——lnt, (10}

which implies that P=O. The other exponents can be ob-
tained from the surface free energy, given by (1) and (2),
minus the free energy of a uniform bulk system of the
same volume. However, with our choice of the zero of
potential, this term vanishes so that the surface free ener-

gy is just given by F. Furthermore, whereas the surface
term Fz is important in determining whether the wetting
transition is first order or continuous, ' if the latter, it
does not, in general, affect the exponents of the transi-
tion. Thus, it is sufficient to examine Ftt of (2) or (4).
Using conservation of energy and the explicit solutions

(7), we find that the motion of the particle in the vicinity
of the liquid hill contributes ta Fa a term of the form

F~( T, I ) —[Mt ( T) M(0)]—

The thickness of the film, I, can be obtained by defining
M(l) to be any fixed value of M with

MG (M(l)(Mt, .

From Eq. (7), the "time" 1 that it takes to obtain this posi-
tion is given by

Mt ( T) M(1)—
ML (T)—M(0)

The liquid density ML is a smooth function of tempera-
ture. It coincides with M(0) at T~, so that, near Tii,

ML M(0)=—ct,
where t =(Tii T)/T~ and c—is a constant. Thus, fram
Eq. (8), one finds that the thickness diverges with tem-

perature like

M i (z) Mti ——[M i (0)—Mg—]cosh(k iz),

Mz(z)=(ki/kz)[Mi{0) —Mti]sinh(kzz) .
(17)

The potential V has three symmetrically placed maxima
which represent the three possible bulk phases. We now
deal with the potential motion of a particle in two dimen-
sions. The motion is subject to the boundary condition
that at infinite time z the particle arrives at one of the
bulk hills, A, which fixes the energy, and an initial condi-
tion which states that particle starts in the vicinity of one
of the other bulk hills, 8, which is favored by the wall.
We locate this latter hill at the coordinates (Mi, Mz)
=(M Ozi) The .others are at ( —Mii/2, ~3Mti/2) and
( —Mq/2, —~3Mti/2). As before, the critical exponents
emerge from an analysis of the motion of the particle in
the vicinity of the maximum favored by the walls, where
the potential can be approximated as

2 2k, k2
V(Mi, Mz, T)=— [Mi —Mti(T)] — Mz . (16)

2 2

We now assume that the exponents of the wetting transi-
tion are universal, i.e., do not depend on the wall poten-
tial, and therefore one can make any convenient choice of
initial canditions. For definiteness, we make the choice
that Mi(0) is given to be positive but less than Mti,
dMi(0)/dz =0, and Mz(0) =0. Then the fact that the to-
tal energy of the particle is zero implies that

dMz(0)/dz=k, [Mi(0) Mtt] . —

The solutions of the equations of motion, which arise
from minimizing Ftt with respect to Mi and Mz, are

or, using (8} to eliminate the initial conditions,

Fg(T, l)-[Mt (T) M(l)]e—(12)
The density of the three components n„,ns, nc are ob-
tained from the order-parameter components according to
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ng" ———, z M) z —Mi 00

z M) z+ —,Mg
0

(18)

where the fact that the Mi coordinate of the A or C hill
is —Mit/2 has been used. The thickness of the film, 1, is
defined by setting Mi(1) to be any fixed value between
—M~/2 and Mii. Equation (18) shows that the excess
surface density and 1 so defined are linearly related for
large I. From (17) we find, for large 1,

[Mit —M i (1)]
[Mit —Mi(0)]

(19)

As Mii is a smooth function of temperature which coin-
cides with Mi(0) at T~,

Mii M i (—0)=ct,
from which we find that the thickness of the film diverges
as

so that P=0 as before.
The free energy Ftt is again obtained by using the con-

servation of energy to write the integrand of (15) as —2 V
and then employing the form of V given in (16) and the
explicit solution of (17). The motion in the vicinity of the
bulk hill favored by the surface contributes to Ftt a term
of the form

Ftt(T, 1)-[Mtt —Mi(0)]

which, from (19), can be written

(22)

Fit(T, 1)-4[Mtt —Mi(l)] e

This form is independent of our convenient choice of ini-
tial conditions, and follows from the form of the potential
of (16). Provided that the exponents are independent of
the surface terms, the singular part of the inverse suscep-
tibility can be obtained from two differentiations of Ftt
with respect to 1, which vanishes like Ftt itself. The
smooth dependence of Mit on T leads to
a=0, y=2, v=1, as in the case with Ising symmetry.
The generalization to an arbitrary number q of Potts
states is immediate. Thus, we obtain our result that in the
critical wetting of the interface between a wa11 and one

nq ———,
' (1—M i +~3M2),

ntt ———,
'

( 1+2M i ),
nc ———,

' (1—Mi —~3M2),

so that the excess density of component 8 favored by the
surface is

Potts phase by another such phase favored by the wall,
the exponents of the transitions are independent of the
number of possible Potts phases, q, and thus of the bulk

symmetry.
A few observations are in order. First, we have as-

sumed that the exponents are universal, independent of
the wall potential. When this is so, we have found that
they are superuniversal, independent of q, a result which
is in agreement with that of one-component theories. i

Second, the fact that our result depends only on the quad-
ratic form of the potential in a space of dimensionality
equal to that of the number of bulk order-parameter com-
ponents indicates that the result applies to other sym-
metries in which the Landau potential has minima of
such form. Third, the quadratic form presumes short-
range forces so that the mean-field demonstration only
proves the point above the upper critical dimension (Ref.
5) db~k ——3. However, we believe that the result holds for
all dimensions. Below de~i, the exponents in common are
simply different from their common mean-field. values.
This belief is supported by results on the chiral Potts
model in two dimensions, ' which, in spite of its different
symmetry, undergoes a critical interfacial wetting transi-
tion with exponents identical to that of the Ising model in
two dimensions.

Lastly, our result does not imply that the bulk symme-
try cannot affect the wetting behavior at all. That it can
do so is demonstrated by the Z(N) model. If a wall
favors the state 1 while the bulk is in a state of order n /2
with n large, then it is easy to show that the interface is
always wet at zero temperature. Furthermore, in contrast
to the Potts case in which only one macroscopic region of
8 intervenes between the wall and the bulk phase A, in
the Z(n) case there are, in general, several macroscopic
regions of phases n =1,2, 3, etc. intervening between the
wall and the bulk. What our result does say, even in such
a case, is that if a critical wetting occurs in which one re-
gion which is microscopically thick at low temperatures
becomes macroscopic continuously with an increase in
temperature, then the critical exponents of that transition,
if independent of the wall potential, are also independent
of the bulk symmetry and identical to those of an Ising
model in the same dimension.
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