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C. D. Hu' and David C. Langreth
Serin Physics Laboratory, Rutgers University, Piscataway, Rem Jersey 08854

(Received 24 April 1985)

The previous work by Langreth and Perdew and by Langreth and Mehl for calculation of the

exchange-correlation density functional is put on the same sort of basis as standard calculations for
the uniform system by the approximate calculation of the following terms which go beyond the

random-phase approximation (RPA): the second-order exchange term and self-energy corrections of
similar order. It is found when both local [local-density approximation (LDA)] and nonlocal terms

are included, that the net effect of these additional terms is found to be small, so that the RPA pre-

viously used is a much better approximation than previously supposed. Evidence is presented that

suggests for localized systems that the leading non-RPA terms in the LDA represent mostly a spuri-

ous self-interaction error which is removed when the nonlocal beyond-RPA terms are included as
well; it is suggested that this error can be most simply avoided by just using the RPA alone for both

the local and nonlocal contributions, as done in the simple approximation suggested by Langreth
and Mehl [Phys. Rev. 8 2$, 1809 (1983)].

I. INTRODUCTION

The Kohn-$ham method' is now widely used for the
calculation of the ground-state properties of solids, sur-
faces, and molecules. An input to such calculations is an
approximation to the exchange-correlation energy as a
functional of the density. The uncertainties are of two
types: (1) what is the best correlation energy for a uni-
form system [i.e., what is the best form for the local-
density approximation (LDA)], and (2) what are the non-
local corrections?

Vosko er al. 2 have recently done a thorough critical
study of the various calculations available for the uniform
system. By the criteria set there certain classic approxi-
mate methods such as the Wigner interpolation formula3
and the random-phase approximation (RPA) are elim-
inated as viable contenders for providing the best available
expressions for the correlation energy of a uniform system
as a function of density. Vosko et al. ~ also explicitly
eliminated some of the more recent calculations. We be-
lieve that this analysis is generally correct, although later
in the present paper we will present an unexpected twist to
the argument.

von Barth has just reviewed the various schemes to go
beyond the LDA. The present paper deals with the
method recently espoused by our own group. This
scheme of Langreth and Mehl (LM) used the RPA as
the basic diagrammatic approximation method: RPA cal-
culations for the nonlocal terms had been carried out pre-
viously; these were adapted and used by LM. They ar-
gued, in addition, that because of the known cancellation
between local and nonlocal effects, it would be incon-
sistent to use any approximation but the RPA for the lo-
cal part. It would sean desirable to consider the effect of
going beyond the RPA in both LDA and beyond-LDA
terms. This is the principal aim of this paper.

Another concern is the relationship between the
beyond-LDA corrections derived in LM (and in the
present paper} and the fact that the LDA spuriously

counts the interaction (electrostatic, exchange, and corre-
lation} between an electron and itself. Perdew and
Zunger' have made a systematic study of this self-
interaction error and have espoused an approximate
scheme for correcting it; this scheme was used to predict
corrections to the LDA which at least for atomic inner
shells were of a magnitude similar to the LM correction.
In addition, Norman and Koelling" have used the method
to produce exchange-correlation potentials whose nonlocal
correction is very similar to those calculated by the LM
method, which in turn were very similar to the exact po-
tentials of Talman et al. ' Of course, in an exact
density-functional theory there would be no self-
interaction error. $ince the LM corro:tion as well as
those proposed here purport to make the LDA more ex-
act, they should contain terms which mimic self-
interaction corrections. Later in the paper we identify one
such term. In fact, we will present evidence that in at
least one fairly common situation the difference between
the RPA (in the LDA) and a "better" LDA energy ex-
pression is almost entirely a self-interaction error which is
canceled when beyond-LDA terms are included. This re-
sult agrees with the observation of Cole and Perdew'
that, in the Perdew-Zunger scheme, it makes little numeri-
cal difference whether beyond-RPA terms are included or
not, although in the LDA it can make a substantial differ-
ence.

There are two by-products of this work which may
have some use in their own right. The first is a new cal-
culation of the electron-gas correlation energy as a func-
tion of the interparticle distance r, . Although this may
not be quite "state of the art" in accuracy, it is much
better than the RPA, it satisfies the criteria of Vosko
et al. for a viable approximation, and, in fact, it is numer-
ically almost identical to the calculation of Singwi et al. '

(SSTL); this latter calculation is the one parametrized by
Hedin and Lundqvist' and widely used in electronic-
structure calculations. The advantage of our calculation
is that it is feasible to generalize to nonuniform situations.
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This calculation is described in Sec. II.
The second by-product of this work is just such a gen-

eralization. In Sec. III the method of approximation of
Sec. II is applied to calculate the beyond-RPA correction
to the gradient expansion. '6' The results are collected
in Sec. IV. Finally, in Sec. V we get to our original aim of
presenting evidence that the beyond-RPA local terms are
mostly a self-interaction error canceled by beyond-RPA
nonlocal terms. We conclude that the Langreth-Mehl '

nonlocal correction coupled with the RPA local terms
{e.g., von Barth —Hedin) still represents the best approxi-
mation that has come from this type of analysis.
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We now follow Vosko et al. and discuss the difference
&&,=E,—E,"". Figure 2 includes (along with other in-
formation) what is known about this quantity. The solid
dot at r, =0 is known exactly. ' 'z The open circles
represent Ceperly's and Alder's ' exact stochastic sam-
pling of the solution of Schrodinger s equation for sam-
ples with —10 particles. Their error bars, which include
statistical error, are invisible on this scale; however, the
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II. THE CORRELATION ENERGY
OF THE UNIFORM GAS—A SIMPLE

ADEQUATE APPROXIMATION

In this section we calculate the correlation energy of a
uniform electron gas. Three criteria were used for select-
ing a method: (i) it must be simple; (ii) it must be expres-
sible at least approximately in terms of "4-derivable"'s
set of diagrams; {iii) it must represent a substantial im-
provement over the RPA and preferably be comparable to
state of the art calculations. Requirements (i) and (ii) are
necessary to make a generalization to nonuniform systems
reasonably possible and consistent, while (iii) is necessary
for our results to be meaningful.

We begin with a brief summary of what is known about
the correlation energy (per electron) E, as a function of r,
[as usual, r, =(3i4nn)'~, and we pick units so that
lengths are in bohrs and energies in rydbergs]. For refer-
ence the value of E,(r, ) within the RPA (Ref. 4) is shown
in Fig. 1. For high density (r, && 1) it takes the form'

0.0
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FIG. 2. AE„ the correction to RPA correlation energy,
versus r, for the uniform electron gas. %'e show our result
{solid curve) along with those of Hubbard's approximation
{dashed curve), SSTL (triangles), the Ceperley-Alder simulation

{open circles), and the average of Vosko et al. (squares). The
solid dot at r, =0 is the one known exact point. See text for the
meaning of the bars.

errors involved in extrapolating to the thermodynamic
limit are hard to estimate and may well be larger. The
squares represent the Vosko-Wilk-Nusair2 average of
modern calculations deemed includable. The bars associ-
ated with these points are not error bars, but rather the
standard deviations of the calculations included in the
average. We will use the above-mentioned points to assess
the approximation scheme to be described below.

In Fig. 3 we illustrate the diagrammatic expansion of
Baym's 4 in terms of the screened interaction which is
shown in Fig. 4. With different weightings (as determined

by a coupling-constant integration), these are also dia-

grams for the exchange-correlation energy E„, (for 4
there is also a "Hartree" diagram which is not shown).
To guarantee an approximation to be fully consistent, it
must consist of the sum of one or more of these diagrams
with the self-energy X for the fully interacting propaga-
tors G being given by 2 =54/5G. Normally, as a practi-
cal matter one usually either replaces any uniform-gas
propagator by noninteracting uniform-gas propagators
after any functional derivations have been done, or else

supposes that this propagator modification is absorbed
into some other part of an approximation scheme. We
discuss in Sec. IIIA how we shall treat this problem in
this paper.
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FIG. 1. Correlation energy of a uniform electron gas (in Ry)
calculated with the RPA, versus r„ the radius of the Wigner-
Seitz sphere.

FIG. 3. Diagrams for Saym's 4. The exchange-correlation
energy may be obtained by the appropriate coupling-constant in-

tegration. The wriggly lines are defined in Fig. 4. The double
solid lines are the fully interacting propagators.
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In contrast, Hubbard used V, to include vertex correc-
tions in a ladder approximation to all orders. We find a
posteriori that our approximation is better than
Hubbard's, apparently because of cancellation among
higher-order terms [e.g., Fig. 3(c) was included approxi-
mately by Hubbard but Fig. 3{d) was not].

Making the approximation described above gives

hE =— —g V~
d'k dc' ' 1

(2ir}3 c 27' 0

FIG. 4. {a) Wiggly line is the screened Coulomb interaction

given by {A5). The ~shed lines are bare Coulomb interactions.
The bubbles are the density polarization parts. The shaded

areas in the bubbles are irreducible vertex parts; {b) several

lowest-order terms for these vertex parts.

(2.2)

where the contour c encloses the positive real axis in the
positive (counterclockwise) sense. The factor g(k) is the
Hubbard factor:

g(k)= —k /[2(k +kg)], (2.3)

For the uniform gas the so-called random-phase ap-
proximation consists of Fig. 3(a} alone, evaluated with
noninteracting propagators, and using only the first term
in Fig. 4(b) as the kernel in the series 4(a) for the screened
interaction. This produces'9 the term proportional to lnr,
in (2.1}, after subtracting the so-called exchange energy

E,=—0.9163/r, [the latter is simply Fig. 3(a) to lowest
order in the bare interaction]. On the other hand, if ln( r, )

is considered to be of the same order as other terms of or-
der r, , then Fig. 3(b) must be included as well. The high-
density limit ( r, ~0) is given exactly by the sum of these
two diagrams. ' Figure 2 shows that the correction of
-0.04 Ry to the RPA is probably not very density depen-
dent in comparison with the RPA itself. This in turn sug-
gests that we adopt the approximation of Figs. 3(a} and
3(b) as our basic approximation.

However attractive a possibility this may sean, it does
not satisfy the criterion (i) of simplicity. Even in the uni-
form system, Fig. 3{b) is a ninefold integration; it has been
evaluated only at r, ~0 and this took the brute force of
Gell-Mann's and Brueckner's' approximate Monte Carlo
numerical evaluation or the brilliance of Onsager to pro-
duce an analytic evaluation. Therefore further approxi-
mation had to be made.

The approximation actually made seems crude by
modern standards, but it was all we could devise that al-
lowed us to carry out the evaluation for the nonuniform
system using the scheme of Ref. 9 without further ap-
proximation. What we did was to follow Hubbard and
replace one of the wiggly lines in Fig. 3(b) by a static in-
teraction

V, (k)=—4me /(k +kF),
where k~ is the Fermi momentum and k is the momen-
tum transfer along the other line. This is equivalent to an
expansion of Hubbard's original approximation to second
order in the bare potential. %e also use a static potential
to approximate first-order self-energy corrections [for ex-
ample, in Fig. 5(b)]. Thus we use V, to approximate
first-order self-energy corrections and first-order vertex
corrections [i.e., Fig. 5(c}]and neglect higher corrections.

while Vi(k)=gnk/k, and ei(k, ca) is the RPA dielectric
function

ei(k, co}=1—Vi (k)Xa„(k,co) . (2 4)

and

P(k, ca}=P+(k,a&)+P (k,a&),

P(k, ca) =P+(k, a)) —P (k,a)),

P+(k, a)) =—g1 fx
0 K N —EK+g+ GK

(2.5)

(2.6}

(2.7)

P (k ai)=-0 ~ 6) —EK+g+FK
(2.8)

thus correcting a misprint in Eq. (3.7}of that paper. The
quantity P is hsted here for completeness, but will not be
used until later.

The expression (2.2) is readily evaluated and is plotted
as the solid line in Fig. 2. Comparison with the presum-
ably more accurate points discussed earlier shows that this
approximation is really quite good. At high densities its
error is somewhat less than 0.01 Ry, and this quite likely
remains true over the whole range. Our calculation also
lies virtually on top of the points calculated by Singwi
et al. ' (SSTL};the latter have almost become an accepted
standard of comparison, as they have been parameterized
by Hedin and Lundqvist' and are widely used in
electronic-structure calculations. Note also that our cal-
culation quite likely is a considerable improvement over
Hubbard's original approximation, except at r, ~0, where
they coincide (the value cited by Hubbard of hE, =0.036
Ry at r, =O is inaccurate; the correct value is
=0.0415 Ry).

In Table I we tabulate the present calculation along

The function Xa„(k,co) is the density response of the uni-
form system to a unit screened potential, as a function of
the coupling constant A, . For the most part we retain the
notation of Ref. 9, so that Xa„(k,ra) =P (k, ra+i 0) with
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TABLE I. Correlation energies {in Ry) from various theoretical calculations.

RPA'
Hubbard
Present'
SSTL'
Average'
CA'
Freemanl

—1.0

—0.158
—0.131
—0.126
—0.125
—0.123
—0.120
—0.118

—2.0

—0.124
—0.102
—0.097
—0.097
—0.092
—0.090
—0.088

—3.0

—0.106
—0.087
—0.081
—0.080
—0.076

—0.073

—0.094
—0.077
—0.071
—0.070
—0.066

—0.064

—5.0

—0.085
—0.069
—0.064
—0.063
—0.058
—0.056
—0.057

—6.0

—0.078
—0.064
—0.058
—0.057
—0.054

—0.052

'Numerical calculation of the RPA.
Reference 22.

'Equation (2.2).
dReference 14.
'Average of Vosko et al. , Ref. 2.
'Ceperley and Adler, Ref. 21.
~Reference 23.

with several others for comparison. Aside from the origi-
nal Hubbard approximation, another approximation simi-
lar to ours has been made by Freeman. He also effec-
tively gave an approximation to Fig. 3{b) which yields a
&&, slightly larger than ours, possibly because only one of
the two wavy lines was screened.

III. BEYOND-RPA CORRECTIONS
TO THE GRADIENT EXPANSION

A. General theory

In the precehng section we adopted a Hubbard-like ap-
proximation to obtain corrections of the second-order ex-
change type to the RPA. Here we use the same kind of
approximation to calculate the corresponding corrections
to the lowest-order coefficient in the gradient expansion.
In addition, we calculate the self-energy corrections of the
same order which make a contribution to the nonuniform
case.

We define the desired gradient coefficient 8„, in the
usual way by

E =E„„+f d &(Vn) 8„,{n), (3.1)

where E is the ground-state energy functional and ELD~
is its value in the local-density approximation (LDA), and
n =n(x) is the electronic density. As previously dis-
cussed, the expansion (3.1) is not direr:tly applicable to
real systems, but Langreth and Mehl ' (LM) devised a
practical scheme where the knowledge of 8„, represented
a first step. We have found it numerically intractable to
carry out a wave-vector decomposition of the deviation
from the RPA, as was done for the RPA. Fortunately,
in this case we do not expect large (spurious) contributions
at small wave vector, so that it probably makes sense sim-

ply to add the correction which we will calculate to the
nonlocal exchange-correlation approximation of LM.

The calculation proceeds by expanding the diagrams of
Fig. 3 to second order in an external potential which pro-
duces the nonuniformity in density, and then eliminating
the potential in favor of the density; the result is then ex-

panded in powers of various deviations of the density. We
follow Ma and Brueckner'6 and express the formal results
of this process in terms of the exact density-response
function of the uniform system X(q,co) evaluated at co=0.
The equivalent method of Langreth and Perdew9 could
also have been used, but its extra complication is unneces-
sary if a wave-vector analysis is not going to be per-
formed.

In developing approximate diagrammatic expressions
for E„„and hence the coefficient 8„, in (3.1), it is impor-
tant to maintain self-consistency in the sense of Baym'
insofar as one is able. Langrethi has recently shown that
the Kohn-Sham relation

SEH„= J d x UH„(x)5n(x) (3.2)

is valid not only for the exact theory, but for any 4-
derivable (in the sense of Baym) approximation as well.
We have, for notational simplicity, added the Hartree
term

V(x, x') =e /
~

x —x' ~,

7l X) Pl X2 8 f(g X) Xg

to the exchange-correlation energy E„, to make E~„„and
similarly have added its functional densities to the
exchange-correlation potential v„,(x) to form uH„,(x),
which is the difference between the Kohn-Sham potential
uo(x) [which when acting on a noninteracting system
gives the true density n (x)] and the true one-electron po-
tential vi (x). Taking the second functional derivative and
setting ui ——uv ——0 to find the perturbation from a uniform
system gives

5 EH„, 5ui(x) 5vo(x')

5n(x)5n(x') 5n(x') Sn(x')p + g
(3.3)

where we have used the fact that u~„,——u() —ui. The
right-hand side of (3.3) may be expressed in terms of the
irreducible polarization propagator X that is the density
response to a fully screened potential. Writing X=5n /5u I

and Xo——5n/5uu and noting that X '=X ' —V, where V
is the Coulomb interaction
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X( q) =a +bq2+

Xp(q)=ap+bpq +
We find by equating powers of q that

8„,= —,
'

(ab —apbp) .

(3.6a)

(3.6b}

(3.7)

The formula (3.7) first derived by Ma and Brueckner' for
the exact theory is thus shown to follow directly from the
structure of perturbation theory for any 4-derivable ap-
proximation.

We use the above procedure to make a connection be-
tween the particular diagrams we use for E„, (and 4) and
our approximation for B„„although we are, of course,
able to maintain 4 derivability only approximately.

The procedure for calculating 8„, should then be clear:
(1) pick a closed set of diagrams from Fig. 3; (2) function-
ally differentiate it twice so as to obtain the corresponding
approximation for X. This establishes the correspondence
between a particular closed diagram for E„, and the cor-
responding diagrams for X. Step (2) above may be accom-
plished in several different ways, which are equivalent.
For example, one might take the closed diagrams to have
the weightings appropriate to Baym's 4, in which case the
irreducible particle-hole interaction is obtained by dif-
ferentiating twice with respect to the propagator 6; X is
then obtained by solving the appropriate Bethe-Salpeter
equation. Alternatively, one might use the self-energy ob-
tained by X=54/56 in the Dyson equation to calculate
6 and hence the density; X is then obtained by a single
functional differentiation with respect to the screened po-
tential. Here we actually use a third method better suited
to our approximation scheme, but which again is
equivalent, and which will be discussed below.

We note that real fully interacting propagators should,
in principle, be used to evaluate the solid lines in the dia-
gram with the self-energies X determined by the relation
X=54/56. If we define the RPA to mean the evaluation
of the diagram of Fig. 3(a) with noninteracting propaga-
tors, then it is clear that the RPA does not rigorously
meet the 4-derivability standard, although it was argued
by I,angreth and Perdem that the correction obtained by
using real propagators in this diagram mould be largely
nullified by cancellation between contributions coming

me see that

5E„, = —X '(x —x')+Xp '(x —x'),
5n(x)5ii(x')

where Xp is the value of X for the noninteracting system.
In writing (3A) we have also used the fact that

52EH„,/5n5n'=5 E„,/5n5n'+ V

and Xp
——Xp. Therefore the change in E„, due to the

nonuniformity is

EE„=—, f d3x f d~x'5a(x)Sn(x')

X[—X '(x —*')+Xp '(*—x')] .

(3.5)

Upon Fourier transforming (3.1) and (3.5) and expanding,

5 WX(x-x') =
5u(x)5u(x') -=p

(3.8)

(0) (b3 (c)

(e)

FIG. 5. Diagrams for the exchange-correlation energy in

powers of wiggly lines (see text for weightings of diagrams).
The solid lines are the noninteracting electron propagators. (a)
RPA contribution; (b) self-energy contribution; (c) second-order
exchange contribution; (d)—(f) higher-order terms.

'om a a"d b respectively, in (3.7). This fact w~ al, „„
'fied by Geidart and Rasolt. '7

The approximate approach which me adopt here in cal-
culating beyond-RPA contributions is to suppose that the
diagrams of Fig. 3 can be categorized by the number of
screened Coulomb lines in each part of the diagram when

expanded in terms of noninteracting propagators. Thus
the first three diagrams of Fig. 3 would become the dia-

grams of Figs. 5(a)—5(c) plus higher-order corrections [for
example, Figs. 5(d)—5(f}],where here the solid line is the
noninteracting propagator. The approximation of retain-

ing only Figs. 5(a)—5(c) is 4 derivable to the extent that
the diagrams containing three or more screened potential
lines are small. Since we find that 5(b) and 5(c) make a
fairly small correction to 5(a), at the densities we consider,
we conclude that this is reasonable.

This is certainly our experience with the uniform sys-
tem as well. In this case diagram 5(c) evaluated with un-

screened potential lines gives the leading correction to the
RPA [5(a)], while diagram 5(b) with unscreened potential
lines rigorously vanishes. For the nonuniform system we
find that the lines must be screened to prevent logarithmic
divergences in otherwise small corrections. Furthermore,
5(b) does not vanish for the nonuniform system (even with
bare potential lines) and therefore it must be kept for con-
siestency with 5(c). One may wonder at this point why it
was unnecessary to include 5(b} in the uniform case dis-
cussed earlier, since it is necessary to use dynamically
screened potential lines. The answer is that while, in gen-

eral, 5(b) does not vanish, even in the uniform case, we
find that it does in fact vanish within the Hubbard-like
approximation adopted in this paper.

Since our approximation scheme is now expressed in
terms of Gp, it is most convenient to use the following
scheme for generating the X implied by these diagrams:
We suppose that the diagrams of Fig. 5 are weighted as
Baym's W; then the derivative of W' with respect to a
screened potential (here we do not allow Hartree self-
energy insertions) gives the density n and the second
derivative gives the desired correlation function X:
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where IV contains the diagrams of Fig. 5 (no Hartree in-
sertions) and U is the Hartree potential that produces the
nonuniformity.

8. Second-order exchange contribution

Q/2

k+p-s

p+k+
-s-Q/2

s-k+Q/2
1+Q/2

-Q/2

s-k+q
P+k-Q/2

(~)

p+k-q/2

s- Q/2
/2

The contribution to 8„,(n} from Fig. 5(a} has been
evaluated by Langreth and Perdew (LP). It will be re-
ferred to as the RPA contribution. Geldart and Rasolt'
(GR} using (3.7) also evaluated it. Both treatments con-
sidered the effect of higher-order terms: in LP's approxi-
mation they cancelled exactly, leaving only the result in
Fig. 5(a); in GR's approximation the cancellation was not
exact, leaving a difference between the two treatments
which became greater as density got lower. We will dis-
cuss this difference further in the next section.

We do not repeat Langreth's and Perdew's calculation
of the RPA contribution. Instead, we take their result
and add it to the contribution from Figs. 5(b) and 5(c)
which are evaluated here and in the next subsection
(IIIC). We only list the expressions for the RPA contri-
bution in Appendix C for reference.

We consider Fig. 5(c) in this subsection. Following the
procedure outlined in the preceding subsection, we take
functional derivatives of W twice with respect to U(q}, the
Hartree potential which causes the nonuniformity of the
system. The resulting diagrams are shown in Fig. 6. One
can see that they are part of X(q,o). We can proceed to
expand Fig. 6 in powers of q. The zeroth- and second-
order terms are the contributions to a and b, respectively,
according to (3.6). We label them a2„and b2„. They are
needed in evaluating 8„,(n }.

The calculation of Fig. 6 is quite involved, especially in
the presence of the dynamically screened Coulomb lines,
and we make the Hubbard-like approximation we used in
the uniform case. We address our approximation first,
then outline the calculational procedure.

1. The Hubbard-like approximation

The prescription for this approximation is straightfor-
ward: we replace one of the Coulomb lines by the static
potential

V, (k)=4me /(k +k ),
where k is the momentum along the other Coulomb line.
However, the situation here is more complicated. In some
of the diagrams in Fig. 6, not all the Coulomb lines are
equivalent in their effect. For example, the ones in the
bubbles of Fig. 6(f) are less critical than those connecting
the triangles. We can view the diagrams in Fig. 6(fl as
two triangles connected by two Coulomb lines with dif-
ferent screening. Replacing the wiggly lines in the bub-
bles by V, simply produces a minor change on the screen-
ing of one of these lines, while replacing those wiggly lines
outside of the bubbles drastically changes the screening
from dynamic to static. Obviously we should choose the
first way if we wish to minimize the damage caused by
making the Hubbard-like approximation. For the same
reason, in Fig. 6{e}we choose to replace the wiggly lines in
the small bubbles, which again can be regarded as parts of

(4) Qx

V V

(e)

(f) px

P

V V X/ 7/
FIG. 6. Diagrams produces by expanding the diagram in Fig.

5(c) to second po~er in the external potential v(q), which causes
the nonuniformity of the system. The solid lines are nonin-

teracting electron propagators and the wiggly lines are defined
1n Flg. 4.

the screening of the Coulomb lines attached to the big
bubbles. As a result, their screening is modified but
remains frequency dependent. For Fig. 6(d) we replace
the wiggly lines in the triangles. From the experience of
Langreth and Perdew, the wiggly lines connecting the tri-

angles have a great impact on the result and hence should

be kept intact if possible. On the other hand, each of the
Coulomb lines inside the triangles may be replaced by a
static V, without causing serious error. We now summa-
rize the way we apply the Hubbard-like approximations.
For Figs. 6(a) and 6(c), it makes no difference which wig-

gly line is replaced. Hence we choose to replace

V(k+ p —s)/e(k+ p —s, co+po —so)

where (p,po), (k,co), and (s,so) form four-momenta. For
Fig. 6(b) we do this in a symmetric way, i.e., we replace
the line on the side of the bubble in the first diagram and
the crossing wiggly line in the second diagram (or vice
versa). In Fig. 6(d) the lines in the triangles, and in Figs.
6(e) and 6(fl the ones in the small bubbles, are replaced by

V, (k). Finally, complexity forced us to neglect the dia-
grams of Fig. 6(g). Fortunately, they are less important at
high densities than the others. This can be seen by ex-

panding in powers of e . The contribution from Fig. 6(g)
is proportional to e, while that of Figs. 6(a)—6(c) are of
the order of e lne and those of Figs. 6{d}—6(f) are of the
order of e4. This melts that at least at the higher densi-
ties these terms should be negligible. A more complete
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discussion is given in Appendix A.
We can reduce the error in making the Hubbard-like

approximation even further. The diagrams in Fig. 6 are
to be expanded in powers of q. In many terms we have to
expand the screened Coulomb interaction, which later will

be replaced by the potential we proposed before. An ex-

panded

V(k+p —s+q)
u k+p —s=

e'(k+p —a+ q, N+p[] —s[])

in powers of q can be quite different from an expanded

V, (k+q). The inaccuracy can be much greater than that
in the uniform case, where V, need not be expanded.
Hence we try to avoid taking derivatives of V, {k). In
Figs. 6(a)—6(c) there are terms with either

[q Vu(k+p —s)]

or

v(k+p —s)(q V) u(k+p —s) .

The former can be converted to the latter by integration
by parts. For the latter we can choose to replace the
u(k+p —s), which is not acted upon by gradient opera-
tors by V, (k). In Figs. 6(d}—6(f) we can always change
variables such that the Coulomb interactions to be re-

placed by V, do not depend on q, and hence need not be
expanded. As a result we can completely avoid expanding
V, .

2. Analytical results

We are now ready to evaluate. Firstly, the finite-
temperature —diagram technique is used to write the ex-
pressions for Fig. 6. Then the expressions are expanded in
powers of q. Finally, the Hubbard-like approximation is
applied with the choice of the replacement mentioned be-
fore. Some details are in Appendix A. Here we simply
show the result. The zeroth-order term in q is ai„and the
second-order term is bz„q:

2

a~= g()(k) f V(k) 2)0(k, ar) —1 [U+1]4-2AO(k~)U(k)[2U, '+4U+1] +c,ao,
Q k

4' 2ni
'

e(k, (o}
(3.9)

~ q'= —gg(k) f ".~(k) ~,(k, q,~) -1 [U+1]0 k
~ 2mi

' ' e(k, (o)

+4AO(k, a)) A2(k, q, a)) — Ao(k, oi) u(k)[2U +4U+1](q V)i
8

+Ao(k, co) u(k) [U +2U+1]+Ao(k, io)v(k) [U +2U]
2 (q V)

—Ao(k ro)[q Vu(k)]q V[U +2U] +ci, (3.10)

where

&(k)
e(kco) '

U= —1
1

e(k, ro)

1 BP(k co)1

2 p

(q V) a (k,oi) q' a'P(k, oi)
12 B]u 6 Bp Bco

~' a'P(k, ~) ~' aiP(k, ~}
6 gomez 12 gpz

1 4) P(k24o)

Bp

1 (q.V) 8 P(k, co) 2 8 P(k, (o)
12 2 ap2 a] 2aM

, a'P(k, ~),a'P(k, ~)
B]u BCd B]M

(3.11)

(3.12)

(3.13a)

(3.13b)

(3.14a)

(3.14b)

Co=—

Q(AF, , }

24k/ 4)p
(3.16)

where &F-, was defined in (2.2). [)(&F-,)/Bp can be ob-
tained by breaking any electron line in each beyond-RPA
closed diagram [in our case, Fig. 5(c)]. Again using the
finite-temperature —diagram technique and applying the
Hubbard-like approximation, we find

8(&E, ) =——g f .g(k)V(k)Ap(k, co)
p Q c 2~)

X
1 in[@{k, co }]

e(k, co) 1 —e(k, co)
+

(3.17)

I

The contour c encloses the positive real axis in the coun-
terclockwise sense. The Hubbard factor g(k) is defined in
(2.3). The quantities co and c2 are that LP called
chemical-potential-shift terins. Following the procedure
of Sec. III [LP (Ref. 9)], we get

B(AE )
(3.15)

2k@ ~p
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3. Numerical evaluation

Equations (3.9)—(3.17) are readily evaluated numerical-
ly. To do so, we average over the angle of q and make
following variable changes:

k~x =-,'k/kF, (3.18a)

co y = —,'ice/kF —. (3.18b)

We then deform the contour c to the real axis on y plane.

In (3.9} and (3.10), the terms with 8's were called the
Hartree-Fock —type terms and the ones with A's were
called fluctuation terms by Langreth and Perdew. The
diagrams in Figs. 6(a)—6(c) contribute to both, those in
6(|1) and 6(f) contribute to the latter, and those in Fig. 6(e)
contribute to only the former. To be more specific, we
can identify the contribution of each set of diagrams by
looking at the quantity in the last pair of small square
brackets of each term in (3.9) and (3.10). The terms with
zeroth power of U are from Figs. 6(a)—6(c) and those
with second power are from Fig. 6(f). Figure 6(d) contri-
butes to terms with the first power of U in the fluctuation
part and Fig. 6(e) contributes to those with first power in
the Hartree-Fock —type part.

As a result (3.9) and (3.10) become, respectively,

2 28 Qp co CC

4 d& dyzo &p
2(2n )

OO QQ

bz„= —
z I dx f dyz2(x, y),

2(2n } 4kF

where

zo(x,y) =zoh +zof +zoi ~

z2(x,y) =zzh+z2f+zz, .

(3.19)

(3.20)

(3.21)

(3.22)

Subscripts h, f, and c denote the Hartree-Fock —type part,
the fluctuation part, and the chemical-potential-shift part,
respectively. The z's on the right-hand sides of (3.21) and
(3.22) are defined in Appendix B. They are related to
Bo(k ro) Bz(k q co) Ao(k co) Az(k q co) and BAJA /Bp
with variable changes in (3.18).

We note that in the process of deforming contour c and
changing variables, a discontinuity at the origin of the co

plane has to be taken care of. It is due to the fact that
poles move in or out of the contour along the real axis as

~

k
~

increases from less than 2kF to greater. This leads
to a singular term at k =2kF or x = 1, whose contribution
to b~ is

2

2 3
d g '9' k-2kF

4kF(2n') (k,O)
+ —,b'(k —2kF )

1

~'(k, O) e(k, O)

S 2 1+ —5(k —2kF)
6 e'(k, o) e(k, O)

(3.23)

where

sz= ,'kpT/kF ez/2-nkF—— (3.24)

C. Self-energy contribution in second order

We evaluate the contribution associated with Fig. 5(b)
in this subsection. It was accounted for previously by
Gel~rt and Rasolt' and by Langreth and Perdew. Gel-
dart and Rasolt divided it into two parts: the vertex part
and the higher-order self-energy part. The former was ob-

and kpT is the Fermi-Thomas wave vector. The form of
(3.23) is somewhat similar to the RPA version given by
Langreth and Perdew, although the contribution here
comes from the diagrams of Fig. 6. The most singular
terms are now only 5 functions because our expressions
have been integrated by parts; higher-order distributions
would have appeared if we were to insist (as LP did) that
k corresponded to the wave vector of the structure factor
or of E„,(k) as defined in Ref. 9.

%e are now ready to put all the pieces together. The
expressions of z's in Appendix B are substituted into
(3.21) and (3.22), which are, in turn, inserted into (3.19)
and (3.20). a2, and bz, are evaluated by performing x
and y integrations numerically. Finally, (3.23) should be
added to the integrated value of bi . We will present the
results of our calculation in Sec. IV.

a =ao —(aap/+a~+&i —& Rph. /&o)+2 (3.25)

& =bo+bRPA+bz +b2+ (3.26)

where ao and bo were defined in (3.6b), aapA and bRpA
are the RPA terms from Fig. 5(a), az„and b2„are the

tained by taking functional derivatives of the wiggly lines
or the solid-line sections which begin and end with the
same wiggly line. In other words, it came from taking
derivatives of a self-energy part. The latter was from the
solid lines without self-energy. The vertex part was ap-
proximated by a constant factor [I/(1 —g) in their nota-
tion] and was cancelled by the "compressibility enhance-
ment" from the constant a in (3.6a). The higher-order
self-energy part was argued to give a similar factor and
incorporated implicitly. Langreth and Perdew treated the
contribution of Fig. 5(b) as a whole. Similarly, they ap-
proximated it as a constant factor which cancelled the
compressibility enhancement. The difference between
these two approaches lies in the treatment of the higher-
order self-energy terms. This leads to different results at
low densities. %e are going to calculate both the vertex
part and the higher-order self-energy part, and examine
their cancellation with the compressibility enhancement
from a explictly.

To get a clearer picture, we expand a and b in (3.6a) in
powers of the wiggly line,
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second-order contributions [Fig. 5(c)] which we evaluated
in Sec. III 8, and aq and b2 are the self-energy contribu-
tions from Fig. 5(b). We substitute (3.25) and (3.26) into
(3.7) and get

2ao
(bRPA 2bouRPA~uo+b2x

2

—2boaz, /ao+b, —2boa, /ao

FIG. 8. RPA-like diagrams. They arise from expanding the
RPA diagram in Fig. 5(a) to second order in v(q), then replacing
every noninteracting electron propagator by a double solid line.
The latter is an interacting electron line with the self-energy in
Fig. 9(a).

2bRPAuRPA ~no+ 3bou RPA

~no�

) '
2 2 (3.27)

8„,(n) in (3.27) included all the terms up to the second or-
der of the wiggly line. Thus we expect 8„,(c}to be quite
accurate in the high- and even in the intermediate-density
range. The sum of the first two terms in (3.27) was
evaluated by LP. The next two were calculated in Sec.
III 8. Now we concentrate on the rest. Later we will see
that there is a cancellation between them, though it is not
complete. The uncancelled part is calculated by the
Hubbard-like approximation.

To evaluate a2 and b2, we first take functional deriva-
tives of Fig. 5(b) twice, as we did in (3.8). The resulting
diagrams are shown in Fig. 7. We then expand the ex-
pressions for them in powers of q. The zeroth- and
second-order terms give a2 and bz, respectively. These
diagrams are quite complicated. We calculated them in-

directly by taking advantage of the existing RPA expres-

(e)

px Px

sions. Consider first the RPA-like diagrams of Fig. 8.
They are RPA diagrams with free-electron propagators
replaced by interacting ones with the self-energy shown in
Fig. 9(a). If we expand them in powers of the self-energy,
the zeroth-order ones are the RPA diagrams and the
first-order ones are almost the same as those in Fig. 7.
The difference between Fig. 7 and them is shown in Fig.
10. Thus, instead of evaluating the diagrams in Fig. 7, we
work on Figs. 8 and 10. The former, though they look
complicated, can be evaluated by a quasi-RPA expression,
while the latter will be calculated explicitly.

I. The RPA-/ike diagrams

We make a further approximation to calculate Fig. 8.
The self-energy of each double line in Fig. 8 is approxi-
mated by Fig. 9(b) with the dotted line having the form
V, (k}. This approximation is consistent with our previ-
ous Hubbard-like approximation in the sense that we al-
ways replace screened Coulomb lines by the same form.
As a result, the self-energy can be calculated analytically:

r

2kF P (P+kF) +kF
X(p) = — kF+ ln

4P (P kF) +kF—
q+kF—k~ tan

kF
I~

px Px
kF——tan-' (3.28)

Co)

Cj

V V

V V Note that X(p) is frequency independent. This enables
us to perform the frequency summation as if the self-
energy were not present when we calculate Fig. 8.

VA'th the above approximation and existing RPA ex-
pressions (in Appendix C), we can write the expressions
for Fig. 8 immediately. The major difference from the
RPA expressions is that now we have interacting propaga-
tors. Thus, instead of P(k, co) and P(k, co}, which are

(k)

V

(a)

p+k

(p.po)

(b)

(p epo)

(p, po)

(k,o)
~ ~ ~

0

—(p, po)
p+(k, o)

FIG. 7. Diagrams produced by expanding the diagram in
Fig. 5(b) to second power in an external potential U(q). Solid
lines and wiggly lines are the same as those in Fig. 6.

FIG. 9. (a) Self-energy X(p,po); (b) an approximate form of
X(p,po). The dotted line is a statically screened Coulomb line
4' /(k +kF).
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The second line follows because (1/2p)[BX(p)/Bp] varies
slowly as a function of

~ p ~. We substitute (3.31) into
Eqs. (3.30} to obtain approximations for P'(k, co) and
P'(k, ai),

px
A A

PX

fp
—fp+~

Q „co—d(ep+i, —sp)

P(k, co/d)
d

(3.32a)

FIG. 10. Difference between Fig. 7 and the first-order terms

(in powers of the self-energy) of the diagrams in Fig. 8.

pt(k )
1 y fp+fp+t P(k, co/d)
fl g ~ ~—d(ep+g —Kp) d

(3.32b)

where

relevant in the RPA expressions, we have P'(k, ~) and
P '(k, co), which contain the self-energy parts:

pg(k )
1 y fp fp+k
0 „co—ap+q —X(p+k)+ap+X(p) '

(3.29a)

fp+~+fp
0 „a)—sp+i, —X(p+k)+ap+X(p) '

(3.29b)

where cr is the spin index and

1 i«p+X(P) &P,
f,=

0 if ap+X(p) ~p, . (3.30)

X(p+ k) =X(p)+ ep+i, —ep)
1

2p

aX(p)
ap

+

= X(p) + (ep+i, —ep)
— . (3.31)

1 BX(p)
2p ~p p =k~

The expressions for Fig. 8 are the same as those of the
RPA with minor modification of definitions of Ao(k, ro),
A2(k, q, co), 80(k, co), 82(k, q, co), and U(k). They are
presented also in Appendix C. This relation is simple be-
cause the RPA diagrams and those in Fig. 8 are very simi-
lar.

We now work out the contribution from the self-energy.
This combined with the known RPA result gives us the
contribution from Fig. 8 to a2 and bi. As a first step, we
simplify P'(k, co) and P'(k, co). Langreth and Perdew
pointed out that in the RPA expressions the small-~k

~

part dominates. This is also true for Fig. 8 since the addi-
tional quantity X(p) is a smooth function and hence can-
not change the small-~k

~
behavior very much. Therefore

our simplified P'(k, ei) and P'(k', co) should perserve their
original small- k behavior.

We expand X(p+k) in powers of k:

1 BX(p)
2P BP p =kF

(3.33)

Thus we have kept the small-~k
~

behavior of P'(k, ro) and
P'(k, co) very well. The same thing can be said about the
expressions for Fig. 8 in which the most important func-
tions are P'{k,co), P'(k, ro), and their derivatives.

The quantities fp and fp+~ in Eqs. (3.32) are those de-
fined in (3.30}. When we take derivatives of P'(k, co) and
P'(k, co) with respect to p, the chemical potential (p
derivatives do not act on d, see Appendix C), a factor of
d ' appears since

@
I p I

—2kF }

d

The derivative with respect to ai also results in the factor
1/d because on the right-hand sides of Eqs. (3.32) we
have co/d instead of co.

We substitute Eqs. (3.32) into (C5)—(C10), change co to
ei/d in the integral, and take into account the factors pro-
duced by the p and co derivatives to find that the contri-
bution of Fig. 8 is just 1/d times that of the RPA with e
replaced by e /d. The evaluation of the contribution of
Fig. 8 to a2 and bz is therefore trivial.

2. Diagrams in Fig. 70

We now turn our attention to Fig. 10. The diagrams of
Fig. 10(d) were too complicated to be reasonably evaluat-
ed. Fortunately, they are higher order in r, (actually they
are of order r, ) and our experience with terms of this or-
der is that they are very small for r, «6, so that our
neglect of them is not serious. Figure 10{a} can be
evaluated analytically if the statically screened potential
V, (k) is used. We denote it by J„(q). Using Feyman
rules, one finds

d3k f dik'
g

d'k" We2 4'' fr+a' fq fr+i fq fq+i" fq
(2ir)' (2n)' (2~)' (k —k')'+kF (k —k")'+kF e,+i, —s, e,+i,—s, e,+i, —e,

(3.34}
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X„(q) is expanded in powers of q to give its contributions
to a2 and b2, which are denoted as a2„and b2„.

a2„—— 0—64.76s (kF/2n )

bi„=0.098 86s /2&kF .

(3.35)

(3.36) PX PX PX

The diagrams in Fig. 10(b) are simply the second-order
terms in powers of wiggly lines of the diagram in Fig. 11,
where the double lines are the interacting electron props-
gators with the self-energy X in Fig. 9(a). Again the ap-
proximate X in Fig. 9(b) is used and we find the form of
Fig. 11 to be

p+q 1
sp+ X(p) —sp+q —X(p+q)

We use the approximate form of X(p+q) in (3.31), re-

tain only the second-order terms in e and q, and obtain

a2, and b2„which are contributions of Fig. 10(b) to ai
and bi.

a2, ———0.042882s (kF/2n )

b2, ——0.042 882s /24ir kF .

(3.37)

(3.38)

We evaluate Fig. 10(c) by making a Hubbard-like ap-
proximation such that the wiggly lines in triangles become
static interactions V, (k}. This is again consistent with the
approximations we made before. As a result, the dia-
grams in Fig. 10(c) become those in Fig. 12. The contri-
bution to the term 2bpa2—/ap in (3.27) is at least of the
order e6(r, } and can be neglected for our purposes. The
contribution to b2 has two parts: the part in which the
prefactor is expanded in powers of q and the part where
the diagrams in the parentheses are expanded. The form-
er is again discarded because it is of order e . The latter
just consists of some RPA diagrams (those in parentheses)
times the factor

ao

1 one =2ai/ao ~

2 k +kF kkF
(3.39)

where ai is the first-order term of a in e2. Note that
azpA consists of a i and higher-order terms in e . For the
next-to-last term in (3.27), we approximate aRpA by ai
because the higher-order terms are very small compared
to ai in the physically interesting density region. Thus

FIG. 12. Here the diagrams in Fig. 10(c) are simplified by the
Hubbard-like approximation described in the text.

Fig. 12 cancels part of the next-to-last term in (3.27). The
remaining contribution is shown in Fig. 13. Having ap-
plied the Hubbard-hke approximation to the wiggly 1ines,
we find its contribution to B„,(n), which is the sum of
Fig. 10(c} and the next-to-last term in (3.27), is

2(ai —lap)b~, where

b~ ——0.08095s /2/kF . (3.40)

We have now all the pieces of a2 and b2. The last term
in (3.27) is evaluated with the knowledge of following
quantities:

ap ———(kF/2&)

bp —+ I/24m kF,

aRpA= —0.6s (2n /kF)

(3.41)

(3.42)

(3.43)

where aapA is evaluated using the static Potential V, (k).
We feel that since there is strong cancellation between
various terms in (3.27), as suggested by Geldar, Rasolt,
Langreth, Perdew, and the present workers, it is better to
use the same potential for all the terms involved.

Now we have evaluated all the terms in (3.27}. We use
the result of Langreth and Perdew for the first two (RPA)
terms. They, along with the fifth, sixth, and seventh term
in (3.27), give the following contributions: (i) The RPA
diagrams with self-energy insertions (Fig. 8), which give a
result which is 1/d times the RPA result with s replaced
by s2/d; (ii} the sum of the diagrams in Fig. 10 and the
term 2aapAbRpA/ap i—n (3.27); these give

aofb2~+b2, 2bo(a2„+—a2, )lao 2b2da, lao]/2 . —2

FIG. 11. Part of the density response function g(q, O). The
double line is the interacting electron line with the self-energy of
Fig. 9(b).

2~~~~o

FIG. 13. A factor —2a1 /Qp times the difference between the
RPA diagrams and those in Fig. 12.
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The quantities az and bi, have been evaluated in Sec.
III B. The modification due to the self-energy insertion is
the same as in the RPA case. We put the quantities a2„
and bz, with self-energy insertions on the right-hand side
of (3.27) (these are 1/d times the a2, and bi evaluated in
Sec. IIIB, respectively, with e replaced by e2/d). Final-
ly, the last term in (3.27) can be evaluated with
(3.41)—(3.43). The resulting 8„,(n) is given in Sec. IV.

IV. RESULTS

I.O-

0.8-

The results of the calculations of the preceding two sec-
tions are collected here. As in previous papers, they are
given in terms of the dimensionless quantity Z defined by
writing the coefficient 8„, appearing in the gradient ex-
pansion as

8„,=[e rr/16(3ir n) ~']Z . (4.1)

If we let ZRpz be the value calculated by LP, then our re-
sults can be summarized in a gross sense by the approxi-
mate fit (see Fig. 14)

Z —ZRpA = —0.08t'» (4.2)

V. DEVIATIONS PROM THE RPA
AS A SELF-INTERACTION "ERROR"

It is well known within the local-density approximation
(LDA) that when one calculates energy differences involv-
ing the removal of one or more electrons, one finds a

0.0

AZ
-0.2

-0.5
0.0 I.Q 2.0 3.0

fs
4.0 5.0 6.0

FIG. 14. The difference between the Z from present calcula-
tion and that from the RPA of LP, Ref. 9. It can be fitted by a
straight line with slope —0.08.

for r, ~6. The above is not a series expansion of our re-
sults and there are logarithmic corrections at small r,
(these go as r, lnr, ), but (4.2) should be useful (and ade-
quate) for any numerical use of our results. Our actual
calculated Z is shown in Fig. 15, along with the RPA re-
sults of LP and the results of GR. The latter were called
RPA by GR, but included an approximation to some of
the terms which in the terminology here are beyond RPA.
The closeness of our present results to the calculation of
GR indicates that their approximation scheme was quite
good; however, since the terms not included by them are
individually often quite large, there was no obvious way to
have determined this a priori.

0.4-

Q.Q0.0 I.O
I

2.0 +.0 5.0 6.0

FIG. 15. Z vs r„w her eZ =[16/(hei)]k~8{n). The solid
line is from the RPA calculation by Langreth and Perdew
(Ref. 9). The dashed line is the present result and the dotted line
is that of Geldart and Rasolt.

non-negligible difference between the RPA result (as im-
plemented, for example, via the von Barth —Hedin formu-
la s) and the results obtained from a scheme regarded as
more accurate [for example, the Hedin-Lundqvist fit of
the SSTL (Ref. 13) calculation or one of the ' fits to the
Ceperly-Alder sampling]. This difference generally turns
out to be around 0.04 Ry per electron. The source of this
difference is for the most part the fact that the more accu-
rate theories contain all terms to second order in e while
the RPA does not. At high densities the contributing
non-RPA term for the uniform case (LDA) is the second-
order exchange term whose value is 0.048 Ry per elec-
tron. 's 2 For an extended nonuniform system the
second-order self-energy corrections are no longer can-
celled by the chemical-potential shift and therefore contri-
bute as well. We will argue here that, at least for contri-
butions arising from localized orbitals isolated in real
space, this type of correction is a spurious self-interaction
error, which one can most simply correct by using the
RPA (e.g., von Barth —Hedin) in the LDA expression
rather than the "better" approximations.

One hint of the nature of this correction is evident from
the work of Cole and Perdew, ' who found that when the
self-interaction error was subtracted out via the method of
Perdew and Zunger, ' there was little difference between
the results obtained in RPA and those obtained in
"better" approximations.

The more important observation, however, is that at
least at high densities the main correction to the RPA
arises from those terms in second-order perturbation
theory not included in the RPA. This fact was noticed
Gell-Mann and Brueckner' and exploited by Nozieres
and Pines. The second-order terms in question are ex-
changelike and in diagrammatic terms [see Figs. S(b) and
5(c)] consist of but a single-electron closed loop. This
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means that to the extent which the relevant localized elec-
tron orbitals occupy separate regions of real space, this
correction is zero. It is exactly zero for the neutral helium
atom. It is not zero for the LDA to the helium atom.
This means, of course, that one should not make this sort
of correction to the RPA version of the LDA unless one
also includes the corresponding nonlocal correction which
will tend to cancel it.

Let us now see to what extent the nonlocal correction
just obtained [Eq. (4.2)] does cancel most of the beyond-
RPA local correction of -0.04 Ry/electron. We estimate
this by calculating this correction for a pair of electrons
of opposite spins in a single exponential orbital, giving a
number density of

n (r) = (4n J ) 'exp( r /J) . — (5.1)

If (4.2) indeed represents a term which will cancel an error
of -0.03 Ry/electron, then it should be independent of
the orbital size J. Substitution of (4.1}and (4.2) into (3.1)
gives

[e m/16(3ir )~/i]
1( dr4rrri[(Vri)~/n~ i]( 0 0—8r,.) .

(5.2)

Using (5.1) for n in (5.2) (with —', err, =n ') gives —0.06
Ry, independent of J, as expected. Since this is for two
electrons, the correction per electron is —0.03 Ry, which
is just about right to cancel the correction of +0.04 Ry
which comes from the correction to the RPA in the LDA.

The choice then arises as to what one should do in actu-
al calculations on real systems, in cases where corrections
to the local-density approximation are needed. The first
possibihty would be to use the "best" uniform E„, in the
local-density approximation (probably one of the fits2'0 to

the Ceperly-Alder points, ' or the Hedin-Lundqvist for-
mula, which for the nonpolarized case is almost the
same); to this one would add the nonlocal correction
which comes from the Langreth-Mehl scheme, and fi-
nally add the correction from (4.2), as given by (5.2). The
second method would simply be to use the RPA version
of the LDA (e.g., von Barth —Hedin~ ) plus the Langreth-
Mehls7 nonlocal correction. In so doing we anticipate
that the cancellation exhibited above will occur.

Of the two methods, we strongly lean toward the latter.
The main reason for this follows. First, in deriving (4.2)
we have been unable to make a wave-vector analysis; al-
though the correction under consideration is not expected
to have the large spurious long-range part like the RPA
gradient expansion, nevertheless, in some situations a
long-wavelength cutoff as introduced in Refs. 6 and 7 is
surely going to be important; in the absence of a wave-
vector analysis this cannot be implemented. Secondly, the
correction (4.2) increases in magnitude with lowering
density —that is just where our confidence in the approxi-
mations used to derive (4.2) begin to fail. On the other
hand, our arguments leading to the cancellation are quite
general and should hold for densities rapidly varying
enough for nonlocal effects to be important at all.

In conclusion then, we believe that Eq. (5.1) of LM,
Ref. 7, still represents the best nonlocal correction we
have to offer. It has now been tested for valence and core
states of atoms, molecules, bulk solids, and surfaces2
with excellent results.
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APPENDIX A

Here we expand the diagrams in Fig. 6 in powers of ei to see their contribution to b in the high-density limit. W«so
show some details of the calculation mentioned in Sec. III 8. We deal with Figs. 6(a)—6(c) first. It is straightforward to
use the finite-temperature-diagram technique to write expressions for them:

2 p s v +q 2v +p —s —q 2 p+q 2 p —q 26p+kGs —k s —q 26s+q 2

+ u(k —q/2)u(k+p —s)[G(p +q/2)G(p q/2)G(p—+k)G(s —k —q/2)G(s —k+q/2)G(s)]

+ v (k)u (k +p —s —q/2)[G (p +q/2)G (p —q/2)G (p +k +q/2)G (p +k —q/2)G (s)G (s —k)]

+ v(k)u(k+p —s)[G(p)G(p+q)+G(p+k)G(p+k+q)]G(p)G(p+k)G(s)G(s —k)I,
where k,p, s are four-momenta, G (p) is a free-electron Green's function, and

(A 1)

(A2)

u(k)= V(k)/e(k, ro) . (A3)

We note that the first term in the curly braces of (Al} is from Fig. 6(a},the middle two are from Fig. 6(b), and the last
one is froin Fig. 6(c). By setting q in (Al) to zero, we get the contribution to a. For b, we expand (Al) to second order
in q. Using the following identities,

G(p)(q V) G(p)=(q V)'G'(p)/3+2q G'(p)/3 (A4)
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6 (p)(q V)'6(p)=(q. V) 6'(p)/6+q'6 (p),

integrating by parts, and changing variables, we get

—,
' f ds f dp f dk[ —,'[6 (p)6(p+k)+6(p)6 (p+k)][G (s)G(s —k)+6(s)6 (s —k)]U(k+p —s}(q.v) U(k)

—G (p)6(p+k)6 (s)6(s —k)q VU(k)q Vu(k+p —s}

+ —,', [6(p)(q.V) 6 (p+k)+Sq 6(p)6 (p+k)+6(p+k)(q. V) 6 (p)+Sq 6(p+k)6'(p)]

X[6 (s)6(s —k)+6(s)6 (s —k)]u(k)U(k+p —s)

+ —[6 (p)(q V) 6 (p+k)+Sq G (p)G (p+k)+G (p+k)(q V) 6 (p)+Sq 6 (p+k)6 (p)]

X6 (s)6 (s —k)U (k)U (k +p —s) + —,
' 6 (s)6 (s —k)U (k)u (k +p —s)

(A5}

X[26(p+k)(q V) G (p)+12q 6(p+k)6"(p)+26(p)(q V) 6 (p+k)+12q G(p)6 (p+k)]I .

(A6)

We note that without screening, that is, using V's in-
stead of u's in (A6), there would be divergence at small

~k~. This is due to the long-range behavior of the
Coulomb interaction. It can be seen easily. Using the
bare Coulomb potential, we can perform the summations
over frequencies. The first term in (A6) lxeomes

d'p d's p d'k (fi+s —fj )(fl —f.' i )

277 2 +p —S

X V(k+p —s)(q V) V(k), (A7)

where f~ =df&/dp. For small
~

k ~, f&+i, f&
and-

f,' f,' t, are p—roportional to k. Thus the integrand is
proportional to k . This leads to an infrared logarith-
mic divergence after integration. Similar behavior is
found for some other terms in (A6).

With screening, we are not able to perform the frequen-
cy summations analytically. However, we can apply our
Hubbard-like approximation to (A6), i.e., substitute V, (k)
for u (k +p —s). This will not change the order of (A6) in
e in the high-density limit since there is no divergence at
~k+p —s~ =0. Thus, we can sum over so RIll po. This

first term in (A6) bax)mes

I

We substitute (A9) and (Al 1) into (AS) and expand (AS)
in powers of ez. The k integration is easily performed.
The result shows that the leading term of (AS} is propor-
tional to e lne . The other terms of (A6) are of the same
order. Therefore Figs. 6(a)—6(b) contribute to b a term
proportional to e lne in the high-density limit.

The orders of other diagrams in Fig. 6 are easy to ascer-
tain if they are compared with the RPA diagrams. The
diagrams in Figs. 6(d)—6(fl are an order higher in wiggly
lines than the RPA terms. Therefore, they are of the or-
der e since the latter is proportional to e~ in the high-
density limit. The one in Fig. 6(g) are of the order e
since they are two orders higher in wiggly lines.

To evaluate a2, we set q to zero in (Al) and then apply
the Hubbard-like approximation. For b2„we apply the
approximation to (A6). After very lengthy algebra, we
reach (3.9) and (3.10).

APPENDIX B

Here we show the expression for the z's in (3.19) and
(3.20):

d'p d's ft,+~ fr fI -fs--i

(2ir}' (2ir)' oi —a~+i, +e~ oi —s,+e, ~

X V (k)(q'v) U(k) (AS)

%e change the co summation into an integration by stan-
dard methods and replace co by y, where

zo&
——gh o( 1/e —1)/e,

zof (s /x )gfo(2/—e— 1)/e, —

zo, ——zz, ——2gfo[1/e+ lne/(1 —e)],
zzs ——gh2(1/e —1)/e,

T

(81)

(82)

(83)

(84)

y =—,
'

ice/kFk . — (A9)
z2f=s g 4fof2 —,—1

For small
~

k ~, the dielectric function has the form

2e kz
e(k,oi)=1+

2
1 —y tan ' — . (A

mk

Thus (q.V) U(k) has the approximate form

V)z (k)
47lv ( 2q )

Ik +(2e kF/n)[1 —y tan '(I/y)]]z

2 2 2&x
+fo ~+ XE

&xx 2&x
+

p2

2&x 3&x
+fo — +xe

2 &x 2&x
fo —+—

X

6e

(85}

+ 1 ~ ~ (A 1 1} where
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s~= ,' —k~/kp ——e /2nkp,

where kpT is the Fermi-Thomas wave vector, and g, e are
the same functions as g(k} and e(k, ro} with variable

changes in Eqs. (3.18):

1 x (87)
x + ~

e=l+(s /x )(T'+x E),

de z Le„= =s G —5——
dx x

de~
&xx =

dx

where

r

=s +H —10—+30G
x' x

r

4yEq+(1 —2x )ln ——2x
1 X

4x4 Y

(812b)

(814)

y~+x~(l —x~)1 X y +x I'=—
gx~ Y 2x

ln —— Fq,

with

(89}

G 1 3 X (1—x)(1—2x)~——21n —+x 2x~ x Y X

(1+x)(1+2x)
Y

(815)
r

(1—x)x i (1+x)x (810) The f 's and h's are related to A's and 8's in the following
way:

X y +x (1—x)~,

Y=y~+x~(1+x)~ .

Also,

hq ——f (2048m kF'/q')Bz(k, q, ru)dQs/4n.

{811)

(812a)

ll (=5127r kp)ap(k, ro)

x (1—x) x (1+x)
X (816)

16 3x (1—x)
9 X

3x(1+x) (1+12x ){X—2y ) (1+12x }(Y—2y )

4xX2 4x Y

x(l —2x)~(l —x)(X —4y ) x(1+2x) (1+x)(Y—4y')

2X 2Y

fp ——(32m kp)Ap(k, co}= ——ln
1 X
x Y

k

fq ——f (128rr kp/q~)[Aq(k, q, cu) ——,(q V) Ap(k, ru)]dQ&/4w

1 (1—x)(6x~—5x+3) (1+x)(6x~+5x+3)
9x X Y

(1—2x) (X—2y ) (1+2x) (Y—2y ) 3
1

X
X2 Y2 2x 2

(817)

(818)

1 6x +6x —1 6x +6x+1 2x (1—x) (1—2x) 2x (1+x) (1+2x)
12 X Y X Y2

(819)

Here we show the RPA expressions and those for Fig. 8. For the RPA
2

aap~ —— g f . [Sp(k,ro)u(k)+2Ap(k, co)u (k)]-Qp dd) V(k}
0 k c2m 8 kp

2ap

2k 2 ~RPA &

F

bap~q = g " . Sg(k, q, a))u(k)+4Ap(k, a)) Ag(k, q, co) — Ap(k, ri)) u (k)
dN (q.V)'

0 k
c 2+i

+ Ap(k, ~u)u(k) u(k) — [q Vu(k)]
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where the contour c has the same meaning as in the text,
aild cRp~ is the chemical-potential shift of the RPA
correlation energy

B+RPA 1 dto
cRpz —— ————g Ao(k, to)u(k) .

Bp Q k
c 2nt

Equations (Cl), (C2), and (C3} are derived directly from
(3.6) and (3.7). Hence, their forms are different from
those in Langreth and Perdew. The latter, in order to
carry out a wave-vector analysis, started with the expres-
sion for the exchange-correlation energy and took func-
tional derivatives with respect to density. However, the
expressions here give the same B„,(n) as those in Ref. 9,
as they must.

For Fig. 8 the expressions are very similar to (Cl) and
(C2). However, in the presence of the self energy in Fig.
9(b), interacting propagators, instead of the free propaga-
tors in RPA, should be used. We denote the interacting
propagator with four-momentum p by 6'(p). The deriva-
tion of the expressions for Fig. 8 involves mostly expand-
ing propagators in powers of q. We make a few reason-
able approximations so that the expressions for Fig. 8 are

almost the same as (Cl} and (C2), except for a few con-
stant factors. The approximation of the self-energy has
been described in text. Here we introduce another involv-

ing expanding the interacting propagator in powers of q:

G'(p+q) =G'(p)+q VG'(p)

+ 2 (q V[sp+&(p}]I',G'(p}
Bp

——,
'

I (q V)i[su+&(p)] I 6'(p) . (C4)
p

Note that the p, derivatives should not act on X(p) in

G'(p} although it is a function of kF. The factor
(q V) [e&+X(p)] of the last term of (C4) is approximat-
ed by 2q d, where d is defined in (3.33). This is in the
same spirit with the approximations in (3.31)—(3.33).
With this simplification, the contributions of Fig. 8 to a
and b have exactly the same forms of (Cl) and (C2},
respectively, except that Bp(k to) Bi(k q, co} Ao(kto),
Aq(k, q, to), and u(k} are replaced by Bo(k,to), B'i(k, q, to),
Ao(k, to), Az(k, q, to), and u'(k). We list their definitions

here:

Bo(k, to) = —
i P'(k, to),1 B

2 BP2

(q'V) B P,(k } td B P'(k, to) id B P'(k, to) td B P'(k, to)

Bp Bp Bto Bp BcoiBp,

Ao(k, to) = —— P'(k, to),
2 Bp

(q V)' B, q'd B'P (k,~) 1 B'P'(k, ~} B'P (k,~}
12 Bp, 6 BpBto 2 Bp2

u'(k) = V(k)/e'(k, to),

where

e'(k, to) =1 u(k)P'(k, —to+i 0+) .

(C5}

(C6)

(C7)

(C8)

(C9)

(C10)

We compare Eqs. (C5)—(C10) with Eqs. (3.13), (3.14),
(3.11), and (2.4). It is clear, for Fig. 8, that P'(k, to) and
P'(k, to) have taken the respective places of P(k, to) and
P(k, to) in the RPA case. There are also places where d
appears in the expressions of Fig. 8. Except for these two
points, there is no difference between the expressions for

the RPA and Fig. 8. By using Eqs. (3.32) and taking ac-
count of the factors of 1 produced by the p derivatives
and the to integration, it is straightforward to see that the
respective contributions of Fig. 8 to a and b are just 1/d
times those of the RPA with e replaced by e /d.
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