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The excitation spectrum of an electron liquid is represented by a simple, physically motivated
model: Spin-symmetric excitations are replaced by a plasmon-pole spectrum, ep(q), and spin-
antisymmetric excitations are replaced by a paramagnon-pole spectrum, aP'(q). These frequencies
are determined by requiring the model to have the correct density and spin response. Interaction of
charged particles with plasmons and paramagnons is found by imposing the f-sum rules. With this
model one can easily calculate both charge-induced and spin-induced correlation effects of interact-

ing electrons. In one application we show that the model accounts for the significant narrowing of
the occupied conduction band observed in several metals.

I. INTRODUCTION

An electron liquid with a uniform neutralizing back-
ground is still not fully understood from a microscopic
point of view after nearly fifty years of intensive theoreti-
cal study. ' At high densities there is a small perturbation
parameter r„ the equivalent sphere radius in Bohr units,
which quantifies the strength of electron-electron interac-
tions relative to the kinetic energy. When t; «1, stan-
dard perturbation analysis formulated in terms of Green's
functions and diagrammatic expansions can be used.
However, at metallic densities 2 & r, & 6 the "high-order"
terms are as important as "low-order" terms. One has no
right to keep only certain diagrams and neglect others.
For metallic density one needs a simple, physically trans-
parent, and motivated method to handle the correlation
effects of interacting electrons.

Correlations are defined as the dynamical effects of the
Coulomb interaction not included in a mean-fiel,
Hartree-Fock (HF) Hamiltonian,

H, =H —HHF .
These effects arise from both density fiuctuations and
spin fiuctuations about the HF mean. A key problem is
to find a simple way to deal with the complicated excita-
tion spectruin of the electron liquid.

For a given wave-vector transfer q there are three types
of excitation: electron-hole pairs, multipairs, and collec-
tive excitations. Single-pair excitations require a double
sum over momentum space. For multipair excitations the
situation is even worse; for any q, the spectral width is in-
finity. Fortunately, in many cases, multipair excitations
are much weaker than the other two.

Density fiuctuations of the system are related to the
spin-symmetric part of the excitation spectrum, whereas
spin fluctuations are related to the spin-antisymmetric
part. The spin-symmetric collective excitations are the
well-known plasmons. For small q the plasmon mode ex-
hausts the f-sum rule. For very large q, however, the
single"pair excltatlons dominate. SIQce IQ this hGlIt the
spectral width becomes small compared to A q2/2tn, it is
reasonable to collapse the spectrum into a single mode

with Ace~'(q)~Pi q /2tn. A plasmon-pole model ' has
been developed to replace this excitation spectrum by a
single plasmon branch fico(q), which is accurate for both
small q and large q. As shown in Ref 5(h.ereafter re-
ferred to as I}, the plasmon pole cot"(q) can be determined
by requiring the model to have a correct dielectric
response. Interaction of plasmons with charged particles
is found by imposing the f-sum rule. Thus the model car-
ries the same oscillator strength as the true electron liquid
for each q. The model enables one to easily calculate
charge-induced correlation effects of an electron liquid.

However, the plasmon-pole model only recognizes the
spin-symmetric part of the excitation spectrum; it leaves
the spin-antisymmetric part untouched. An electron cou-
ples to both charge fluctuations and spin fluctuations. It
is the purpose of the present paper to treat both in a uni-
fied way. The paramagnon-pole spectrum co~~', the spin-
antisymmetric partner of the plasmon-pole spectrum co~~',

is determined by requiring the model to reproduce the
correct spin susceptibility. Similar to the plasmon pole,
the paramagnon pole also exhausts an f-sum rule (in vec-
tor form). But unlike the plasmons (which are scalar bo-
sons} the paramagnons are vector bosons.

The beauty of the model is its simplicity in form and its
ability to reproduce accurately (at the outset) several im-
portant physical response functions. Nevertheless, its lim-
itations must be kept in mind. The model will become
inaccurate for calculations which depend critically on the
spectral width of the excitations. We shall demonstrate
this in Sec. VII when we calculate the paramagnon-
induced correlation energy E~(k).

The organization of the paper is as follows. In Sec. II,
we refine the original development of the plasmon-pole
model (formulated in I) so that the paramagnon-pole con-
tribution can be derived straightforwardly in Sec. III. In
Sec. IV, we study the electron liquid systematically to find
quasiparticle properties, the correlation Hamiltonian of
the system, etc. In Sec. V, we discuss the dielectric func-
tion and spin susceptibility of the electron liquid. From
their general behavior we derive explicit dispersion curves
for plasmon and paramagnon excitations (Sec. VI}. Nu-
merical calculations of the one-electron energy E(k) are

33 925 1986 The American Physical Society



XIAODONG ZHU AND A. %. OVERHAUSER 33

given in Sec. VII. Narrowing of the occupied bandwidth
observed in several metals is then explained. Finally, in
Sec. VIII, our conclusions are summarized. In an appen-
dix we comment on the relationship of this development
to prior work.

II. PLASMON POLE

H =+%co»~aqaq —eA»(a q+aq)(()(q) .

The Hamiltonian given by (9) has the familiar harmon-
ic oscillator form. It is straightforward, then, to evaluate
the expectation values of the plasmon operators by the
usual displacement trick

We consider a system of N electrons with a uniform
(and rigid) positive background. The spin-symmetric part
of the excitation spectrum is associated with the density
fluctuations of the system,

Pq= g ck+q ~k ~ ~ (2)
k, cr

the spatial Fourier transform of the electron density. ck ~
and ck are creation and annihilation operators for an
electron with momentum iiik and spin o. The fundamen-
tal simplification of the model is the representation of
these fluctuations by plasmon creation and annihilation
operators aq and aq only:

p«=QA»(ay+a q) y (3)

eA,
&a«~a« —

i $(q) .
duo,'

Thereby we have

Similarly,

ek»
(a )=,P( —q)

Using Eq. (3), we find the induced density

2eQA, »
(pq) =

,
'

P(q) .
»

(1O)

fico„o is the energy difference between the exact excited
state n and the ground state. Since the plasmon-pole
model assumes only one excitable density mode for each

q, Eq. (4) reduces to

Acoq~ Q A» =NR q /2m (5)

Thus the condition

g p
2

4me 20')q~'
(6)

guarantees that the model carries the total oscillator
strength. Here we have introduced the classical plasma
frequency co~,

co&
——(4mNe /mQ)' (7)

The plasmon pole cop', which incorporates all the oscil-
2lator strength, should approach co& as q~O and Aq /2m

as q ~ 00. %e will see that such behavior is a natural out-
come of the following derivation.

In the linear-response regime an external field can
probe the internal fluctuations. %'e apply a sinusoidal,
static potential field P(q) to the system in order to locate
the plasmon pole u&'. Since the potential field only cou-
ples to the density fluctuations, the relevant interaction
Hamiltonian is

H =H~~q —ep qP(q) . —p] 1
(8)

The plasmon-pole model enables us to write down expli-
citly

where Q is the total volume of the system.
As in I the coefficients A» are determined from the re-

quirement that the model satisfy the f-sum rule. The f-
sum rule is derived by evaluating the double commutator
[[H,pq], pq]. One obtains

g ~.0 I
(p«401'=N+rl'/2m (4)

e(q) —1
(13)

This expression was derived in I by an electrostatic energy
argument, but the present derivation is more easily applic-
able to spin fluctuations.

Once the static dielectric function e(q) is given, Eq. (13)
leads to a unique co»~' which indeed has the desired limiting
behaviors. It can be easily verified from well-known ex-
pressions for e(q).

In the plasmon-pole language, the interaction Hamil-
tonian between a test charge (at r) and the plasmon modes
is of the form

H, ~~(r)=+M»'(aqe'q'+aqe '«') .
q

(14)

The coefficient Mf' is deternuned by a simple application
of Poisson's equation; it is found that

' 1/2
4gp2 27' flcop

p1
(15)

III. PARAMAGNON POLE

The spin-antisymmetric part of the excitation spectrum
is associated with the spin fluctuations of the electron
liquid,

~V ~ t V
~q = ~ ck+q, a~a+k, p ~

k,a,P
(16)

The induced density must coincide with that given in
terms of the static dielectric function e(q) by the relation

4ne(pq)-1=- (12)
e(q) q'P(q)

Inserting Eq. (11) into Eq. (12) and using Eq. (6) for A,»,
we obtain the plasmon frequency

' 1/2
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g fico„o(Sq)OII(Sq )„0——
Nfi q

2m
(17)

the spectral Fourier transform of the spin density. cr" is
the Pauli matrix in the vth direction. We may see im-
mediately the essential difference between a spin fiuctua-
tion and a density fluctuation: A spin fluctuation has a
vector character. The collective spin excitations, called
paramagnons, are vector bosons.

It is easy to verify that spin fluctuations satisfy a vector
f-sum rule,

pling strength of a paramagnon to an external probe) is
obtained:

EFPq
g2~pa

q

The paramagnon frequency coP is chosen so that the
model reproduces the correct" spin susceptibility. Con-
sider a sinusoidal, static, magnetic field B(q) applied to
the system. Without loss of generality we take the field in
the z direction. The Hamiltonian is then

Ace„o, as before, is the energy difference between the exact
excited state n and the ground state. The Pauli matrix
identity,

(cr"cji'+ Ho") /2 =5„„,
or

H =H~~g+ —piiS* P'(q),

H =gfmq~bqPq +Pilgq(b ~+b~)B(q)

(25)

(26)

has been used in obtaining Eq. (17}.
Inspired by the success and advantages of the plasmon-

pole model, we replace the entire spin-antisymmetric exci-
tation spectrum by a single paramagnon mode coq . (Since
our system is isotropic, the frequency of the spin excita-
tion cot' is independent of the direction of q.) Spin fluc-
tuations are to be related to the paramagnon creation and
annihilation operators,

Sq Qrlq(bq„——+b q„) . (19)

The coefficient rlz is determined below.
In introducin the paramagnon creation and annihila-

tion operators bq„and bq„we should be aware of the non-
commutativity of the spin components

[S,",S", ]=2ie~&q+q .

Accordingly, the three paramagnon modes are not exactly
independent of each other. However, this is not a serious
difficulty. By using Eqs. (19) and (20},we have for v+p

[bq„,bq „]=0 ( 1lQ) . (21)

The noncommutativity is infinitesimal. This is a
kinematic effect, and may be interpretd as a collision
cross section between paramagnons. (A similar
phenomenon occurs for magnons in ferromagnets. )

Accordingly the commutation relations for paramag-
nons are

[bq ' q'l ]=~qq'~ l

q, V

(p, ii is the Bohr magneton. )

By following a procedure similar to that from Eqs.
{10)—(11), we obtain the expectation value of the induced
spin fluctuation:

(27)

From the definition of the spin susceptibility

Pil&Sq&
X~(q)=-

p q

the relation needed to defme the paramagnon spectrum is
found:

kg 0'gq
=X( ).

q

We assume, of course, that the spin susceptibility X(q} is
known. On replacing i)q in the above formula by the ex-
pression given in Eq. (24), we obtain finally

' 1/2

coq
Np~q

(29)
Qmr q

We illustrate the application of the paramagnon-pole
model by considering the effective interaction between
two nuclear spins imbedded in an electron liquid at ri and
rz. The nuclear spins interact with the electron spins by
the conventional Fermi contact interaction:

[b b ] [bf bt ] {)

{22)
SmH(r, ,rz}= AyiIi. piiS(ri)
3

From Eq. {19) the matrix element (Sq)„o is zero unless
the excited state n has a q paramagnon. Equation (17)
then reduces to

(23)

In this way, the coefficient i)z (which determines the cou-

(30)

Here we employ the usual notation: fiy;I; is the ith nu-
clear magnetic moment, and S(r;) is the spin density of
the electron at r;.

With the help of Eq. (19} the interaction Hamiltonian
can be rewritten as

H {ri r2) =g
3

&yhccailq(II )F(bq e '+bqIe ')+g Ay~si)q(I2)„(bq„e '+bq„e ') .
qP V ,V

(31)
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In a manner similar to that of the phonon-mediated,
electron-electron interaction in superconductivity, we ob-
tain an indirect I1.I2 interaction, involving virtual emis-
sion and absorption of paramagnons by the two nuclear
spins. Since the splittings of the nuclear-spin levels are
negligible, i.e., the off-shell energy transfer in the interac-
tion is zero, we have accordingly

There is a similar condition for down-spin electrons. For-
mally, Eq. (36) is an integral equation which cannot be
solved until Pi„ is related to hn, (and b,n, ).

The self-consistent potential Pi„(q) is composed of a
Hartree potential, an exchange potential, and a correlation
potential:

Pi„(q)= V(q)[bn, (q)+An, (q)) 2G„—(q)V(q)bn, (q)

H ff(ri, r2}=g

'2

iq (r2 —r&)
e

26—f (q) V(q)hn, (q)

2G,'—(q) V (q)hn, (q), (37)

q, v

Using Eq. (28},we obtain

(32)

where V(q)=—4n.e /q . The corresponding equation for
the down-spin potential is

Pi„(q)= V(q)[hn, (q)+ En, (q)] 2G—,(q) V(q)Lkn, (q)

26$ (—q) V (q)hn, (q)

H, t(tr ,ir 2}=—g R yiy2Ii IQ(q)e ' ', (33)
3

which is a generalized Ruderman-Kittel (RK) interaction.
If we use the noninteracting, electron-gas spin susceptibil-
ity X (q) instead of X(q), then H, t(tr ir 2) is just the ordi-
nary RK interaction. A discussion of many-body correc-
tions to the electron-liquid spin susceptibility (and conse-
quently to the RK interaction) will be given in Sec. V.

IV. CORRELATION HAMILTONIAN

ik r i + i{k+q).r, — i(k —q) r (34}

This wave function has a periodically modulated charge
density,

=1+2(aq, +aq, )cos(q.r) . (35)

Since each electron of the liquid can be considered as a
probe electron, in turn, the perturbation coefficients aq„
etc. must satisfy

—g(aq, +aq, )=En, (q) .
Q

(36)

So far we have studied density and spin fluctuations of
the electron liquid, and have described them by plasmons
and paramagnons, respectively. %e have also discussed
the effects of such response on imbedded test charges or
nuclear spins. However, we must now investigate the in-
fluence of plasmons and paramagnons on electrons them-
selves.

Consider one particular electron. The N —1 other elec-
trons are to be regarded as a passive electron liquid and
treated in the plasmon-pole and paramagnon-pole approx-
imations. However, great care must be taken. Unlike a
test charge, the electron creates an exchange hole, which
modifies its coupling to the plasmons and paramagnons.
The interaction can be evaluated in the following self-
consistent way. Suppose the liquid has a density fluctua-
tion for up-spin electrons, hn, cos(q r}, and bn, cos(q r)
for down-spin electrons. A probe electron, with momen-
tum k and spin up, will experience a self-consistent poten-
tial Pi„(q)cos(q r). This potential will perturb the wave
function of the electron:

—26;(q)V(q)bn, (q) . (38)

(()i„(q}= V(q)[1 —6+ (q}]p&+6 (q) V(q)Sq . (42)

Note that in the above expressions the spin-symmetric
function,

6+ (q) =6„(q)+Gf (q) +6,'(q), (43)

enters the coupling between an electron and a density fluc-
tuation, whereas the spin-antisymmetric function,

G (q)=G (q)+Gf (q) G,'(q), —

enters the coupling of an electron to a spin fluctuation.
Equations (41) and (42) can be extended to an electron

having an arbitrary direction of spin s. The general result
1s

Ph(q) = V(q)[1 —6+(q)]p~ —6 (q) V(q)s S~ . (45)

This self-consistent potential is the basis from which we
calculate all correlation effects between a probe electron
and the electron liquid.

With the help of the self-consistent potential, Eq. (45),
we can now write down the total correlation Hamiltonian
H, of the electron system, in terms of the plasmon and
paramagnon excitations:

We have followed Kukkonen and Overhauser by intro-
ducing the function 6 (q) for the exchange correction (in
the usual local-field approximation}. The function Gf(q)
is the corrc;lation correction arising from the parallel-spin
modulation, whereas 6,' is that for antiparallel spin.
These functions were discussed previously by the au-

thors. 9'0
From the definitions of the density fluctuation, Eq. (2),

and the spin fluctuation, Eq. (16), we have

pq= hn, (q)+ hn, (q), (39)

and

Sq=bn, (q) hn, (q) . —

We now replace hn (q) in Eqs. (37) and (38) by pz and

Sq..

Pi„(q)= V(q)[1 —6+ (q)]p~ —6 (q) V(q)Sq, (41)
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Hc g~tuquq+g~q bqvbqv+ jQMq [ 6+(q)](uqck —q, acka+QqCk~q, acka)
qpV k, a q

—g gM, 6 (q)~agbqXk q—,Kkp,+I qvCk+q, Ak p) ~

pa v

k, a,P q, v
(46)

v is the index corresponding to the three components of
the vector paramagnon. Mz~' is given by Eq. (15). It is
clear that, as pointed out in I, the electron couples to the
density fluctuations with strength Mf'[I —G+ (q}]."
From Eqs. (19), (24), and (46), we see that

2 M 2 I/2
M"= V(q)g =

q 2m Qiiiiap~~'

The electron couples to spin fluctuations through the
many-body correction 6 (q), i.e., with strength
MPG (q).

The correlation Hamiltonian Hc provides all the infor-
mation needed to study dynamic response of an electron
liquid to a probe electron. The first two terms on the
right-hand side of Eq. (46) are the excitation energies of
plasmons and paramagnons. The third term leads to
charge-induced correlations (through virtual emission and
absorption of plasmons). The fourth term leads to spin-
induced correlations. Note that the paramagnon-mediated
interaction can cause electrons to flip their spins. From
H, we can easily derive the Kukkonen-Overhauser (KO)
electron-electron interiction. Specifically, the plasmon-
mediated interaction, when added to the bare Coulomb in-
teraction 4ne2/q, leads to the spin-symmetric part, and
the paramagnon-mediated interaction yields the spin-
antisymmetric part of the KO interaction. '0

V. 6+(q}AND 6 (q)

The formulas derived so far are in general form, since
the relevant dielectric function e(q) and spin susceptibility
X(q) are not specified. This is one advantage of our
model. One is free to choose his own favorite e(q) or
X(q).

The static dielectric function e(q} and spin susceptibili-
ty X(q) are usually written as

where n =N/Q is the electron density. This relation can
be used to find the behavior of 6+ (q) as q~0.

We know that the compressibility K is related to the
ground-state energy of the system W by

W—=Q (53)BQ'

On the other hand, the energy W of the electron liquid is

W=N[ , (I kF/2—m) 3e kF/—4n+w, ] . (54)

The first two terms are the kinetic and exchange energies,
and w, is the correlation energy per electron. In the past
50 years there have been countless calculations of w, for
metallic densities. All substantially agree with each oth-
er, and are also in a good agreement with recent Monte
Carlo variational calculations. ' Furthermore they lead to
nearly correct cohesive energies for simple metals. '4 For
1 & r, & 6, Singwi and Tosi found an analytic expression,

w, (r, ) = —0.112+0.0335 lnr, — ', (55)
0.02 me"

0.1+r, 2'

Unfortunately, the many-body corrections G+ and 6
are still unknown after more than a quarter of a century
of intensive research following the pioneering work of
Hubbard. '2 We shall be content to use simple functions
for 6+ and 6, based on heuristic interpolation between
known limits, in order to carry on with numerical calcula-
tions.

The strategy is based on knowledge of 6+ and 6 for
small and large q. It is well known that the small-q
behavior of the static dielectric function e(q) is deter-
mined by the compressibility relation. Since in this limit
there exists a relation between the compressibility of the
system K and e(q}, as derived in I,

q
2

K= llm
2 2

E'(q) I (52)
q~o 4~n e

Qq
1 —6+ (q)Q (q)

(48) which is a very good representation of w, in the region.
We now combine Eqs. (48), (52), (53), and (54), with Q

and kF (expressed in terms of r, ), and obtain

@~II (q)

(q)Q(q)
(49)

6~(q)
lim = 1+a,
q~o x

(56)

We have used the notation Q(q)= —V(q)11 (q), where
II (q) stands for the Lindhard free-electron response func-
tion

mkp
II (q)= — f(q/2kF),

with x:q/2kF and-
]/3

2m 4 2 d~c ~s d ~c
(A r, /me )

3 9m d"s 2 drs

Inserting (55) into (57), we get

with

1 1 —x 1+xf(x)=—+ ln
2 4x 1 —x (51)

2/3
2m' 0.0335

r, + q
1+

3(0.1+r, ) 0. I + rP

(58)
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Consider next the small-q behavior of 6 (q}. Hamann
and Overhauser, '~ for exainple, have calculated the spin
susceptibility X(q), whose small-q value [on recalling the
definition (49)] can be used to determine 6 (q) in the
limit q~0. Several experiments have attempted to mea-
sure X(0) as the function of r, .' The results substantially
agree with the theoretical values. ' Introducing the Pauli
spin susceptibility, Xz

———ps II (0), the zero-q susceptibil-
ity, X(0), as a function of r, can be reexpressed as

X(0)/X& ——1.17+0 029.(r, —1) +0.1751nr, .

With the help of Eqs. (49)—(51), we get

(59)

lim 6 (q)/x2= 1—
q~o 0.166r,

In the opposite extreme the large-q behaviors of 6+ (q)
and 6 (q) have been studied by the equation-of-motion
method. The method was first used by Niklasson' to
study the density response of the electron liquid. He
found an exact condition on G+ (q}:

lim 6+(q)= —', [1—g(0)], (61)

where g (r) is the pair correlation function. Recently, we
obtained a corresponding result for 6 (q) by studying the
spin response of an electron liquid, ~

lim 6 (q)= —,[4g(0}—1] .
q~ co

The value of the pair distribution function g (r) at r =0
depends on r, also. Overhauser derived an approximate
formula. 's

32

(8+3r )
g(0) = (63)

which is in good agreement with recent calculations. '

It is surprising to note that, from Eqs. (62} and (63} a
metalhc densities the many-body correction G(q} is neg-
ative for large q, opposite in sign to the limit at small q.
So the spin susceptibility for large q is suppressed, rather
than enhanced, by many-body effects.

With the help of the foregoing limits we can interpolate
general expressions for 6+(q) and G (q). The usual
(and simplest) way to interpolate 6+ (q) was first suggest-
ed by Hubbard

6()(1+ex)x
1+(1+a)» /6+ ( oo )

is a smooth function having the correct limiting values.
The curves in Fig. 1 are for an electron liquid with the
conduction-electron density of Na (r, =3.93). However,
there is a possibility that 6+ (q) has a peak near

q =2kF, a residue of the enormous peak caused by ex-
change effects. ' In Fig. 1 we also show a function
6'+ (q) with a I.orentzian peak added to Eq. (64), i.e.,

I'I x6'+(q) =6~(q)+ (65)
(1—x } +I 2

I' is the height of the peak (at x = 1) and I is its width.
Construction of a suitable 6 (q) needs somewhat more

0.6

O4

O.O

0 I 2
q/2kF

FIG. 1. Exchange and correlation local-field corrections,

G+{q) and 6 {q), for an electron liquid having the electron

density of Na (r, =3.93). Whether or not 6+ has a peak at

q =2kF, as shown by the curve 6+, is an open question. See
Ref. 20.

6 (q) is also shown in Fig. 1. It has the correct behavior
at q =0 and oo, and has its maximum at x —=q/2kF ——1.

VI DISPERSION CURVES FOR coq~ AND coq~

With definite expressions for 6+ (q) and 6 (q), we are
now able to specify dispersion curves for both the
plasmon pole and paramagnon pole. The dielectric func-
tion, Eq. (48}, and the dispersion relation, Eq. (13), can be
combined to give

COq =~&pl
1+[1—6+ (q)]Q (q)

Q(q)
(68)

This function is shown in Fig. 2 for an electron density
equal to that of Na. (For this density the classical
plasmon frequency is Rcoz ——6.05 eV.) The small-q
behavior,

Acoq~' ——6.05+ 1.22x (69)

persists till q-kF. In the transition regime kz &q &2kF
the plasmon dispersion flattens slightly as the plasmon
pole incorporates the single electron-hole —pair excitation

consideration. Since G (q) increases quadratically with q
(for small q), but then approaches (asymptotically) a nega-
tive value, it is important to discover where the function
has a maximum. We shall assume that the large exchange
peak at q =2kF is not completely swamped by correlation
effects, so we look for a simple function having a max-
imum near 2kF. An appropriate one is

X' X4
6 ( )

px +)x (66)
1+[yx /6 (ao)]

p is defined to be the right-hand side of Eq. (60). y is

chosen so that the maximum of 6 (q) falls at q =2k',
i.e., x =1. Accordingly,

pG (oo }r= —26 (ao)+p
67
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in Fig. 2. For large-q this curve also approaches
co =i)lq /2m, as expected.

l5 VII. CORRELATION ENERGY E,(k)

lO

0
0.0 0.4 0.8 l.2

q/2kF
FIG. 2. Excitation spectrum (versus wave-vector transfer q)

for an electron liquid with the density of Na. The free-electron
spectrum is the entire region between curves A and 8. In this
paper all spin-symmetric excitations are collapsed into the
plasmon-pole mode Ace~, while all spin-antisymmetric excita-
tions are collapsed into the paramagnon-pole mode Are~~. Both
modes approach R'q'/2m for q » 2kF.

Using the correlation Hamiltonian H„Eq. (46), one
can calculate the k-dependent correlation energy E,(k).
In doing so, we first evaluate the total correlation energy
of the system, which is given by second-order Brillouin-
%igner perturbation theory:

(Mq~') [1—G+(q)]
i nir 1 —niI

q E{k)—E(k—q) —Picot'

3[Ms~'G (q) ]
n~(l —ni, ~) . (71)

q E(k)—E(k—q) —Revs~

n& is the ground-state occupation number. (The factor 3
in the last term arises from the vector character of the
paramagnons. )

The E(k) occurring in the denominators of Eq. (71) are
the one-electron energies, and should be determined self-
consistently:

strength. For q & 2k' the single-pair excitations gradual-
ly dominate, so cop' approaches the center of the continu-
um, oi =Rq /2m. Experimentally such a plasmon disper-
sion spectrum was found in Al.

The effect of a peak in G+(q} [see Eq. (65}]would be to
bend the curve in a small region near q-2kF. It would
fiatten the curve even more for q & 2kF and would cause a
steeper rise for q & 2kF

If one combines Eqs. (29) and (49), the dispersion rela-
tion for the paramagnon pole is found:

1 —G (q)Q(q)
COt Up/, (70)

where vF is the Fermi velocity. If the many-body correc-
tion G (q) were neglected, the paramagnon velocity
would be v~/~3 for small q. Our paramagnon pole near

q =0 resembles the "paramagnetic spin wave" studied by
Van Zandt, who employed a time-dependent HF approx-
imation. With G (q) given by Eq. (66), the paramagnon
dispersion spectrum was calculated. The result is shown

l

E(k) = ( WHF+ w, ),
Bng

and is the sum of three contributions:

E(k)=A k /2m+E„(k)+E, (k) .

The second term is the exchange energy

(72)

(73)

EE(k}=——1 4me

& k(a, Ik' —kI' (74)

which can be readily evaluated. If we define y =k/kF,

E~(k) = (2e kF/n —)f(y), (75)

with

=E,(k) =E,"'(k)+ED~(k),
Bng

(76)

where f (y) is the same function that appears in Eq. (51}.
Differentiation of Eq. (71) with respect to nz gives the
one-electron correlation energy E,(k),

and

E, '{k)=y(M~') [1—G (q)]2
q E(k)—E(k—q) —Bros~' E(k+q) —E(k)—fust'

1 —ng 1l g+qE~(k)=g 3[M@6 ( )]i
E (k) —E(k—q) —fico/ E (k+ q) —E(k) —%cot'

(78)

E~'(k), given by Eq. (77), is the plasmon-induced corre-
lation energy. Its first term is the so:ond-order energy
arising from the virtual emission and reabsorption of a
plasmon q. The electron at k is virtually excited to an
empty state k'=k —q above the Fermi surface. The
second term occurs ~hen k is empty. The hole at k is

l

virtually excited to filled states k+q below the Fermi sur-
face. Similar remarks apply to the paramagnon-induced
correlation energy E~(k).

The k-dependent, plasmon-induced correlation energy
E~'(k}, calculated for r, =3.93, is shown in Fig. 3 and
was taken from Ref. 5. E, (k) is relatively insensitive to
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0.4 0.8 l.2

FIG. 3. Plasmon-induced correlation energy E~'(k), exchange
energy E„(k), and their sum. Both solid curves have logarith-
mica11y singular slopes at k =@+,but the singularities cancel in
the sum. (This figure is taken from Ref. 5.) 3

the choice of G+(q). For example, the effect of the peak
in G'+ (q) is almost unnoticeable. It should be noted that
for most k ~kF, E~' is positive. This can be traced to the
fact that virtual transitions to a small-k empty state are
more effective than virtual transitions from a filled state.
E~' falls precipitously near kF, and has a logarithmic
singularity equal and opposite to a corresponding one in
the exchange energy E,(k). Notice that the sum E, +E~'
is almost independent of k for k g1.4k~. This sum is
shown by the dashed line in Fig. 3.

We now define a mean mass m:

0.0 I.O

FIG. 4. Measured E(k) for the Na conduction band. The
solid curve is a free-electron spectrum, and the dashed curve is
an effective-mass band with m =1.28m. The Fermi energy is
defined to be zero. Data are from Jensen and Plummer, Ref.
25.

A~kg/2m =—E(kF) —E(0) . (79)
E(k, )—E(k, —q, )—iricot' =0, (80)

Were we to exclude the paramagnon contribution, this
"bandwidth" mass for Na would be 1.055. This value
corresponds to a 0.17-eV reduction from the free-electron
bandwidth. The observed reduction, found recently by
Jensen and Plummer and shown in Fig. 4, is 0.7 eV.
Thus the experimental mean inass is m/m =1.28. This
discrepancy can be accounted for by the paramagnon term
in E(k).

Angle-resolved photoemission (utilizing synchrotron ra-
diation) has been used to measure the occupied and unoc-
cupied band structure of several metals. The large
bandwidth narrowing found in Be and Al cannot be ex-
plained by the electron-plasmon interaction. For Na,
where the periodic potential of the ion lattice has negligi-
ble effect, it seems evident that an improved many-body
theory is required. %'e now show that the electron-
paramagnon interaction, which has previously been
neglected, explains the unexpectedly large m's.

Before one evaluates the paramagnon-induced correla-
tion energy E, (k), it is worthwhile to examine the corre-
sponding expression, Eq. (77), for Ef (k). The minimum
value of co&~ is the classical plasmon frequency cop, e.g. ,
6.05 eV for Na. Vanishing of the energy denominator,

in the integrand of Eq. (77) cannot occur until k reaches
k, —1.7kF. Therefore, as long as k is sufficiently small
compared to k„ the spectral width of the density excita-
tions is unimportant, and the plasmon-pole model is
reasonably accurate. (k, is the threshold wave vector at
which an electron can excite a real plasmon. ) One expects
an interesting feature to appear in E,~'(k) where k-k, .
Such an anomaly was first predicted by Hedin and Lund-
quist. Because the energy denominator, Eq. (80), be-
comes small when this occurs, the finite width of the
spectral density must be incorporated into the plasmon-
pole approximation when EP(k) is computed for k near
k, . Observation of this plasmon anomaly has recently
been reported by Jensen et al.

It is clear from Fig. 2 that, unlike the plasmon spec-
trum u&p', the paramagnon branch u&' is completely im-
mersed in the single-particle excitation continuum. Ac-
cordingly, all paramagnon modes will suffer Landau
damping. (Any paramagnon can always be annihilated by
creation of an electron-hole pair. ) Therefore, one must
not evaluate E~'(k) from Eq. (78), even for small k. In-
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stead, the calculation must incorporate the finite spectral
width of the spin excitations.

Accordingly we generalize Eq. (78) by introducing a
Landau-damping spectral density P(co) (Ref. 28) to re-
place the (infinitely sharp) paramagnon pole,

2a) I qlm.
P(~)=

(cg ci—lq ) +co I q

The modified Eq. (7S) is, then,

(81)

EP(k) =3g J dc' P(co)[Mq~G (q) j
q

Pl k+q

E(k+q) —E(it)—Are
(82)

Followjng Daiuno and overhauser, is we calculate the damPing constant I q by using standard transition-rate theory:

(it+q, P ~
H, ~ ~

k,u )2p(coq~) .
iI,a, iq

is the electron-paiamagnon interaction Hamiltonian, Eq. (46). For a given q and polarization» we have

HR iEI
——g Mq G {C}oIEgbq/~ &aciIp+bqFcs+qIE iIP) .pg v

k,a,P

(83)

(84)

Equations (83) and (S4), together with the Pauli matrix
identity (18), lead to

I q= [MPG (q)] gp(roqp') .
k,a

(85)

The density of final states p(aip) is that appropriate to the
single-particle excitations having energy transfer eiP and
momentum transfer q. The summation in Eq. (85) was
evaluated in Ref. 28:

curve at EF. This theoretical E(k} should be compared
with the experimental one shown in Fig. 4.

Various energy and mass values are given in Table I for
electron densities appropriate to seven "jellium" metals.
Contributions from band structure and electron-phonon
interactions have of course been omitted. Comparison of
the fifth and seventh rows shows that the paramagnon
contribution to the correlation energy is less than 10% of
the sum of the exchange and plasmon contributions.

ps

g p(aiP) = (86)

Equations (85}and (86) determine the paramagnon damp-
ing I &.

Equation {82) can now be evaluated numerically. The
result for Na (r, =3.93) is shown in Fig. 5. It is apparent
that the electron-paramagnon interaction significantly in-
creases the mean mass m, Eq. (79}. It reduces the width
of the conduction band by 0.66 eV. Since the observed
reduction is about 0.7 eV, ' we conclude that the
electron-paramagnon interaction is the main cause of
bandwidth narrowing in simple metals. Figure 6 is the
one-electron energy E(k) from Eq. (73). The curve has
been adjusted so that it coincides with the free-electron

0.6

0,3

0.0
LLl

4d

-0.6

k /kp

FIG. 5. Paramagnon-induced correlation energy Ep'(k).

k/kF
FIG. 6. Theoretical E(k) for an electron (quasiparticle)

which includes all the many-body effects presented in this pa-
per. The free-electron parabola is shown for comparison.
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TABLE I. Calculated energy and mass values for electron liquids having densities equal to those of seven "jellium" metals. Ener-
gies are in eV.

An) p
fi kFi2m
Z~(0)
E,~(kF )

E„(0)+EP'(0)
E„(k,)+Ep'(k, )

m/m
m /m

1.88
18.28
14.18
1.17

—0.51
—10.25
—10.29

1.137
0.974

2.07
15.78
11.65
1.12

—0.48
—9.32
—9.41

1.171
0.979

Li

3.25
8.05
4.75
0.64

—0.38
—6.04
—6.22

1.337
1.023

3.93
6.05
3.24
0.31

—0.35
—5.05
—5.22

1.344
1.067

4.87
4.39
2.12

—0.03
—0.33
—4.16
—4.30

1.260
1.140

Rb

5.12
3.98
1.86

—0.10
—0.32
—3.97
—4.11

1.231
1.166

5.62
3.53
1.58

—0.19
—0.31
—3.65
—3.77

1.170
1.225

VIII. CONCLUSIONS

%e have shown that the plasmon-pole and
paramagnon-pale model provides an easy method far cal-
culating both charge-induced and spin-induced correlation
effects of interacting electrons. With this model one can
easily calculate the one-electron energy spectrum. Al-
though the sum of E,(k) and Ef'(k) makes a very small
contribution to the mean mass m, the paramagnon-
induced correlation energy E~'(k) increases m by a signi-
ficant amount. It explains the narrowing af the
conduction-electron bandwidth observed in several metals.
Damping of the paramagnon modes must be incorporated
in situations where the finite spectral width is important.

Wicoi"
D~'(q, co}= (~)'—(faut')'

(Al)

plasmon mode (a scalar boson}, and the spin fluctuations
by a paramagnon mode (a vector boson). Consequently,
the correlation Hamiltonian of the system is greatly sim-
plified and becomes a tractable operator H, . From H„
Eq. (46}, one can easily calculate several many-body ef-
ects.

In order to compare our work to previous many-body
theories (formulated in terms of Green's functions and di-
agrammatic expansions) we introduce the free propagator
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APPENDIX: COMPARISON WITH SEVERAL
PREVIOUS MANY-BODY THEORIES

The essence of the model presented here is to replace
density fluctuations of an electron liquid by a single

l

for plasmons, and

2fico"
D~~(q, co}=

(irido) —(Icos)
(A2)

for paramagnons. Equation (77) for the plasmon-induced
correlation energy E~(k) is equivalent to the irreducible
self-energy2

& '~& ko)=&'& f f fM '[1—G (q)]) D"(q,a))G(k+q, k + ),(2ir) 2n. (A3)

and Eq. (78}for Ep(k} is equivalent to

XP(k, ko)=iQQ f f [M 'G (q)] DP(q, co)G(k+q, ko+co) .dg dN

2~
(A4}

Both of these expressions may be represented by the diagram shown in Fig. 7.
By defining the dynamical dielectric function (which we derive below),

(A5)

and using Eq. (15), we may rewrite Eq. (A3) as

&,"(k.ko}=i f " ', f "
U(q)

' —1 [1-G, (q)]'G (k+q, k +co) .
(2m ) 2n e(q, co) (A6)
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This expression is an improved version, i.e., it includes the
vertex correction [1—6+{q)],of the formula obtained
by Quinn and Ferrell for the density-induced correlation
energy. Accordingly, as long as Eq. (A5) is deemed ap-
propriate, the plasmon-pole term has the same structure
as the "ordinary" method for calculating density-induced
correlation effects. The vertex correction (included in our
work) is quite important quantitatively.

The dynamical dieltx:tric function e{q,co), given by Eq.
(A5), can be derived from the plasmon-pole model. Con-
sider the effective dynamical interaction between two test
charges imbedded in an electron liquid. By definition, the
interaction should be

V«(q, ~) =— V(q)

«(q, co }
(A7)

On the other hand, in the plasmon-pole language the in-
teraction is

20i)tq'(M ')
V«(q, co) = V q)+

(i)leo)' —(%)~~')'
(AS)

The first term is the bare Coulomb interaction; the second
term comes from virtual emission and absorption of
plasmons by the two test charges. Equation (A5) is ob-
tained by equating the right-hand sides of Eqs. (A7) and
(AS), and using Eq. (15).

The dynamical dielectric function of the plasmon
model is related to the static dielectric function e(q, 0)

I

through Eq. (13). For example, for q =0,
2

e(0,co) = 1—
CO

the exact Drude response of a classical Coulomb plasma.
For q&0, Eq. (A5) is also a good approximation at high
frequencies.

In a similar way the dynamical spin susceptibility may
be derived from the paramagnon-pole terms:

2i)leo~'[M~'/ V(q) ]
X(q,co)/Isit =—

(t)tea ) —(i)tcot')
(A9)

Equation (A4) can then be rewritten as

FIG. 7. Self-energy diagram corresponding to virtual emis-

sion and reabsorption of a plasmon (or paramagnon) by an elec-
tron. The two dots represent the electron-plasmon coupling
Mf'[ I —6+(q)] or the electron-paramagnon coupling
Mq~G (p).

d3
XP{it,ko}= 3i I—

i J [6 (q) V(q)]'6(lt+q, ko+co)X(q, co)/pii .
(2ir)

(A 10)

If we replace 6 (q}V(q) by a constant I, Eq. (A10) be-
comes the expression used by Doniach and Engelsbergi'
to calculate the paramagnon-induced self-energy in palla-
dium. The factor 3 reflects the three components of the
vector paramagnon, a multiplicity first emphasized by
Penn.

We have shown' that 6 (q) V(q) is the irreducible in-

teraction in the spin-antisymmetric channel, and is the
cause of all the spin-induced correlation effects. Al-
though effects of spin fluctuations were intensively stud-
ied in nearly ferromagnetic metals twenty years ago, they
have been neglected in paramagnetic metals. The present
paper has shown their importance in explaining the
conduction-electron spectrum of simple metals.
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