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A new form of molecular dynamics has been developed whose trajectories generate the isothermal

or canonical ensemble of classical statistical physics. %e have performed molecular-dynamics cal-

culations of the elastic constants using this new ensemble. %'e find that the elastic constants, as well

as other thermodynamic quantities, may be calculated just as efficiently in the isothermal form of
molecular dynamics as in conventional microcanonical molecular dynamics.

I. INTRODUCTION

Elastic constants, among other thermodynamic proper-
ties of solids, yield valuable dynamical and mechanical in-
formation about materials. For example, they yield infor-
mation, through the Born relations, concerning the stabili-

ty and strength of inaterials. Elastic constants are deter
mined experimentally using various techniques including
Brillouin scattering, ultrasonic wave propagation, and
neutron scattering. ' The comparison of experimentally
measured and theoretically calculated elastic constants is
an important tool for testing interaction potentials that
are derived from theory. In cases where well-established
potentials are available one should be able to predict the
behavior of the material under various conditions of nor-
mal or extreme loading.

One traditional way of determining elastic constants in
the high-temperature, anharmonic regime has been
through the use of Monte Carlo calculations. The theory
for these calculations was first developed by Squire et al. s

Ray, Moody, and Rahman presented the first calculation
of elastic constants using a version of molecular dynamics
which generates a microcanonical (E,h, N) ensemble,
where E is the system energy, h is a matrix formed from
the three vectors g, Q, and c which span the molecular-
dynamics cell, h =(~Q,g), and N is the particle number.
These calculations made use of equilibrium fiuctuation
formulas involving the adiabatic elastic constants derived
earlier by Ray and Rahman These fluctuation formulas
of Ref. 7, which will be given below, were formulated in
the (E,h, N) ensemble of equilibrium statistical mechanics
and ~ere used to determine the adiabatic elastic constants.

It is customary to associate molecular dynamics with
the (E,V,N) ensemble of equilibrium statistical mechan-
ics, where V is the volume of the system. The difference
between (E,h, N) molecular dynamics and (E, V,N) molec-
ular dynamics is that in the former the molecular-
dynamics cell has an arbitrary shape defined by the con-
stant matrix h. This is a significant difference since it is
just this introduction of h into the theory that allows one
to derive, as in Ref. 7, the fiuctuation formulas containing
the elastic constants.

As was also discussed in Ref. 6, the use of fluctuation
formulas to calculate elastic constants in the (H, t, N) ex-
tension of (E,h, N) molecular dynamics, was not success-
ful; that is, the (H, t,N) fiuctuation formulas involving
elastic constants do not lead to statistically convergent re-
sults in molecular-dynamics runs of reasonable length
(80000 time steps). We recall that in the (H, t, N) ensem-
ble the size and shape of the molecular-dynamics cell is
allowed to vary; in other words, the matrix h becomes a
dynamical variable. The formulas for the elastic con-
stants in this ensemble are determined by the fiuctuations
in the matrix h.

Another new form of molecular dynainics is Nose's iso-
thermal or canonical extension of (E,h, N) molecular
dynamics. Nose's method may be employed to construct
a molecular dynamics which generates the ( T, h, N) or the
canonical ensemble, where T is the prescribed system tem-
perature. This ( T,h, N) form of molecular dynamics has
been discussed as well as example calculations presented
by Ray and Rahman. In this paper we present the
relevant fiuctuation formulas for elastic constants in the
( T,h, N) ensemble and show by calculation that these for-
mulas may be used in molecular dynamics to calculate
elastic constants.

We note that an alternate way of determining elastic
constants is to apply a given stress and to determine the
resulting strain. The stress-strain relation so determined
gives the elastic constants. Although it is always possible
to employ this method, it is inconvenient since one must
apply several different stresses to determine all the elastic
constants. Sprik et al. ' found this direct method of cal-
culation of elastic constants to be computationally ineffi-
cient vvhen compared to Monte Carlo calculations using
equilibrium fiuctuation formulas.

It should be mentioned that, by using the adiabatic elas-
tic constants determined in an ( E,h, N) molecular-
dynamics calculation together with other thermodynamic
quantities determined in the run, one can calculate the iso-
thermal elastic constants using well-known therrnodynam-
ic relationships that we present later. Therefore, we may
use the (E,h, N) form of molecular dynamics to determine
the isothermal as well as the adiabatic elastic constants.
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Similarly, the reverse is also true, that we may determine
the adiabatic as well as the isothermal elastic constants in
( T, h, N) molteular dynamics. We shall make use of this
dual way of calculating elastic constants to compare the
results obtained in ( T,h, N) isothermal molecular dynam-
ics with the results obtained in (E,h, N) molecular dynam-
ics. Holt et al. " first employed this procedure to deter-
mine the adiabatic elastic constants in Monte Carlo calcu-
lations.

For convenience we employ the same notation as in ear-
lier papers (Refs. 6, 7, and 9), and, in order to keep the
equations relatively simple, we assume a pairwise additive
central potential.

m= —,gfi2/m. + g U(r.b)
a, b

(a &b)

is the system Hamiltonian.

III. FLUCTUATION FORMULAS
IN THE (E,h, H) ENSEMBLE

Here for reference we present the (E,h, N) fluctuation
formulas that were given in Ref. 7. First, we have the
isostrain specific heat C, determined by fluctuations in
the particle kinetic energy K;

r

II. THE ( T,h, N) THEORY (REPS. 8 AND 9).
5(K ) = (ka T)2 1—3%kg

2 2C~
(3.1)

+ —,
' P /M+(8+1)kit T lnf, (2.1)

where g and n are the particle scaled coordinates and mo-
menta, G is the inverse of the metric 6=h'h, U(r, b) is
the pair potential, I' =3% is the number of particle de-
grees of freedom, f is Nose's scaling variable, and P is the
momentum associated with f, P=Mf; note that the vari-
able f is more naturally thought of as a mass-scaling
dynamical variable rather than as a time-scaling one. ~

This Hamiltonian yields the equations of motion

The Hamiltonian in the (T,h, X) form of molecular
dynamics is taken to have the form

~2(a,zf,P)= —, gtr.'G 'rr. /(m. f-')+ g U(r~)
u, b

(a &b)

where t;j is the thermodynamic tension tensor. The mi-
croscopic tension tensor is given by

il = Vhph '9'(h') 'hp/Vp, (3.2)

s

where 5(AB)= (AB ) —( A )(8 ) . Since the strain is
determined by h via

e= —,[(hp) 'h'hhp ' —1],
then if the strain is constant, so is h and vice versa; hp is
the value of the h matrix at zero stress while h is its value
at the state point under investigation.

Second, we present the fluctuation formulas involving
the temperature coefficients of thermodynamic tension at
constant strain (i.e., constant h),

maf '&a = g&ab&ab —2maff&a-

Mf =2K/f (F+1)kitT/f, —

where

1 5U(rab)
Xgb-

rab Grab

(2.2)

(2.3)
+ij = V gfiaifiaj/ma g +ab abi abj

—1

a o,b
(o gb)

(3.3)

The average of rj gives the tension tensor in the (E,h, N)
ensemble:

where V is the volume and Rij is the microscopic stress
tensor

and K = —,
' g+, /m, is the kinetic energy of the particles

in the system, with fia fm, hs„K is the first term on
the right-hand side of Eq. (2.1).

As was discussed in Ref. 8, time averages calculated us-
ing the trajectories generated by Eqs. (2.2) and (2.3) are
equal to averages in the canonical ( T,h, N) ensemble of
equilibrium statistical mechanics,

(3.4)

The thermodynamic quantities A, ,j may be determined by
knowing C, and using the fluctuation formulas

~ ~

5(Krh, ) =N(kti T) [hph '(h') 'hp ]; /Vp—

(3.5)

(A(xfi) &= —~~a dF
(2.4) Lastly, the fluctuation formulas for the adiabatic elastic

constants C~ are

koko kosqkot ko Gso = 5(MoM& )+2NksT'(G Gsi +Gs 'Gs ')+ Z g(s,o)s,ss~~s~~s, s ),8 a, b
(a &b)

(3.6)

where M= ——,
'

Vh '%(h') ' and g(r)=(52U/Br 1)/r—
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IV. FLUCTUATION FORMULAS IN THE ( T,h, N} ENSEMBLE

As we have discussed in Sec. II, Nose s ( T,h, N} molecular dynamics generates the canonical ensemble. Therefore, in
the ( T,h, N) ensemble the fiuctuation formulas determining C, and A,;j have the form

5(A )=ksT C, (4.1)

and

5(rjijA )=kjiT A,;j,
where 4 is specified in Eq. (2.4). The isothermal elastic constants C~ are determined by the fiuctuation formulas

—1 —i —i —i T 4 —1 —1 —1 —1V,h~~hg, h~„h; C~„= 5(M;, M& '|+2'&T(G, 6,& +6&, G, )+ p g(is).a;*.bj bl 5
8 a, b

(a &b)

(4.2)

(4.3)

TVp
Cijkl =Cijkl ~ij~kl .

C
(5.1)

Therefore, from the quantities C„A,,j, and Cijki, which
are calculated in an equilibrium ( E,h, N} molecular-
dynamics calculation using the formulas of Sec. III, we
may calculate the isothermal elastic constants using Eq.
(5.1).

In a similar manner, if we rewrite Eq. (5.1) in the form

TVp
Cijkl Cijkl+ ~ij ~ki ~

C,
(5.2)

we see that the quantities C„A,;j, and Cijki, as determined
from an equilibrium ( T,h, N) molecular-dynamics calcula-
tion using the formulas of Sec. IV, may be used to calcu-
late the adiabatic elastic constants.

We now have two methods, one using (E,h, N) molecu-
lar dynamics and another using ( T,A, N} molecular
dynamics, for calculating the elastic constants C,jki and

C~jki as well as the other thermodynamic quantities C,
and A,;, . The comparison of the values of these thermo-
dynamic quantities as calculated in ( T,h, N) and (E,h, N}
molecular dynamics gives an indication of the practical
usefulness of Noses, ( T,h, N) molecular dynamics to gen-
erate the canonical ensemble.

VI. NUMERICAL RESULTS

%e have carried out several molecular-dynamics runs
using the dynamical equations (2.2) and (2.3) to generate
the trajectories. In order to compare with previous work
we employed the same potential as in Ref. 6 and previous-
ly used by Cowley' in Monte Carlo calculations. Our
system consists of 500 particles interacting with the
Lennard-Jones (12-6) potential including only nearest-
neighbor interactions. The data presented is for an fcc

V. CONNECTION BETWEEN ( E,h, N}
AND ( T,h, N} FLUCTUATION FORMULAS

From the formulas given in Sec. III we can, in an

(E,h, N) molecular-dynamics calculation, determine the
thermodynamic quantities C„}(,;j, and Cpjki. From
Thurston' we find the following relationship between the
isothermal and adiabatic elastic constants:

then the relationship (5.1) may be summarized by"
S T S T S TCii —C» =C22 C22=Ci—i Cii =~C-
S T S T S T

C12 —C12 ——C23 C23 —C13 C13 —hC,
S T S T S T

C44 C44 =C55 —C55 =C66 —C66 =0
(6.1)

with all other elastic constants being zero. The equality
Ci i C22 —C33 etc. again follows from the cubic symme-
try.

In Tables I, II, and III we exhibit a representative sam-
ple of the data collected in this study. In these tables the
entries labeled run 1 and run 2 are independent ( T,h, N)
molecular-dynamics runs each of 20000 time steps; the
entries labeled run 3 and run 4 are independent (E,h, N)
molecular-dynamics runs each also of 20000 time steps;
each time step is approximately 10 ps for argon. The
four molecular-dynamics runs all had reduced tempera-
tures within 1% of 0.3.

All rms error estimates in this paper were obtained by
using the method of partitioning the molecular-dynamics
run into several segments and calculating the average of
the quantity of interest for each of these segments. The
average values calculated in each segment were then used
as independent values of the quantity to calculate the rms
error estimate.

In all molecular-dynamics runs the elastic constant
C 1233 —C63 was calculated. By cubic symmetry this elas-
tic constant is zero. In all cases the calculated value of
this elastic constant was zero within the statistical uncer-
tainty of our calculations.

A. Isothermal elastic constants

Table I shows the symmetry-averaged isothermal elastic
constants as determined in the four molecular-dynamics
runs and Cowley's Monte Carlo calculation. For run 1

solid at a reduced temperature of 0.3 and at zero pressure.
For this case, due to cubic symmetry, we have

Aii —jt$2 —A33 and Aii=A$3 A]3 0

If we set

TVp
b, C= Aii

C,
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TABLE I. Isothermal elastic constants in units of NkqT/Vo from ( T,h, N) and (E,h, N) molecular
dynamics and from Cowley's Monte Carlo calculations. For argon {eo——120 K, o =3.4 A),
Nk~T/Vo ——11.8 MPa. ht stands for one time step of 10 pc for argon.

Run (time) 3 (C&r+Cz2+C33) 3 (C)2 +C13 +C23 ) 3 (C44+Css+C66)

1 (20000ht}
2 (200008 t)

{T,h, N) molecular dynamics data
166.7+3.4 76.4%3.3
164.6+5.9 76.2+5.4

81.3+1.3
82.0+ 1.7

3 (200006,t)
4 (20000k, t)

{E,h, N) molecular dynamics data
160.4+3.0 71.3+3.2
162.2+7.0 73.1+6.9

83.2+1.3
82.4+0.6

(250006,t}

'Reference 13.

Monte Carlo data, Cowley'
157.1+1.0 69.3+0.9 82.220.2

3 {C~+Css+C66)3 {C)2+C)3+C23)3 (C))+C22+C33)

TABLE II. Adiabatic elastic constants in units of Nk&T/Vo from {T,h, N) and (E,h, N) molecular
dynamics and from Cowley's Monte Carlo calculations.

Run (time)

1 (20000k, t)
2 (20000k, t)

( T,h, N) molecular dynamics data
185.8k 1.3 95.5+1.1
184.4+2.1 96.0+1.6

81.3+1.3
82.0+1,7

3 (20000k, t)
4 (200008 t)

(E,h, N) molecular dynamics data
183.9+1.6 94.8+1.6
184.2 +0.6 95.1+0.8

83.2+1.3
82.4+0.6

(250005,t)

'Reference 13.

Monte Carlo data, Co~ley'
182.0+0.5 94.1+0.5 82.2+0.2

TABLE III. Specific heats at constant volume and pressure in units of Nkg and adiabatic and iso-
thermal bulk modulii in units of Nk~ T/Vo from ( T,h, N) and (E,h, N) molecular dynamics and from
Cowley's Monte Carlo calculations.

Run (time) Cv Cp

1 {20000k,t)
2 {20000k,t)

( T,h, N) molecular dynamics data
2.78+0.22 3.49+0.54 124.8+2.0
2.67+0.18 3.22+0.38 126.2k 1.8

100.7+8.2
105.4+6.5

3 (20000k, t)
4 (20000ht)

(E,h, N) molecular dynamics data
2.78+0.10 3.43+0.21 124.5 %0.7
2.7020.22 3.28+0.48 124.8+ 1.6

101.0+3.1

102.8+7.0

(25 000ht)

'Reference 13.

Monte Carlo Data, Co~ley'
2.82%0.03 3.53%0.04 123.4+0.5 98.6+0.9
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and run 2 [with the (T,h, N) ensemble] the elastic con-
stants are determined using Eq. (4.3). For run 3 and run 4
the elastic constants are determined by using Eqs. (3.1),
(3.5), and (3.6) together with (5.1). Cowley's results are
obtained from Eq. (4.3) after replacing the momenta aver-

ages by

(p,~, }Irn, =k+T5,J,
(6.2}

&p.~.~.~., & pm.'=(k, T)'(~ p„+~i;~jk+~k;~), ) .

When these momenta averages are used in Eq. (4.3), we
obtain formulas that are suitable for a Monte Carlo calcu-
lation of isothermal elastic constants, as in Squire et al.
and in Wallace et ol. '

As can be clearly seen from Table I the ( T,h, N) and
(E,h, N) forms of molecular dynamics give comparable re-
sults for molecular-dynamics runs of equal length.

B. Adiabatic elastic constants

In Table II we show the adiabatic elastic constants as
calculated using ( T,h, N) and (E,ji,N) molecular dynam-
ics along with Cowley's results. Here the (E,h, N) elastic
constants are calculated using Eq. (3.6). The ( T,Ii,N) adi-
abatic elastic constants are calculated using Eqs. (4.1),
(4.2), (4.3} together with (5.1). Cowley's results in this
table are determined in the same way as the (T,h, N)
values. It is again clear that the two forms of molecular
dynamics give comparable results.

C. Scalar thermodynamic quantities

Table III shows the specific heats at constant volume
and pressure and the adiabatic and isothermal bulk
modulli as determined from appropriate fluctuation for-
mulas in the (E,h, N) and ( T,h, N) ensembles, respective-
ly.

VII. DISCUSSION

The data in Tables I and II clearly show that Nose's
isothermal form of molecular dynamics is just as efficient
for calculating elastic constants as conventional micro-
canonical molecular dynamics. This is strong evidence in
support of the ability of the trajectories defined by Eqs.

(2.2) and (2.3) to generate a satisfactory canonical ensem-
ble. As previously mentioned some of the other new
forms of molecular dynamics, the (H, t, N) ensemble, for
example, have not yielded convergent values for the elastic
constants. An investigation into this difference in the
practical utility of the two methods may turn out to be
enlightening.

By comparing Tables I and II one will notice that the
first two elastic constants Cii and Ciz have larger vari-
ance for the isothermal elastic constants, Table I, than for
adiabatic elastic constants, Table II. The more rapid con-
vergence of Csli md Csi2 as impar~ to Ciri and Ci2 has
been noticed previously. "' '

It should be remarked that even though there is a larger
error estimate in some of the isothermal elastic constants,
this is not dependent on which of the two forms of molec-
ular dynamics we use for the calculation; in other words,
the slower convergence is associated with the basic statis-
tical physics of the fluctuations which determine the iso-
thermal elastic constants and not with the form of molec-
ular dynamics employed, as Tables I and II show.

The present calculations are carried out on an un-
stressed fcc crystal. However, we have shown earlier6 that
one obtains the same rapid convergence for the elastic
constants of this same system subjected to a 5% elonga-
tion (stretch) along the [001] direction. Also, we should
point out that there is no apparent reason that the present
method of calculation of elastic constants could not be
employed to determine the elastic constants of noncrystal-
line materials.

An interesting subject for further study would be the
comparison of the relative efficiency of the molecular
dynamics and Monte Carlo calculations of elastic con-
stants.

Note added in proof. Schiferl and Wallace' have re-
cently used (E,li, N) molecular dynamics to calculate
elastic constants for a model of sodium.
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