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Ground-state variational wave function for the quasi-one-dimensional
semiconductor quantum wire
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An analytic variational wave function is proposed for the ground state of a quasi-one-dimensional elec-

tron system as occurring in narrow inversion layers in metal-oxide-semiconductor field-effect-transistor
structures. The ground-state energy and the charge density are evaluated as functions of the average
channel-electron density and the width of the metal gate by solving Poisson's equation and Schrodinger's

equation in the variational se/f-consistent Hartree approximation.

Recent advances in technology' ' have made possible the
fabrication of quasi-one-dimensional electron systems con-
fined on the semiconductor side of metal-oxide-semi-
conductor field-effect-transistor (MOSFET) structures. One
of the techniques used in producing these one-dimensional
structures is to use very narrow metal gates (deposited litho-
graphically) which confine the electron gas in the x-y plane
with z being the direction normal to the interface. In a nor-
mal MOSFET structure the electronic motion along the z
direction is quantized6 in the space-charge layer due to the
strong confining electric field at the interface produced by
the gate electrode, but the motion in the x-y plane is free in
the effective-mass sense. Quantum aspects of such two-
dimensional confinement in systems like Si inversion layers
and the electronic structure of the confined electron states
have been extensively studied6 in the last fifteen years. On
the other hand, one-dimensional systems associated with
narrow inversion layers have only been studied ~ within
simple particle-in-a-box-type quantization models where the
confinement in the x-y plane is assumed to be caused by
well-defined model potentials like the infinite-square-well or
harmonic oscillator potential. In this Rapid Communication
we go beyond these simple models and provide a variational
approximation for the ground state of a narrow-channel in-
version layer in the MOSFET structure assuming an ex-
treme quantum limit with only the lowest level occupied.

%e make the usual ' effective-mass approximation and
consider electrons moving under the influence of the self-
consistent confining field in the conduction band of the
semiconductor. The confining potential V obeys a two-
dimensional Poisson's equation given by

8 4m+ V(y, z) - — p (y,z),
8y 8z

where p is the charge density and x is the background lattice
dielectric constant. %'e are assuming the electrons to be
completely free in the x direction so that the electronic wave
function is given by

y(x,y,z)=L "'e "y(y, z) .

The wave function @(y,z) obeys a two-dimensional

Schrodinger equation given by

, +
z 4(y, z)+ V(y, z)4(y, z) -Eg(y, z)

2m yz 2m, tlzz

is the electronic charge density with i as the quantum index
for the confined states defined by Eq. (3). N& is the density
occupancy of the i th level. There is an additional image-
potential (VI) contribution6 to V which arises from the
mismatch in background dielectric constants at the interface.
%e employ the following model for the depletion charge
density to mimic the narrow-gate systems:

pe(y, z) —e(N~ —ND) for —a «y « a and 0( z ( d

- 0 otherwise, (6)

where d is the thickness (in the z direction) of the depletion
layer whereas 2a is the width (in the y direction) of the de-
pletion layer. In Eq. (6), Nq and ND are the bulk accepter
and donor concentrations, respectively. Our boundary con-
ditions are V 0 for z -O, d and V=O for y =0, + a. The
width 2a is in general much larger than the width ~ of the
strip in which the electrons are confined.

A numerical self-consistent treatment of the above set of
equations [(l)-(6)] is feasible, but perhaps somewhat in-
volved computationally. Instead we concentrate on an ana-
lytic approach which gives one some insight into the nature
of the confined electronic states. We start by introducing
the classical Green's function G(y, z~', z') which formally
solves Poisson's equation:

V(y, z) - J G (y, z~', z') p(y', z')dy' dz' (7)

One can solve for the Green's function 6 using standard"
techniques to obtain

(3)
The total charge density p in Eq. (1) consists of the fixed
depletion charge and the inversion-layer electronic charge
density itself so that

p(y, z) - pg(y, z) +p, (y,z),
where

p, 4,»-XNil4 (v, z)I'
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2 ~ sin[(mn/a)y]sin[(mm/a)y'] „,Ggyz~, z j =
m sinh[(m w/a) d]

sinh (d —z') sinh z for z & z'
a a

sinh z' sinh (d —z) for z & z'
a a

(g)

The main advantage of this formula is that the arguments y and z have been separated into a highly convergent series. In
fact, for our case it turns out that it is sufficient to keep only the first term in the series defined by Eq. (8) since the second
term is more than an order of magnitude smaller than the first term. Keeping only the leading term in the series, Poisson's
equation is now directly solved to give

V, (y, z) =—
1 i t

4~e(N~ —No) 2 z sin[(~/a) ly I] m w . m—a sinh —d —sinh —z —sinh —(d —z )sinh[(ir/a) d] a a a
(9)

and

V, (y, z) - — —
NOJ dy'4me 2 I",sin[(ir/a)lyl] . ~, ",. n, . rrsin —y' dz'sinh —z' sinh —(d —z) lg(y', z') I'

x, m -~ sinh[(n/a)d] a o a, a
r

i d

+ dz'sinh —(d —z') sinh —z lqb(y', z')
ldg a a

(10)

In Eq. (9), No is the electronic charge density per unit length

and NOIP(y, z) l' is the strip electronic charge density (per
unit volume) at the spatial point (y, z). It is easy to see that
in the limit a » d Eqs. (9) and (10) reduce to the well-
known6 two-dimensional forms. The total self-consistent
potential entering Eq. (3) is now given by V = Vq+ V, + VI

~here V~, V, are, respectively, the potentials due to the
fixed depletion charge and the self-consistent Hartree poten-
tial due to the confined electrons themselves.

We solve the above set of equations self-consistently by
using the following analytic variational wave function:

@(y,z)-Aze ~ (e 0 ' )F(y) (11)

where A is a normalization constant and the function F (y)
is given by

I

makes the inversion layer narrow by squeezing down the in-
finite two-dimensional structure along the y direction, there
is an intermixing between the ground and the excited states
of the simple Fang-Howard-Stern wave function as one can
see by expanding the parentheses in Eq. (11):

exp( bobl ly lz/2) = 1 —bobi ly lz/2

+ (bobilyl/2) z /2'+

The variational parameter bi defines the extent of this mix-
ing by making the maxima of the electron density distribu-
tion in the z direction an explicit function of y.

Using the variational wave function it is now straightfor-
ward (and, quite tedious) to obtain the ground-state expec-
tation value of the Hamiltonian (Eq. 3) given by

F(y)-
cos y +, lyl ~ w/2,

-y((y )
—e/2)e Iy I

~ ~

2

f2 Q2 g2 Q20 T+V , + V(y, z)2~ 8y2 2m, gz2

(12) and to minimize the ground-state energy

E(bo.bb y) ( T) + ( Vz) + ~( V, ) + ( Vi)

The variational parameters are bo, bi, and y ~hereas ~ is
the width of the strip (for simplicity we choose a -2w
which gives good accuracy and convergence in our numeri-
cal results). The geometry is such that the semiconductor
occupies the z «0 half-space and the narrow rectangular
strip (of infinite length along the x axis) is centered around
y =0.

Our variational wave function defined by Eq. (12) has the
character of a particle-in-a-box-type wave function in the y
direction except that it has tails outside the strip because the
confining potential is not infinite. The wave function in the
z direction has the Fang-Howard-Stern variational form6
which has been quite successful for regular (i.e., non
narrow) two-dimensional silicon inversion layers. A new
feature of the wave function defined by Eq. (11) is the mix-
ing between the y and z terms (i.e., the wave function is
nonseparable) which has been parametrized by the term in
parentheses. The physics behind this mixing is that as one

with respect to the variational parameters bo, b~, and y for
given values of the inversion and depletion charge densities.
Details are tedious and will not be sho~n here. We will
present our numerical results for the wave function and
ground-state energy appropriate for narro~ inversion layers
on Si(100)-StOz system.

In Fig. 1 we show three-dimensional plots of the ground-
state probability density lg(y, z) I' as a function of y and z
for w - 600 A, N, - 1.4X 10' cm 2, N4, p] = 1.01 x 10"

and for w 100 A, N, 5 x 10' cm, N4, p[

1.01X10"cm 2. In Fig. 2 we show the wave function as
a function of z for various fixed values of y to explicitly
bring out the mixing of y and z parts of the wave function
which gives rise to the "bending" effect apparent in Figs. 1

and 2. The ground-state energy has been shown as a func-
tion of N-N, +N4 p] in Fig. 3 for two different situations.
We also show zoo- (z) in Fig. 3 to give some idea about
the width of the wave function. For one set of curves in
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FIG. 2. Ground-state envelope wave function as a function of z
for various fixed values of y (in nm) as marked on the curves.
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Fig. 3 we show, for the sake of comparison, our results for
Eo and z00 in the two-dimensional situation ~here ~ =~,
and there is no lateral confinement.

The main conclusions which we derive from our numeri-
cal results is that the bending effect (i.e., the intermixing of
the y and z parts) is important for narrow inversion layers
and that the tailing effect is important for narrower strips.
Our calculation being the very first one for quantum wire
structures involves a number of simplifying approximations
like the neglect of exchange-correlation effects' and the
electric quantum-limit approximation (i.e., the neglect of
excited levels). But the advantage is that the work is mostly
analytic (except for the variational minimization in the end)
which enables one to develop a good physical feel for the
quantum-confinement effects. One can, in principle, at-
tempt to solve the set of equations [(1)-(8)1 self-
consistently by direct numerical integration. However, such
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FIG. 3. Ground-state energy (Eo) and the z-spatial extent (zoo)
of the ground-state wave function for two different situations. (a)
Dashed lines are the corresponding results for the two-dimensional
limit (~ -~).
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calculations are bound to be numerically quite complex in
view of the two-dimensional nature of the basic
Schrodinger's and Poisson's equations.

In conclusion, we have developed a variational theory for
the ground-state one-electron wave function of a quasi-
one-dimensional quantum wire as occurring in narrow in-
version layer in metal-insulator-semiconductor structure.
We solve the two-dimensional Poisson's equation by using a
classical Green's function expansion, and then the
Schrodinger's equation is solved variationally in the Hartree

approximation. Our numerical results for narrow channel
silicon (100) inversion layers are most appropriate for one-
dimensional structures produced in narrow gate devices. "'
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